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Abstract. 

The reaction of one equivalent of Nd(BH4)3(THF)3 with an half equivalent of dialkylmagnesium 

in the presence of a stoechiometric amount of pentamethylcyclopentadiene cleanly affords a new 

kind of  half-sandwich of neodymium that is stable toward comproportionation. This strategy can 

be advantageously applied to generate in situ catalysts allowing the controlled polymerisation of 

isoprene. 

 
La réaction d’un équivalent de Nd(BH4)3(THF)3 avec un demi équivalent de dialkylmagnesium en 

présence d’une quantité stoechiométrique de pentamethylcyclopentadiène conduit de façon 
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univoque à un hémimétallocène de néodyme d’un nouveau type, stable vis à vis de la 

comproportionation. Cette statégie peut être appliquée de façon avantageuse pour générer in situ 

des catalyseurs permettant la polymérisation contrôlée de l’isoprène.  

 
Neodymium / half-sandwich / polymerisation catalysis / trans-polyisoprene 

 

Néodyme / hémi-lanthanidocène / catalyse de polymérisation / trans-polyisoprène 

 

 

1. Introduction. 

 Lanthanides-based molecular catalysis has been steadily increasing in the last few years 

(e.g. see the 2002 special issue of Chemical Reviews, vol. 102, n°6), particularly in the field of 

polymerisation reactions [1]. Between the classical metallocenes and the more recent post-

metallocenes developped for this specific area, the hemi-metallocene - also called “half-

sandwich” - framework has attracted much less attention, despite spectacular catalytic abilities 

[2-4]. The major reason is that the hemi-lanthanidocenes have been until now rather difficult to 

prepare [5], undergoing comproportionation reactions, especially with the larger elements of the 

series [2,6], and even in the presence of a bulky cyclopentadienyl ligand [7,8]. 

Two general strategies have been employed until now to prepare half-sandwich 

lanthanide complexes: ionic, or σ-bond  metathesis [2]. Using the former method, we have 

shown earlier that half-sandwich lanthanide compounds of formula 

(C5Me4nPr)Ln(BH4)2(THF)n (Ln = Nd, n = 2; Ln = Sm, n = 1) could be isolated in the 

borohydride series, taking advantage of the bridging ability of the BH4 group. However, 

desolvation and clustering was observed, leading to the formation of hexamers 

[(C5Me4nPr)Ln(BH4)2]6 as the crystalline form [9]. On the other hand, the σ-bond  metathesis 

method requires highly sensitive homoleptic LnR3 precursors (R = alkyl [2], allyl [10], phenyl 
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[11], or amido group [12]) [13], but it has the advantage to allow the formation of the expected 

product in one step with a minimal experimental work-up, as the formation of inorganic salts is 

avoided. However, owing to the basicity of the R group, heating is often necessary to achieve 

the metathesis reaction, and ligand scrambling may be not completely excluded [5,11]. Very 

recently, Anwander et al. reported the use of Ln(AlMe4)3 as starting material for half-sandwich 

complexes via σ-bond metathesis with pentamethylcyclopentadiene C5Me5H. Most drawbacks 

of other methods (time of reaction, ligands exchange) are avoided, but the preparation of the 

precursor as well as the formation of highly reactive AlMe3 during the reaction both require 

extreme attention [14]. In contrast, Ln(BH4)3(THF)3 are stable and easy to handle. They are also 

recognized as efficient precursors for organolanthanides syntheses [15], and we expected that 

they could be valuable starting materials for σ-bond metathesis to produce C5Me5-supported 

compounds. 

In this paper we describe the synthesis and characterisation, including X-Ray 

structure, of a new type of ionic half-sandwich of neodymium, prepared according to a direct 

in situ σ-bond metathesis involving Nd(BH4)3(THF)3 and C5Me5H as starting materials. This 

ionic complex shows the same efficiency for the controlled polymerisation of isoprene as its 

neutral homologue, which synthesis requires by contrast the previous preparation of KC5Me5. 

 

2. Results and discussion. 

2.1. Synthesis of complex 2 

First attempts of a direct reaction between Nd(BH4)3(THF)3 (1), and C5Me5H were 

made, but failed, even after a prolonged reaction time (1H NMR monitoring). On the other 

hand, we recently established that Ln-alkyl bonds are readily obtained from the reaction of a 

[Ln]-(BH4) moiety with an alkylating agent, enabling the preparation of highly efficient 

catalytic systems for the polymerisation of non polar monomers [3b,15-18]. Following this 
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idea, a solution of BEM (nBuEtMg) was added to a 1:1 toluene mixture of C5Me5H and 1 at 

room temperature. A clean reaction took place within a few minutes, affording a compound 

consisting of one C5Me5 ligand for 3 BH4 groups whereas no precipitation of the expected 

Mg(BH4)2 occurred (scheme 1) [19]. 

 

Scheme 1 

 

After slow concentration of the toluene solution, light blue single crystals could be isolated. X-

ray structure determination allowed to establish [(C5Me5)Nd(BH4)3]2[Mg(THF)6] (2) as 

molecular formula for the isolated complex [20]. It must be emphasized that this unprecedented 

synthetic method, that we call the “borohydride/alkyl route”, requires very mild experimental 

conditions, and ordinary lanthanides precursors. 

 

 2.3. X Ray structure of [(C5Me5)Nd(BH4)3]2[Mg(THF)6] (2) 

 Complex 2 is a trinuclear ionic compound comprising two anionic half-neodymocene 

trisborohydride [(C5Me5)Nd(BH4)3]
- moieties and one cationic hexa-THF magnesium 

[Mg(THF)6]
2+ adduct (Fig. 1) that alternate in the unit cell without direct cation – anion 

interaction. The asymmetric unit contains two slightly different trimetallic Nd/Mg/Nd entities. 

The Nd anions have a pseudo tetrahedral tri-legged piano-stool geometry. It is noteworthy that 

the Nd–B distances (six coordination) fall in a narrow range of 2.582(5) to 2.586(5) Å, typical 

of monomeric borohydrido complexes bearing a tridentate Nd–(η3-H)3B-H terminal group 

[15,21]. Hydrogens belonging to borohydride groups could be located, geometric parameters 

(B-H, Nd-H distances, and B-H-Nd angles) confirm the η3-mode, likely distorted, however 

[17,22]. The Mg cation exhibits the octahedral geometry with oxygen atoms of THF molecules. 
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The absence of coordinated THF to the neodymium atom points out the higher affinity of the 

lanthanide towards ionic ligands. 

Figure 1 

 

Though structurally characterized molecular CpRLnX3
- (CpR is a substituted cyclopentadienyl 

ligand) species have been observed occasionally [23], the borohydride anionic 

[(C5Me5)Nd(BH4)3]
- is singular. Moreover, we checked (1H NMR, C6D6) that a solution of 2 

prepared in our one pot procedure remained unchanged after 20 h at 75 °C (see experimental). 

Thus, (C5Me5)LnX3
- appears as a stable molecular entity in the borohydride series, with respect 

to comproportionation or clustering. The ionic trinuclear structure of compound 2 is comparable 

to that of  [Mg(THF)6][Nd(allyl)4]2(2THF), obtained by ionic metathesis, with discrete 

[Mg(THF)6]
2+ cation and allyl neodymate anions [24]. 

 

 2.4. Isoprene polymerisation 

Precatalyst 2 combined with 1 equivalent of BEM afforded a very efficient initiator 

toward isoprene polymerisation (Table 1), which catalytic behaviour was fully comparable to 

the one obtained from neutral (C5Me5)Nd(BH4)2(THF)2 (3) with 1 equivalent of BEM using a 

procedure that we previously described [3b]. As can be seen from the Mn values, such 

polymerisation process was found to be living with one growing chain per Nd. 

 

Table 1 

 

The livingness of the latter catalyst is confirmed by a double feed monomer experiment, 

showing the typical GPC profiles (Fig. 2) [25]. 
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Figure 2 

 

 Ultimately, we found that a mixture made of 1, C5Me5H, and BEM in the 1/1/1.5 ratio 

shows a very similar reactivity towards isoprene. In that latter case, it is likely that i) a half 

sandwich compound forms in solution (precatalyst 2’, Table 1) from the reaction between 1, 

C5Me5H, and 0.5 equivalent of BEM, ii) the subsequent combination of this precatalyst with the 

residual equivalent of BEM affords the catalytic species (Scheme 2). The somewhat lower 

activity of this catalytic system is tentatively ascribed to the number of THF molecules initially 

coordinated to the neodymium atom. 

 

Scheme 2 

 

 According to the high and very close levels of trans-selectivity, along with the 

controlled macromolecular data, the three different pathways most probably involve the same 

half-sandwich catalytic species [26]. One can thus propose that 2 dissociates in solution in the 

presence of 1 equivalent of BEM (Scheme 3). 

 

Scheme 3 

 

 To generalize the above procedure, additional in situ experiments were carried out with 

1,2,4-Ph3C5H2 and C5H5 as ligands (precatalysts 4’ and 5’, respectively): in both cases, the 

process was much less controlled and the activity was lower (Table 1), showing the specific role 

played by the presence of a C5Me5 ligand in the coordination sphere of the neodymium atom for 

such catalysis. 
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3. Conclusion. 

To conclude, we report herein that the “borohydride/alkyl route” is an elegant alternative 

for the preparation of half-sandwiches of early lanthanides, enabling a one pot and high yield 

synthesis and starting with simple precursors. By using this method, it is possible to prepare in 

situ and very easily sophisticated lanthanide-based catalysts, but also to simply evaluate the 

impact of a CpR ligand upon a catalytic process in a high throughput screening context. 
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Captions. 

 

 

Scheme 1. Synthesis of the half-sandwich complex 2. 

 

Scheme 2. Synthesis of trans-polyisoprene from 2, 2’ and 3, in combination with BEM. 

 

Scheme 3. Formation of the active species from anionic half-sandwich moiety of complex 2. 

 

Fig. 1. ORTEP structure of one of the two entities of the asymmetric unit showing the 

molecular structure of 2 (thermal ellipsoids at the 30% level; non-BH4 hydrogen atoms 

omitted for clarity). 

 

Fig. 2. GPC profiles before (plain line) and after (dot line) the second feed of isoprene 

obtained with 3/1 BEM catalytic system. 

 

Table 1. Isoprene polymerisation with (borohydrido half-neodymocene / BEM) catalysts 
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Table 1. 

 

Catalytic 

systema 

Yield 

[%] 

Rate of 

trans-PI [%]c 

Mnd Mw/Mn Mn(calc.)
e 

2/1 BEM 84 98.2 58200 1.16 56000 

2’
b/1 BEM 68 98.0 46500 1.16 48800 

3/1 BEM 80 97.4 52300 1.18 53700 

4’
b/1 BEM 43 95.7 45300 1.48 61800 

5’
b/1 BEM 60f 91.4 25300 1.90 40100 

1/1 BEMg
 87 95.5 58200 1.35 52100 

 

 aConditions: 10 µmol Nd, 1 mL toluene, [monomer]/[Nd] = 1000, T = 50 °C, t = 2 h. b
In 

situ prepared precatalyst  Nd(BH4)3(THF)3/HCpR/0.5 BEM, 2’: CpR = C5Me5, 4’: CpR = 

1,2,4-Ph3C5H2, 5’: CpR = C5H5. 
cDetermined by both 1H and 13C NMR integrations (see 

ESI). dDetermined by Steric Exclusion Chromatography calibrated with PS standards. 

e([monomer]/[Nd]) x 68 x (yield %). ft = 24 h. gsee ref 27. 
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BH4

BH4 BH4
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Scheme 1 
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Nd(BH4)3(THF)3 / 1 C5Me5H / 0.5 BEM (2')
/ 1 BEM / isoprene

(C5Me5)Nd(BH4)2(THF)2 (3)

/ 1 BEM / isoprene

n

trans-1,4 polyisoprene

1/2 [(C5Me5)Nd(BH4)3]2[Mg(THF)6] (2)

/ 1 BEM / isoprene

CH2

CH

C

CH2

CH3

 

Scheme 2 
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Scheme 3 
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Figure 1 
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