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This paper unifies and extends results on a class of multivariate Extreme

Value (EV) models studied by Hougaard, Crowder, and Tawn. In these models both unconditional and conditional distributions are EV, and all lower-dimensional marginals and maxima belong to the class. This leads to substantial economies of understanding, analysis and prediction. One interpretation of the models is as size mixtures of EV distributions, where the mixing is by positive stable distributions. A second interpretation is as exponential-stable location mixtures (for Gumbel) or as power-stable scale mixtures (for non-Gumbel EV distributions). A third interpretation is through a Peaks over Thresholds model with a positive stable intensity. The mixing variables are used as a modeling tool and for better understanding and model checking. We study extreme value analogues of components of variance models, and new time series, spatial, and continuous parameter models for extreme values. The results are applied to data from a pitting corrosion investigation.

Introduction

Multivariate models for extreme value data are attracting substantial interest, see e.g. [START_REF] Kotz | Extreme Value Distributions : Theory and Applications[END_REF] and [START_REF] Fougères | Multivariate extremes[END_REF]. However, with the exception of [START_REF] Smith | Statistics of extremes, with applications in environment, insurance, and finance[END_REF] and [START_REF] Heffernan | A conditional approach for multivariate extreme values[END_REF], few applications involving 1 more than two or three dimensions have been reported. One main application area is environmental extremes. Dependence between extreme wind speeds and rain fall can be important for reservoir safety [START_REF] Anderson | Environmental factors affecting reservoir safety[END_REF], Ledford and [START_REF] Ledford | Statistics for near independence in multivariate extreme values[END_REF]), high mean water levels occurring together with extreme waves may cause flooding [START_REF] Bruun | Comparison of approaches for estimating the probability of coastal flooding[END_REF], de Haan and de Ronde (1998)), and simultaneous high water levels at different spatial locations pose risks for large floods [START_REF] Coles | Modelling multivariate extreme events[END_REF]). Another set of applications is in economics where multivariate extreme value theory has been used to model the risk that extreme fluctuations of several exchange rates or of prices of several assets, such as stocks, occur together [START_REF] Mikosch | Modelling dependence and tails of financial time series[END_REF], [START_REF] Smith | Statistics of extremes, with applications in environment, insurance, and finance[END_REF], [START_REF] Stȃricȃ | Multivariate extremes for models with constant conditional correlations[END_REF]). A third use, perhaps somewhat unlikely, is in the theory of rational choice [START_REF] Mcfadden | Modelling the choice of residential location[END_REF]). Below we will also consider a fourth problem, analysis of pitting corrosion measurements [START_REF] Kowaka | An Introduction to Life Prediction of Plant Materials[END_REF], [START_REF] Scarf | Applications of extreme value theory in corrosion engineering[END_REF]).

The papers cited above all use multivariate Extreme Value (EV) distributions.

The rationale is the "extreme value argument": maxima of many individually small variables often have approximately a (univariate or multivariate as the case may be) extreme value distribution. However in "random effects" situations this argument becomes less clear. Suppose e.g. a number of groups each has its own i.i.d variation but in addition each group is affected by some overall random effect. Then, is it the unconditional distributions which belong to the extreme value family, or is it the conditional distribution, given the value of the random effect? In many situations the extreme value argument seems equally compelling for unconditional and conditional distributions. So, should one use an EV model for the conditional distribution; or is it perhaps the unconditional distributions which are extreme value?

In the present paper this problem is overcome by using models where both conditional and unconditional distributions are EV. The models have the further attractive properties that all lower-dimensional marginals belong to the same class of models, and that maxima of all kinds, e.g. over a number of "groups" with differing numbers of elements, also have distributions which belong to the class.

The models are obtained by mixing EV distributions over a positive stable distribution. They were first noted by [START_REF] Watson | An examination of statistical theories for fibrous materials in the light of experimental data[END_REF] and, in a survival analysis context, apparently independently introduced by [START_REF] Hougaard | A class of multivariate failure time distributions[END_REF] and [START_REF] Crowder | A multivariate distribution with Weibull components[END_REF]. Further interesting applications of such models were made in Crowder (1998). The most general versions of these distributions were called the asymmetric logistic distribution and the nested logistic distribution by [START_REF] Tawn | Modelling multivariate extreme value distributions[END_REF] and [START_REF] Mcfadden | Modelling the choice of residential location[END_REF] and were further studied in [START_REF] Coles | Modelling multivariate extreme events[END_REF]. [START_REF] Crowder | A distributional model for repeated failure time measurements[END_REF] and [START_REF] Crowder | A score test for the multivariate Burr and other Weibull mixture distributions[END_REF] contain some related material. However, we believe that the full potential of these models is still far from being realized. In this paper we have attempted to take three more steps towards making them more widely useful.

The first step is to revisit the papers of Hougaard, Crowder and Tawn, to collect and solidify the results in these papers. We concentrated on two parts: the physical motivation for the models, and a clear mathematical formulation of the general results. The second step is to use the stable mixing variables not just as a "trick" to obtain multivariate distributions, but as a modeling tool. Insights obtained from taking the mixing variable seriously are new model checking tools, and better understanding of identifiability of parameters and of the model in general.

The final important step is the realization that through suitable choices of the mixing variables it is possible to obtain new natural time series models, spatial models, and continuous parameter models for extreme value data. This provides classes of models for extreme value data which go beyond dimensions two and three.

It is not immediately obvious from the forms of the asymmetric logistic distribution and the nested logistic distribution how to simulate values from them, see e.g. Kotz and Nadarajah (1999, Section 3.7). However the representation as stable mixtures makes simulation straightforward. According to it, one can first simulate the stable variables, using e.g. the method of [START_REF] Chambers | A method for simulating stable random variables[END_REF], and then simulate independent variables from the conditional distribution given the stable variables, cf. [START_REF] Stephenson | Simulating multivariate extreme value distributions of logistic type[END_REF]. This adds to the usefulness of the models.

Our results can be presented in two closely related ways: as mixture models for Gumbel distributions, and as mixture models for the general family of EV distributions. We first present the results for Gumbel distributions. The Gumbel distribution has a special importance. It occurs as the limit of maxima of most standard distributions, specifically so for the normal distribution. In fact, it is the only possible limit for the entire range of tail behavior between polynomial decrease and (essentially) a finite endpoint. Another reason is the approximate lack of memory property of the locally exponential tails, which goes together with it. The Gumbel distribution is known to fit well in many situations, e.g. for pit corrosion measurements [START_REF] Kowaka | An Introduction to Life Prediction of Plant Materials[END_REF]).

We present three motivations/interpretations of the Gumbel models. One is as an exponential-stable location mixture of independent Gumbel distributions with the same scale parameter. A second interpretation is as size mixtures of extreme value distributions, where the mixing is by positive stable distributions. A third interpretation is through a Peaks over Thresholds (PoT) model with a positive stable random intensity.

We also develop the models in the general EV setting. In it, two out of three physical motivations for the model, as size mixtures and as maxima in a Peaks over Thresholds model with a doubly stochastic Poisson number of large values are the same as for the Gumbel model. The counterpart to the remaining Gumbel interpretation, as a location parameter mixture, is that the multivariate EV distributions are obtained as scale mixtures with an accompanying location change which keeps the endpoints of the distributions fixed.

The basic motivations and explanations of the models for the Gumbel case are collected in Section 2 below. In Section 3 we rederive and remotivate the asymmetric and nested logistic multivariate Gumbel distributions and introduce new classes of multivariate Gumbel models for time series, spatial, and continuous parameter applications. In Section 4 we discuss estimation in the random effects model and in a hidden MA(1) model. These models are then used to analyze a data set coming from an investigation of pitting corrosion on the lower hemflange of a car door. The section also uses new model checking tools. Properties of the exponential-stable mixing distributions are given in Section 5. Section 6 translates the Gumbel results and models from Sections 2, 3, and 4 to the general EV family. Section 7 contains a small concluding discussion.

Mixtures of Gumbel distributions

In this section we revisit the physical motivations/interpretations for the models, and add one of our own -as a "size mixture". We present the motivations in a new setting which seems particularly illustrative. This situation is a standard type of pitting corrosion measurement. In it a number of metal test specimens, e.g. from the body of a car, are divided up into subareas, called test areas, and the deepest corrosion pit in each of the test areas is measured. The presumption is that there may be an extra variation between specimens (due to position) which is not present between test areas from the same specimen. In Section 4 we analyze such an experiment. One cause of extra variation in this experiment was the randomness in the proportion of the surface which was covered by corrosion-preventing coating.

There undoubtedly were other causes, such as differences in exposure to dirt and salt. However, for the present purposes of illustration we mainly talk about the variation in the size of the surface cover.

We introduce the ideas in the one-dimensional case. The motivations, however, extend directly to the new multivariate models which are treated in subsequent sections and which are the main interest of this paper.

The mathematical basis is the following observation. Let S be a standard positive α-stable variable, specified by its Laplace transform (2.1)

E(e -tS ) = e -t α , t ≥ 0, where necessarily α ∈ (0, 1]. (When α = 1, S is taken to be identically 1, see the discussion in Section 5.) Further, let the random variable X be Gumbel distributed conditionally on S,

(2.2) P (X ≤ x|S) = exp(-Se -x-µ σ ) = exp(-e -x-(µ+σ log(S)) σ ).
Then by (2.1),

(2.3) P (X ≤ x) = exp(-(e -x-µ σ ) α ) = exp(-e -x-µ σ/α ).
Hence unconditionally X also has a Gumbel distribution, but the mixing increases the scale parameter σ of the conditional Gumbel distribution to σ/α.

We will sometimes use the terminology that the distribution of X is directed by the stable variable S. Let G ∼ Gumbel(µ, σ) mean that the random variable G has the distribution function (d.f.) exp(-e -x-µ σ ). If S has the distribution specified by (2.1), the variable M = µ+σ log(S) will be called exponential-stable with parameters α, µ, and σ. The symbols M ∼ ExpS(α, µ, σ) will be used to denote such a distribution.

We will give equation (2.3) three different interpretations. The first one was used by [START_REF] Crowder | A multivariate distribution with Weibull components[END_REF] in the context of a "first order components of variance" setting (cf also [START_REF] Hougaard | A class of multivariate failure time distributions[END_REF]). The third one was put forth by [START_REF] Tawn | Modelling multivariate extreme value distributions[END_REF], and discussed in a wind storm setting.

(i) Gumbel distribution as a location mixture of Gumbel distributions: If G and

M are independent and G ∼ Gumbel(µ 1 , σ) and M ∼ ExpS(α, µ 2 , σ) then G + M ∼ Gumbel(µ 1 + µ 2 , σ/α).
This follows by replacing µ in (2.2) and (2.3) by µ 1 + µ 2 .

For the pitting corrosion measurements, the interpretation would be that the maximal pit depth in a test area had a Gumbel distribution with a random location parameter µ 1 + M . The value of M would depend on the extent to which the test area was exposed to corrosion.

Briefly going beyond the one-dimensional model, it would be natural to assume that different test areas would have different G-s but that the variable M would be the same for all test areas on the same specimen, and different for different test specimens. A further remark is that in this model it is not possible to separate µ 1 and µ 2 . However, the parameters can be made identifiable by assuming that either µ 1 or µ 2 is zero.

(ii) Gumbel distribution as a size mixture of Gumbel distributions: If the maximum over a unit block has the Gumbel d.f. exp(-e -x-µ 1 σ ) and blocks are independent then the maximum over n blocks, or equivalently over one block of size n, has the d.f.

(2.4) (exp(-e -x-µ 1 σ )) n = exp(-ne -x-µ 1 σ ).
In this equation it makes sense to think of non-integer block sizes and random block sizes. In particular, it makes sense to replace n by Se µ 2 /σ in (2.4) to obtain the d.f. exp(-Se µ 2 /σ e -x-µ 1 σ ). It then again follows from (2.1) that the unconditional distribution is Gumbel(µ 1 +µ 2 , σ/α). Thus the Gumbel(µ 1 +µ 2 , σ/α) distribution is obtained as a "size mixture" of Gumbel(µ 1 , σ) distributions, by using the stable size distribution Se µ 2 /σ . As before, to make the model identifiable, one should assume that either µ 1 or µ 2 is zero.

The interpretation in the corrosion example is that Se µ 2 /σ is the "size" of the part of the test area which is exposed to corrosion. This size of course cannot be negative. Further it could reasonably be expected to be determined as the sum of many individually negligible contributions. Suitably interpreted, these two properties together characterize the positive stable distributions.

Next, it is well known that maxima of i.i. 

= i/n, then the point process i ǫ (t i ,Y n,i ) tends to a
Poisson process in the plane with intensity dΛ = dt × d(e -(x-µ)/σ ) if and only if the probability that max 1≤i≤n Y n,i ≤ x tends to exp(-e -x-µ σ ), see e.g. [START_REF] Leadbetter | Extremes and Related Properties of Random Sequences and Processes[END_REF]. Our third interpretation of the Gumbel mixture model is obtained by replacing the constant intensity in the point process by a stable one.

(iii) Gumbel distribution as the maximum of a conditionally Poisson point process:

Suppose X is the maximum y-coordinate of a point process in (0, 1] × R such that conditionally on a stable variable S the point process is Poisson with intensity

dΛ = Se µ 2 /σ dt × d(e -(x-µ 1 )/σ
). Then, by the same argument as above, conditionally on S, the variable X has d.f. exp(-Se µ 2 /σ e -x-µ 1 σ ), and as for (2.3), it follows that the unconditional distribution of X is Gumbel(µ 1 + µ 2 , σ/α).

In the corrosion example, the points in the point process correspond to pit depths on the surface of the test area. The random intensity Se µ 2 /σ then would describe an extra stochastic variation in intensity of pits from test area to test area. Again this has to be positive and perhaps is obtained as the sum of many individually negligible influences, and hence approximately positive stable. As above, one of µ 1 or µ 2 should be assumed to be zero for identifiability.

It may also be noted that in some situations it may be possible to use PoT observations, i.e. to actually observe the underlying large values, say all deep corrosion pits in each test area. Such measurements could also be handled within the present framework, by substituting the likelihoods in this paper with the corresponding point process (or PoT) likelihoods. However, we will not pursue this further here.

By way of comment, the logarithm of the positive stable distribution which occurs in the location mixture (i) has finite moments of all orders. In contrast, the positive stable variables themselves have infinite means. This, however, seems largely irrelevant both for the mathematics of the models and for modelling.

New classes of Gumbel processes

In this section we introduce a number of concrete Gumbel models directed by linear stable processes: a random effects model, time series models with directing stable linear processes, and a spatial model with a stable moving average as directing process. We also consider a hierarchical setup and continuous parameter models.

However, to provide a solid foundation for this paper and future developments, we first give a precise mathematical formulation of results of [START_REF] Tawn | Modelling multivariate extreme value distributions[END_REF]. This

shows the exact relations between the three interpretations given in Section 2 in a general setting, and slightly generalizes (a restriction on the size of the set A is removed) Tawn's main result.

Let T and A be discrete index sets, where in addition T is assumed to be finite.

Further let {c t,a } be non-negative constants and let {S a , a ∈ A} be independent positive α-stable variables with distribution specified by (2.1). We assume without further comment that a∈A c t,a S a converges almost surely for each t.

Proposition 1. Consider the following three models:

(i) X t = G t + σ t log( a∈A c t,a S a ), t ∈ T, where G t ∼Gumbel(µ t , σ t )
, and the G t -s and S a -s all are mutually independent.

(ii) X t , t ∈ T are conditionally independent random variables given S a , a ∈ A, with marginal distributions

(3.1) P (X t ≤ x t |S a , a ∈ A) = exp -( a∈A c t,a S a )e - x t -µ t σ t
, t ∈ T.

(iii) For t ∈ T , X t is the maximum y-coordinate of a point process in (0, 1] × R such that conditionally on S a , a ∈ A the point process is independent and Poisson with intensity a∈A c t,a S a dt × d(e -(x-µt)/σt ).

Then all three models are the same, i.e. they have the same finite dimensional distributions:

(3.2) P (X t ≤ x t , t ∈ T ) = a∈A exp -( t∈T c t,a e - x t -µ t σ t ) α ,
and this distribution is a multivariate extreme value distribution.

Proof. By the form of the Gumbel distribution function, (i) implies that (ii) holds.

Similarly, by the same argument as for (iii) of Section 2 above, it follows that (iii) of the proposition implies (ii). Further, that (ii) implies (3.2) follows immediately from (2.1) since, by independence of the {S a },

P (X t ≤ x t , t ∈ T ) = E exp(- t∈T a∈A c t,a S a e - x t -µ t σ t ) = a∈A E exp[-S a ( t∈T c t,a e - x t -µ t σ t )] .
It is obvious that the distribution (3.2) is max-stable, and hence an EV distribution. The model also satisfies (c) if one imposes the extra restriction that all the scale parameters have the same value, i.e. that σ t = σ, for t ∈ T . For the marginal distribution of a maximum this is because if

T 1 ⊂ T then (3.3) P (max t∈T 1 X t ≤ x) = a∈A exp   -( t∈T 1 c t,a e µ t σ ) α e -x σ/α   , or equivalently max t∈T 1 X t ∼ Gumbel   (σ/α) log( a∈A ( t∈T 1 c t,a e µt/σ ) α ), σ/α   .
In particular, by letting T 1 be a one point set we see that in this case marginals are Gumbel distributed,

X t ∼ Gumbel (σ/α) log( a∈A (c t,a e µt/σ ) α ), σ/α .
Moreover, joint distributions of maxima also belong to the class (3.2) of distributions. E.g. let T 1 and T 2 be disjoint subsets of T and set c T i ,a = t∈T i c t,a exp (µ t /σ),

for i = 1, 2.
Then, as can be seen from (3.1) or (3.2), P (max

t∈T 1 X t ≤ x 1 , max t∈T 2 X t ≤ x 2 ) = a∈A exp -(c T 1 ,a e -x 1 σ + c T 2 ,a e -x 2 σ ) α ,
which has the form (3.2). Similar but more complicated formulas hold when more subsets are involved and when the subsets can overlap.

These two properties are touched upon by [START_REF] Crowder | A multivariate distribution with Weibull components[END_REF] in a less general situation, and also by [START_REF] Tawn | Modelling multivariate extreme value distributions[END_REF].

Conditions (i) -(iii) in Proposition 1 correspond to the three "physical" interpretations in Section 2. We now turn to a number of specific models. Which interpretation is most relevant of course varies from model to model. E.g the first model below is the standard logistic model for extreme value data, but with the interpretation as a random effects model. We will use it on a pit corrosion example, where perhaps the interpretation (ii) is most compelling. However, to streamline presentation, we will for the rest of this section formulate the models as in (i), but of course could equally well have used (ii) or (iii).

Example: A one-way random effects model. This is the model

(3.4) X i,j = µ + τ i + G i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n i
with µ a constant, τ i ∼ExpS(α, 0, σ), G i,j ∼Gumbel(0, σ) and all variables independent.

Setting T = {(i, j); 1 ≤ i ≤ m, 1 ≤ j ≤ n i }, A = {1, 2, . . . , m} and c (i,j),k =
1 {i=k} , this is a special case of the situation in Proposition 1 and we directly get the distribution function

(3.5) P (X i,j ≤ x i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n i ) = m i=1 exp(-( n i j=1 e - x i,j -µ σ ) α ).
According to Proposition 1 and the subsequent remarks this is a multivariate EV distribution, and explicit formulas are directly available for the distribution of all kinds of unconditional and conditional maxima. In particular the marginal distributions are Gumbel(µ, σ * ) for σ * = σ/α.

This model can be extended to higher order random effects models which are "linear on an exponential scale". It can also be natural, for instance in a "repeated measurements" setting, to let µ be a function of t, perhaps depending on the values of known covariates, as done in [START_REF] Crowder | A multivariate distribution with Weibull components[END_REF][START_REF] Crowder | A multivariate model for repeated failure time measurements[END_REF] or [START_REF] Hougaard | A class of multivariate failure time distributions[END_REF]. Note however that in the context of repeated data, say (Y 1 , • • • , Y p ), the set T from Proposition 1 has to be T = {(i, j); 1 ≤ i ≤ p, 1 ≤ j ≤ n i }, whereas we allow more general T 's.

We next turn to time series models. A linear stationary positive stable process may be obtained as

H t = ∞ i=-∞ b i S t-i
, where the S i have distribution (2.1), the b i are nonnegative constants, and the sum converges in distribution if

b α i < ∞. Defining (3.6) X t = µ t + σ log(H t ) + G t ,
for some constants µ t gives a Gumbel time series model. In particular (3.6) includes hidden ARMA models. We next look closer at the two simplest cases of this.

Example: A hidden MA-process model. Suppose

H t = b 0 S t + b 1 S t-1 + • • • + b q S t-q
and X t is defined by (3.6), where the S i have distribution (2.1), G t ∼Gumbel(0, σ) and all variables are mutually independent. Then, by Proposition 1 with T = {1, . . . , n}, and A = {0, ±1, . . . },

(3.7) P (X t ≤ x t , 1 ≤ t ≤ n) = n k=1-q exp(-( n∧(k+q) t=1∨k b t-k e -x t -µ t σ ) α ).
Example: A hidden AR-process model. For 0 < ρ < 1 define the positive stable AR-process H t by H t = ∞ i=0 ρ i S t-i , and let X t be given by (3.6), with the S i and G t as before. From the definition of H t ,

H 0 = ∞ i=0 ρ i S -i (3.8) H 1 = ρH 0 + S 1
. . .

H n = ρ n H 0 + ρ n-1 S 1 + • • • + ρS n-1 + S n ,
and in addition, by (2.1) H 0 has the same distribution as

( ∞ i=0 ρ iα ) 1/α S 0 = (1 -ρ α ) -1/α S 0 ,
and is independent of S 1 , . . . , S n . Thus, the model is again of the form considered in Proposition 1, with T = {0, . . . , n}, A = {0, ±1, . . . } and c t,0 = ρ t (1-ρ α ) -1/α , c t,a = ρ t-a for a = 1, . . . , t and c t,a = 0 otherwise. Thus by Proposition 1 the distribution function is

P (X t ≤ x t , 0 ≤ t ≤ n) = exp[-(1-ρ α ) -1 ( n t=0 ρ t e -x t -µ t σ ) α ] n i=1 exp(-( n t=i ρ t-i e -x t -µ t σ ) α ).
In the next example we consider models on the integer lattice in the plane. Let n (i,j) be a system of neighborhoods with the standard properties (i, j) ∈ n (i,j) and (k, l) ∈ n (i,j) ⇔ (i, j) ∈ n (k,l) . A simple example is when the neighbors are the four closest points and the point itself, i.e. when n (i,j) = {(i, j), (i -1, j), (i + 1, j), (i, j -1), (i, j + 1)}.

Example: A spatial hidden MA-process model. Let {S i,j ; -∞ < i, j < ∞} be independent standard positive α-stable variables and set H i,j = (k,l)∈n (i,j) δS k,l where δ is a positive constant. Put

X i,j = µ i,j + σ log(H i,j ) + G i,j , 1 ≤ i, j ≤ n,
where the G i,j are mutually independent and independent of the S i,j , and G i,j ∼ Gumbel(0, σ). Again this is of the form considered in Proposition 1, now with c (i,j),(k,l) = δ if (i, j) ∈ n (k,l) and zero otherwise. To write down the joint distribution function it is convenient to use the notation n(k,l) = n (k,l) ∩ {(i, j); 1 ≤ i, j ≤ n}.

We then get that

P (X i,j ≤ x i,j ; 1 ≤ i, j ≤ n) = (k,l) exp(-δ α ( (i,j)∈n (k,l) e - x i,j -µ i,j σ ) α ).
We now turn to a situation not covered by Proposition 1, the so-called nested logistic model of McFadden (see [START_REF] Tawn | Modelling multivariate extreme value distributions[END_REF]).

Example: A two-layer hierarchical model. Consider the model

X i,j,k = µ + τ i + η i,j + G i,j,k , 1 ≤ i ≤ m, 1 ≤ j ≤ n i , 1 ≤ k ≤ r i,j , with µ a constant, τ i ∼ExpS(β, 0, σ/α) 1/α , η i,j ∼ExpS(β, 0, σ), G i,j,k ∼Gumbel(0, σ),
and all variables independent. By repeated conditioning we obtain, after some calculations similar to the proof of Proposition 1,

P (X i,j,k ≤ x i,j,k , 1 ≤ i ≤ m, 1 ≤ j ≤ n i , 1 ≤ k ≤ r i,j ) = m i=1 exp[-{ n i j=1 ( r i,j k=1 e - x i,j,k -µ σ ) α } β ].
There also are continuous parameter versions of Proposition 1. Let {S j (s); s ∈ R k } be independently scattered positive stable noise (see Samorodnitsky and Taqqu (1994, Chapter 3)). We assume that the noise is standardized, so that for nonnega-

tive functions f ∈ L α , (3.9) E[exp{- ∞ -∞ f (s)S j (ds)}] = exp(- ∞ -∞ f (s) α ds).
In the sequel we will without comment assume that functions f (•) are such that integrals converge, and integrals are taken to be over R k .

Proposition 2. Suppose that there are nonnegative functions f j (t, s) with t ∈ R ℓ ,

s ∈ R k such that X t = G t + σ t log( m j=1 f j (t, s)S j (ds)), t = t 1 , . . . , t n ,
where G t ∼Gumbel(µ, σ t ), and all variables are mutually independent. Then

(3.10) P (X t i ≤ x t i ; i = 1, . . . , n) = m j=1 exp(-( n i=1 f j (t i , s)e - x t i -µ t i σ t i ) α ds).
The proof follows from (3.9) in the same way as Proposition 1 follows from (2.1).

The interpretations (ii), as size mixtures, and (iii) as a random Poisson intensity could equally well have been used as assumptions. However, this we leave to the reader.

Proposition 2 gives a natural model for environmental extremes, such as yearly maximum wind speeds or water levels, at irregularly located measuring stations.

E.g. one could assume years to be independent and obtain a simple isotropic model for one year by choosing k = ℓ = 2, m = 1 and f 1 (t, s) = exp(-d|t -s| β ), for some constants d, β > 0. One extension to non-isotropic situations is by letting D be a diagonal matrix with positive diagonal elements and taking f 1 (t, s) = exp(-(ts) t D(t -s)β). (Formally the entire distribution function for n years is also of the form (3.10), as can be seen by taking ℓ = 3, m = n and letting the different S j correspond to different years.) It is possible to derive recursion formulas for the densities of these models in a similar but more complicated way as for the random effects model. If the number of measuring stations is not too large, these expressions may be numerically tractable. However, we will not investigate this further in this paper.

Data analysis

In this section we illustrate the random effects model and the hidden MA [START_REF] Anderson | Environmental factors affecting reservoir safety[END_REF] model from Section 3 by using them to analyze a set of pit corrosion measurements.

As preliminaries we first discuss maximum likelihood estimation in the two models.

4.1. Estimation in the random effects model. Let 0 < σ < σ * , -∞ < µ * < ∞, so α := σ/σ * ∈ (0, 1). Assume a data set X that comes from m groups, group 1 :

X 1,1 , X 1,2 , . . . , X 1,n 1 group 2 : X 2,1 , X 2,2 , . . . , X 2,n 2 (4.1) . . . group m : X m,1 , X m,2 , . . . , X m,nm .
The groups are assumed to be independent and the i th group comes from a Gumbel(0, σ) distribution, where the location parameter µ i for group i is drawn from an ExpS(α = σ/σ * , µ * , σ) distribution. The goal is to estimate the three parameters θ = (σ, σ * , µ * ) from the data by maximum likelihood.

The likelihood L(θ|X) = m i=1 L i (θ|X i,1 , . . . , X i,n i ) is the product of the group likelihoods. Each of these terms can be derived by differentiating (3.5) with respect to x 1 , . . . , x n . The direct calculations are complicated, but Property (1) of [START_REF] Shi | Fisher information for a multivariate extreme value distribution[END_REF] gives recursions for the likelihood function for the group in terms of certain coefficients {q n,j }.

The maximum likelihood algorithm has been implemented in S-Plus/R. The estimation procedure numerically evaluates ℓ(θ|X) = log L(θ|X) and numerically maximizes it to find the estimate of θ. The search is initialized at θ 0 := (σ 0 /2, σ 0 , µ 0 ), where µ 0 and σ 0 are estimates of the Gumbel parameters for the (ungrouped) data set X. This estimate is found by using the probability-weighted moment estimator, see e.g. Section 1.7.6 of [START_REF] Kotz | Extreme Value Distributions : Theory and Applications[END_REF].

Usually this makes it straightforward to find maximum likelihood estimates by numerical optimization. However, if a group is large or α is small, the coefficients in the recursion can be very large. E.g. the constant term in Shi's notation is

q n,0 = n -1 α -1 n -2 α -1 n -3 α -1 • • • 1 α -1 .
In some cases this can cause numerical overflow in the optimization routines. Further, if all groups only have one value or if there is only one group then parameters are not identifiable. Presumably parameter estimates will be unreliable if data is close to these situations. This however was not the case for the corrosion data in Section 4.3 below. Besides, we made rather many simulations (not included in the paper) from both random effects Gumbel model and independent Gumbel model with arbitrary means, and checked on these simulations that the maximum likelihood estimators perform reasonably well, as soon as there are a few groups, and even when some of the groups are rather small.

In passing we note an alternative way to derive the likelihood, which in addition indicates a possibility to compute it by simulation. A group likelihood, conditional on τ , is

n j=1 1 σ e - x j -µ-τ σ exp -e - x j -µ-τ σ = 1 σ n S n e -n j=1 x j -µ σ exp    -S n j=1 e - x j -µ σ    ,
where τ = σ log S and S is a standard α-stable variable, as previously. Hence, a group likelihood is

1 σ n e -n j=1 x j -µ σ E   S n exp    -S n j=1 e - x j -µ σ      .
Let ∆ = n j=1 e -(x j -µ)/σ . Then, the expectation in the last expression reduces to

E S n e -S∆ = E d n d∆ n e -S∆ = (-1) n d n d∆ n e -∆ α ,
where the second equality makes one more use of the stable distribution of S. 

F = P (X t ≤ x t , 1 ≤ t ≤ n) = exp -(bz 1 ) α + n-1 t=1 (z t + bz t+1 ) α + z α n ,
where z t = exp(-(x t -µ)/σ). The parameters of the model are θ = (µ, b, σ, α). By differentiation with respect to x 1 , . . . , x n the likelihood function can be seen to be of the form

L(θ|X) = Q n F n t=1 z t σ ,
with F from (4.2) and Q n defined recursively as follows. Set u 1 = bz 1 , u t = z t-1 +bz t for t = 2, . . . , n, u n+1 = z n . Then F = exp(-n+1 t=1 u α t ) and

Q 0 = 1, Q 1 = α bu α-1 1 + u α-1 2 , Q i = -Q i-2 α(α -1)bu α-2 i + Q i-1 α bu α-1 i + u α-1 i+1 , i = 2, . . . , n.
When b = 0, the Q 1 term above should be interpreted as

Q 1 = αu α-1 2
, which makes the likelihood formula valid in the case where the x t are independent.

Maximum likelihood estimation of the parameters (µ, b, σ, α) has been implemented in S-Plus/R, where

log{L(θ|X)} = log Q n - n+1 t=1 u α t - n t=1 x t -µ σ -n log σ
is computed and numerically maximized. As default the search is started at (µ = µ 0 , b = 0, σ = σ 0 /0.5, α = 0.5), where (µ 0 , σ 0 ) are the Gumbel probability-weighted moment estimators for the data set. In ad hoc simulations to test this method, we sometimes observed that results were sensitive to the choice of starting values when the sample size was small. Apparently the likelihood surface has local maxima in such cases. To deal with this problem, we started the search at several different randomly chosen points and chose as estimator the final values which gave the highest likelihood.

4.3.

Pitting corrosion data analysis. The pitting corrosion investigation which generated this data set was briefly mentioned in the beginning of Section 2. Specifically, pieces (or "test specimens") were cut out from different parts of the bottom hemflange of the aluminum back door of a twelve year old station wagon. The corrosion products were dissolved from the pieces, and the deepest corrosion pit was measured in a number of one centimetre long test areas on each specimen.

The hemflange had been glued together and had also been treated with a corrosion preventing coating. Surface areas where the glue or coating was intact showed no corrosion. However, in some places the glue and coating had not penetrated well or had fallen of, leaving the surface exposed to corrosion. The proportion of the area which could corrode varied between specimens, and this was a potential cause of extra variation in the corrosion measurements. These areas, however, had not been measured (and it would have been difficult to do so) and there were other causes of extra variation, such as varying exposure to salt.

Interest was centered on the risk of penetration by the deepest corrosion pit on the outer surface of the hemflange. The data set for this surface consisted of microscope measurements (in microns) of the maximum pit depth in 11 to 15 test areas on each of 12 specimens. There was no corrosion on 5 of the test specimens, and on one specimen only two test areas showed any corrosion. These 6 specimens were excluded from our analysis. Also in the remaining specimens there were some corrosion free test areas, and the data we used for analysis hence consisted of 6 groups (=test specimens) with varying numbers (ranging from 4 to 14) of measured maximum pit depths.

The engineers who performed the experiment disregarded the group structure and considered the pooled data set as an i.i.d Gumbel sample. The maximum likelihood parameter estimates under this model were (µ pool , σ pool ) = (145.6, 69.4). It was remarked by the engineers that there seemed to be some deviation from a straight line in Gumbel plot, see Figure 7.1. While the overall fit to the pooled data seems reasonable, there is clear group structure.

Include Figure 7.1 here

We instead modeled and analyzed the data as dependent 4 to 14-dimensional random vectors. We first made use of the random effects Gumbel model from Subsection 4.1. The aim was both to see if this model fitted better and to check wether it lead to a substantially different risk estimate. In addition to the extra variation between test specimens there might also be a short range dependence between neighboring test areas. We tried to judge the size of short range dependence by fitting a hidden MA(1) model on top of the random effects model.

The maximum likelihood estimates in the random effects Gumbel model were (µ, σ, α) = (140.9, 54.1, 0.716) with standard deviations (21.75, 5.71, 0.118) estimated from the inverse of the empirical information matrix. A very rough calculation of the risk of perforation can then be made as follows. There are about 15 test specimens on a hemflange. Let us assume, as was the case with the present data, that typically about 6 of the test specimens will show corrosion and that on average about 11 test areas on each specimen will be corroded. Then, by (3.5) the estimated distribution function of the maximum pit depth for one car would be F (x) = exp(-6(11e -x-140.9 54.1 ) 0.716 ).

The thickness of the aluminum was 1.1 mm = 1100 microns and hence we estimate that there on the average will be perforation in one out of 1/(1 -F (1100)) = 9671 cars. A delta method 95% confidence interval for this estimate is (8392, 10950).

If we instead, following the engineering analysis, use the pooled Gumbel model with the assumption that typically there are 6 × 11 = 66 corroded test areas on a hemflange, the risk estimate is that on the average there is penetration in one out of (1-exp(-66e -1100-145.6 69.4

) -1 ≈ 14374 cars. A delta method 95% confidence interval is (13115, 15632). Thus, the random effects model gave a practically and statistically significantly different answer than the pooled analysis.

The formulation as a random effects model gives a number of possibilities for model checking. From Figure 7.2 can be seen that the Gumbel distribution fits reasonably well to the separate groups, that there indeed seems to be an extra variation between groups, and that the fitted lines are approximately parallel. As a formal check on this, we made a conditional analysis, fitting separate Gumbel distributions to the groups by maximum likelihood. In this we considered three different models, the first with separate µ-s and σ-s for the groups, the second with all groups assumed to have the same σ but different µ's for the different groups, and a third model with the same σ and the same µ for all observations. A likelihood ratio test between the first two models gave p = .53, and hence it seemed reasonable to assume the same σ in all groups, as is done in the random effects model. A test of the second model against third lead to p = 2 • 10 -6 . Thus the pooled model is rejected, while this analysis did not contradict the validity of the random effects From the model, the marginal distributions in the groups are Gumbel with location parameter µ + σ α log(1 + b α ) and scale parameter σ/α. The estimates of these agreed to within 5% with their initial values, which indicated that these parameters were reasonably well determined by the data. The remaining two parameters, α and b, model the dependence structure. The smaller the α and the closer b is to one, the higher is the dependence. These parameters seemed harder to estimate. However, their estimated values indicated a rather weak local dependence, and did not contradict the validity of the random effects model.

We accordingly stopped the analysis at this point. If the dependence had been judged important, we could have tried to fit a model which included both random group means and a local MA(1) dependence. Further model checking, as suggested by Crowder (1989, Section 3.3), could be performed by using the probability integral transform marginally to get uniform (but dependent) residuals or by computing Rosenblatt residuals which are approximately independent if the model is correct.

In summary: The pooled analysis did not fit the data and lead to significantly different results than the random effects model. Instead the random effects model seemed to give a good representation of the data -in particular none of the several diagnostic checks indicated serious departures from it -and we believe it led to credible estimates. By way of further comment, it may be noted that we obtained a successful fit of the hidden MA(1) model, and that it produced useful information.

A weak point in the analysis is the assumption that a hemflange has 6 test specimens with 11 corroded test areas each. Further the variation in pit depths from car to car is not included in the data. If measurements on several cars had been available, it would have been natural to try to fit the hierarchical model from Section 3.

Some properties of the mixing distribution

This section discusses some of the basic facts about the models. In the notation of Samorodnitsky and Taqqu (1994), the r.v. S in (2.1) is S α ((cos πα/2) 1/α , 1, 0); in the notation of [START_REF] Zolotarev | One-dimensional Stable Distributions[END_REF], S ∼ S C (α, 1, 1). It has characteristic function

E exp(itS) = exp {-cos(πα/2)|t| α [1 -i tan(πα/2)(sign t)]} .
Let F S (s) be the d.f. and f S (s) be the density of S. If M ∼ExpS(α, µ, σ), then the d.f. and density of M are F M (x) = F S [exp{(x -µ)/σ}] and f M (x) = exp{(x -µ)/σ}f S [exp{(x -µ)/σ}]/σ. Using the programs for computing with stable distributions described in [START_REF] Nolan | Numerical calculation of stable densities and distribution functions, Commun[END_REF], it is possible to compute densities, d.f., quantiles and simulate values for M . Figure 7.4 shows the density of some log-stable distributions. The densities all have support (-∞, ∞) and appear to be unimodal.

Note that as α ↑ 1, S converges in distribution to 1 and hence M = log S converges in distribution to 0. Include Figure 7.4 here It is well-known that the upper tail of S is asymptotically Pareto: as x → ∞, P (S > x) ∼ c α x -α where c α = Γ(α) sin(πα)/π. This implies that the right tail of M ∼ExpS(α, µ, σ) is asymptotically exponential: as t → ∞,

P (M > t) = P S > exp t -µ σ ∼ c α exp - t -µ σ/α .
The left tail of S is light, see e.g. Section 2.5 of [START_REF] Zolotarev | One-dimensional Stable Distributions[END_REF], so the left tail of M is even lighter. Thus all moments of M exist; in particular, using the results of Section 3.6 of [START_REF] Zolotarev | One-dimensional Stable Distributions[END_REF],

E(M ) = µ + σγ Euler 1 α -1 , Var(M ) = π 2 σ 2 6 1 α 2 -1 ,
where γ Euler ≈ 0.57721 is Euler's constant.

As a simple consequence we derive the correlation between two variables in the same group in the random effects model (3.4). Suppose X i = µ+τ +G i , i = 1, 2 with τ ∼ExpS(α, 0, σ), G i ∼Gumbel(0, σ) and the three variables independent. Then Cov(X 1 , X 2 ) = Var(τ ) and Var(X i ) = Var(τ ) + Var(G i ). Since Var(G i ) = π 2 σ 2 6 we obtain that Cor(X 1 , X 2 ) = 1-α 2 , which varies from 0 in the independent case α = 1 to 1 as α → 0, which is reasonable since the limit corresponds to full dependence.

Mixtures of generalized extreme value distributions

The mixture models for the Gumbel distribution discussed so far in the paper carry over to the (generalized) EV distribution in a straightforward manner. However, the interpretation (i) is different.

The EV distribution has d.f. exp(-(1 + γ x-µ σ ) -1/γ ) with parameters µ, γ ∈ R and σ > 0. For positive γ this distribution has a finite left endpoint δ = µ -σ/γ and for γ negative it has a finite right endpoint δ = µ + σ/|γ|. In analogy with (2.1) -(2.3) let S be positive stable with Laplace transform (2.1) and assume that (6.1)

P (X ≤ x|S) = exp[-S(1 + γ x -µ σ ) -1/γ ] = exp[-(γ x -δ S γ σ ) -1/γ ].
Then by (2.1), (6.2)

P (X ≤ x) = exp -1 + (γ/α) x -µ (σ/α) -1/(γ/α) .
Thus, in the terminology of (ii) of Section 2, if X is a positive stable size mixture of an EV distribution with location µ, scale σ and shape parameter γ then also X itself has an EV distribution with the same location µ and the same right endpoint δ, but with a new scale parameter σ/α and new shape parameter γ/α. Hence in particular the unconditional distribution of X has heavier tails than the conditional one.

The physical motivations (ii) and (iii) from Section 2 carry over to the present situation without change. Further, from (6.1) it can be seen that X may be obtained as a special random location-scale transformation of an EV distribution. Specifically, if E has an EV distribution with parameters µ, σ, γ and S is positive α-stable and independent of E, then X may be represented as (6.3)

X = S γ E + (1 -S γ )δ.
Thus X is obtained as a scale mixture with mixing distribution S γ , but in addition there is an accompanying location change which is tailored to keep the endpoint of the distribution unchanged. This, of course, may be the most natural way to make scale mixtures of distributions with finite endpoints.

With this change, the motivations from Section 2 and the models from Section 3 carry over to the EV distribution. If the models in Section 3 are written as size mixtures, i.e. in the form (ii), the only changes needed to go from Gumbel to EV are to replace e -x-µ σ by (1 + γ x-µ σ ) -1/γ in all expressions. The recursions for the likelihood functions from Section 5 translate to the EV case similarly.

It is also straightforward to translate specifications using (i) to the EV case. E.g, in the formulation (i) the random effects model (3.4) becomes

X i,j = S γ i E i,j + (1 -S γ i )δ,
where E i,j has an EV distribution with parameters µ, σ, γ and S i positive α-stable, and all variables are mutually independent. In the same way, the hidden time series model (3.6) in EV form can be written as

X t = H γ t E t + (1 -H γ t )δ,
with H t a linear stable process and E t is EV distributed, and all variables are mutually independent.

Next, log(X -δ) = γ log S + log(E -δ),

and if X is of the form (6.3) with γ > 0 then log(E -δ) has a Gumbel distribution with location parameter log(σ/µ) and scale parameter γ. For γ < 0 we instead write log(δ -X) = γ log S + log(δ -E),

where log(δ -E) has a Gumbel distribution with location parameter log(σ/µ) and scale parameter γ. Thus the diagnostic plots for Gumbel mixtures could be used also for EV mixtures, except that δ isn't known. A pragmatic way to control the model assumptions then is to replace δ by some suitable estimate.

discussion

The pitting corrosion example discussed in Section 4 was the starting point for the present research. There it seemed important to use models where marginal, conditional and unconditional distributions, and maxima over blocks of varying sizes all had Gumbel distributions, since this leads to simple and understandable results, and credible extrapolation into extreme tails.

However it seems important to stay within the extreme value framework throughout for many other applications too. This is a main reason for the present work.

Another is that our results open up a wide spectrum of hitherto unavailable possibilities to construct extreme value models for complex observation structures, in particular for time series and spatial extreme value data.

The results also throw new light on some much studied logistic models. In particular they point to possibilities for new kinds of model diagnostics. In addition they show how one can carry over many of the analyses available for normal models to an extreme value framework in a simple and intuitive way. One example of how this can be done is the suggested next step in the analysis of the corrosion data, to fit a model which includes both random group means and a MA(1) dependence.

We believe that many applications of these ideas remain to be explored. One aim of this paper is to provide a solid basis for such future research. A different symbol is used for each group. 

  As discussed in the introduction, a class of multivariate extreme value mixture models is most useful if (a) both unconditional and conditional distributions are extreme value, (b) lower-dimensional marginal distributions also belong to the class, and (c) maxima over any subsets have joint distributions which belong to the class. Now, (a) is a part of Proposition 1. Further, if one sets some of the x t in (3.2) equal to infinity the corresponding terms in the sum in the right hand side vanishes, but the expression still is of the same general form, and hence the model (3.2) satisfies the requirement (b).

4. 2 .

 2 Estimation in the hidden MA(1) model. By (3.7) the hidden MA(1) model with constant location parameter, µ t = µ and, for identifiability, b 0 = 1, b 1 = b has distribution function (4.2)

Figure 7 . 3

 73 Figure 7.3 shows the quantiles of the estimated µ-s against the quantiles of the fitted exponential-stable distribution. According to the model, the µ-s are exponentialstable, and hence, apart from estimation error, the estimated µ-s are expected to be exponential-stable, so this plot is a diagnostic for the fit of the mixing distribution.The plot also shows a reasonable fit, and in fact looks much like the same qq-plots from simulated values from the model. Thus, neither of these model checks indicated problems with the random effects model.Include Figure 7.3 hereAs a final analysis we fitted the hidden MA(1) model from Subsection 4.2 to the data, since there was a possibility of extra dependence between neighboring test areas. In this we assumed groups were independent and had their own µ-s, but that σ, α and b were the same in all 6 groups. Thus there were in all 9 parameters, the six group means µ 1 , µ 2 , µ 3 , µ 4 , µ 5 , µ 6 and the parameters σ, α, b. Maximum likelihood estimation using the default initial values got stuck in a local maximum, and we hence did the optimization for 100 different starting values for σ, α, b, chosen at random from the cube [7, 54] × [0.1, 0.99] × [0, 2]. As estimates we took the final values which gave the highest likelihood. For the µ-s in the 6 groups these were 87.3, 142.0, 132.4, 140.0, 67.6, 214.8 and the estimators for the remaining parameters were σ = 29.6, α = 0.58, b = 0.13.
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 71 Figure 7.1. Gumbel plot for the pooled corrosion measurements.
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 72 Figure 7.2. Gumbel plots made separately for the 6 groups. The solid lines are the different theoretical Gumbel fits for each group.
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 73374 Figure 7.3. qq-plot of fitted exponential-stable distribution against estimated µ-s from the conditional analysis with the same σ in all groups.
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