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Abstract 

Resistive switching controlled by external voltage has been reported in many Metal/Resistive 

oxide/Metal (MRM) structures in which the resistive oxide was simple transition metal oxide 

thin films such as NiO or TiO2 deposited by reactive sputtering. In this paper, we have 

explored the possibility to form NiO-based MRM structures from the partial oxidation of a 

blanket Ni metallic film using a Rapid Thermal Annealing route, the remaining Ni layer being 

used as bottom electrode. X-ray diffraction was used to apprehend the Ni oxidation kinetics 

while transmission electron microscopy enabled investigating local microstructure and film 

interfaces. These analyses have especially emphasized the predominant role of the as-

deposited Ni metallic film microstructure (size and orientation of crystallites) on (i) oxidation 

kinetics, (ii) NiO film microstructural characteristics (crystallite size, texture and interface 

roughness) and (iii) subsequent electrical behavior. On this latter point, the as-grown NiO 

films were initially in the low resistance ON state without the electro-forming step usually 

required for sputtered films. Above the threshold voltage varying from 2 to 5 V depending on 

oxidation conditions, the Pt/NiO/Ni MRM structures irreversibly switched into the high 

resistance OFF state. This irreversibility is thought to originate in the microstructure of the 

NiO films that would cause the difficulty to re-form conductive paths. 

 

 

Keywords: oxidation kinetics; resistive switching; bi-stable oxide films; microstructural 

analysis 
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1. Introduction 

 

Resistive switching phenomena controlled by external currents or voltages attract a lot of 

attention for future high-density non-volatile memory devices. The resistive switching-based 

memory concept enables the integration of the memory element in contacts and interconnects 

resulting in very small memory cells. Additionally, this concept makes possible a 3-dimensional 

stacking as recently demonstrated by Baek et al. on a multi-layer cross point structured binary oxide 

resistive random access memory (so-called OxRRAM) for high-density data storage applications 

[1]. 

Resistive memory materials range from organic (e.g. copper tetracyano quinodimethane) to 

inorganic materials (e.g. chalcogenide alloys, perovskite-type oxides or transition metal oxides) 

with either metallic or conductive oxide electrodes [2,3]. For inorganic materials, bi-stable 

switching phenomena have been reported in many simple metal oxides such as Nb2O5, Al2O3, 

Ta2O5, TiO2, NiO or ZrO2 [4-7]. Typical current-voltage I(V) characteristic of Metal/Resistive 

oxide/Metal (MRM) structures exhibits a drastic change in resistance between a high resistance 

state (i.e. OFF state) and a low resistance state (i.e. ON state). Among transition metal oxides, NiO 

is a promising material due to its compatibility with standard complementary metal-oxide-

semiconductor process, its high ON/OFF ratio and simple constituents [4,8]. Resistance switching 

in crystalline nickel oxide films was observed in 1964 by Gibbons et al. [4] and the switching 

mechanism was explained by a reversible formation/rupture of filamentary conductive paths from 

the interfaces throughout the NiO film [4,9,10]. 

In literature, most of the polycrystalline NiO films are deposited by dc (direct current) reactive 

sputtering on conductive substrates to fabricate MRM structures [10,11]. In this paper, an 

alternative way was explored using a rapid thermal annealing (RTA) route. Hence, NiO-films were 

produced from the partial oxidation of a blanket Ni metallic film used as bottom electrode, this 

approach being similar to the one proposed by Chen et al. to form bi-stable CuOx/Cu stacks [12]. 
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Several process parameters, such as oxidation time, annealing temperature and oxygen partial 

pressure, were tested to control the growth of NiO films. In addition to the electrical testing, x-ray 

diffraction experiments enabled apprehending the Ni oxidation kinetics whereas cross-sectional 

transmission electron microscopy (TEM) was used to observe both the stack microstructure and 

films interfaces. 

 

2. Experimental details 

 

Ni metallic films with 24 or 100 nm thickness were deposited at room temperature by dc 

physical vapor deposition (Applied Materials sputtering tool) on SiO2/Si3N4/Si substrates. The film 

deposition was performed in a base pressure of few mTorr with a dc power source of 400 or 2 000 

W for thinner and thicker films respectively (corresponding deposition rates: 10 and 55 nm/min). 

Different RTA treatments were evaluated to oxidize the Ni films: several process parameters such 

as oxidation time (from 10 seconds to 30 minutes), annealing temperature (200, 300 and 400°C) and 

oxygen partial pressure (pure O2; 20 and 500 ppm O2) were tested. After the Ni oxidation, a 100 nm 

thick Pt top electrode (TE) was sputtered through a shadow mask with feature sizes ranging from 

1 000 to 160 µm in order to test the electrical behavior of elementary MRM structures. 

Local TEM observations coupled with energy dispersive spectroscopy (EDS) analyses were 

carried out to investigate the microstructure of Ni and NiO films. TEM samples were prepared by 

focused ion beam (FIB) technique (Ga+ ions accelerated at 30 kV; a low current ion beam was used 

to clean the surface at the end of the preparation) and imaging was performed using a Tecnai G2 

(FEI Company) at 200 kV (wavelength of 0.0251 Å). EDS analyses were performed with an EDAX 

instrument using a Si(Li) detector with a thin beryllium window enabling analysis of elements with 

Z > 11. 

X-ray texture analyses were performed on a Siefert 4-circles diffractometer in the Schulz 

reflection geometry. Copper radiation emitted from an x-ray tube was monochromatized (λKα (Cu) 
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= 1.5418 Å) and collimated using a bi-dimensional multilayer optical system from Xenocs. 

Stereographic pole figures were measured by scanning the tilt angle χ between 0 and 90° in steps of 

3°, and the azimuthal angle Φ between 0 and 360° in steps of 3°. The pole figures are the projection 

of the diffraction intensity of a given Bragg reflection as the sample is rotated. The experimental 

data were corrected for background. 

X-ray diffraction technique was used to apprehend the oxidation kinetics of Ni metallic films in 

different experimental conditions. After each thermal treatment, ex situ analyses were performed to 

check the presence of Ni and NiO phases. Diffraction patterns were registered at room temperature 

on a Siemens-Bruker D5000 diffractometer configured in Bragg–Brentano geometry, operating 

with CuKα radiation and equipped with a diffracted-beam monochromator and Soller slits. Data 

were collected in the angular range 36 – 46° in 2θ with steps of 0.02° to measure the intensities of 

(111) Bragg reflections of Ni and NiO phases. Using a profile fitting procedure described elsewhere 

[13], a peak broadening analysis was performed to extract average size of Ni and NiO crystallites 

(experimental data were corrected for instrumental broadening). 

Besides, in situ x-ray diffraction experiments were performed on a Bruker D8 Advance x-ray 

diffractometer equipped with an Anton-Paar HTK 1200N furnace enabling temperature-dependent 

measurements under controlled atmosphere. The experimental conditions were as follows: after 

heating under vacuum from 25°C to the nominal temperature with heating rate of 18°C/min, an 

isothermal treatment at 400 or 500°C was applied in pure oxygen. Data were collected every 10 

seconds using a linear detector (Bruker Vantec 1) over the same angular domain 36 – 46° in 2θ with 

steps of 0.00741°. A peak broadening analysis was also performed to apprehend the time and 

temperature-dependent evolution of Ni and NiO crystallite sizes. 

Current-Voltage I(V) characteristics were measured on MRM structures with AixACCT TF 

Analyzer 2000 system using either triangular waveform (typically ± 5 V and 10 Hz; corresponding 

voltage sweep: 0,2 V/msec) or staircase voltage ramp (voltage step: 0.1 V; dwell time: 1 sec per 

step). From these measurements, the bi-stable resistive behavior of NiO films was checked and the 



ACCEPTED MANUSCRIPT

-      - 

 

6 

switching threshold voltage Vth was determined (when a switching occurred). The MRM structures 

being initially in ON state, the threshold voltage corresponded to the switching from low to high 

resistance state. Moreover, low (RON) and high (ROFF) resistances were deduced from the slope of 

I(V) characteristics. Values of Vth, RON and ROFF were then correlated with process parameters. 

 

3. Microstructure and growth kinetics of NiO films 

 

3.1. Microstructural analysis of Ni and NiO films 

 

Preliminary θ-2θ diffraction patterns were collected on 24 and 100 nm thick Ni layers before the 

oxidation step. As seen in Fig. 1a, x-ray diffraction profiles of (111)Ni reflection show that the initial 

100 nm Ni layer presents a stronger texture along [111] direction as compared to the 24 nm Ni layer. 

Moreover, interpreting the width of (111)Ni diffraction peak in terms of crystallite size, the 24 nm 

Ni layer presents much smaller crystallites (≈ 10 nm) as compared to those of the 100 nm Ni layer 

(≈ 40 nm). 

Further x-ray texture analyses were performed on a non-oxidized 100 nm thick Ni layer on 

{111}Ni and {200}Ni Bragg reflections. On one hand, the {111}Ni pole figure shown in Fig. 1b gives 

a qualitative description of the orientation of the as-deposited Ni film. The maximum intensity of 

the (111)Ni Bragg reflection is at the center of the pole figure, the [111] directions being dispersed 

over a revolution cone centered on the substrate's normal and with about 5° of full width at half 

maximum. On the other hand, the {200}Ni pole figure (Fig. 1c) shows a drastically lower texture 

with a random orientation of [200] directions around the substrate's normal. Thus, both {111}Ni and 

{200}Ni pole figures indicate a strong [111] fibre texture of the Ni layer. 

Similar texture analysis was performed on the NiO film obtained from Ni oxidation (100 nm 

thick layer) at 400°C for 120 seconds in pure O2. On the {111}NiO pole figure (Fig. 1d), the 

maximum intensity is centered and the rest of the intensity is spread over a wide angular range. This 
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intensity distribution clearly indicates a texture of the NiO layer along [111] direction even if this 

texture is much lower than the one observed on Ni metallic film. Consequently, the crystallographic 

orientation of NiO grains appears to be conditioned by the texture of the underlying Ni film since 

the NiO films preferentially grow with the [111] direction parallel to the substrate's normal. 

 

TEM experiments were performed on stacks obtained in various oxidation conditions. For 

instance, Fig. 2a and 2b presents the results of TEM experiments performed on sample coated with 

a 100 nm thick Ni layer, annealed in pure O2 at 400°C for 30 seconds and covered with a Pt top 

electrode. A cross-sectional observation shows a stack of several layers with different contrasts (Fig. 

2a). In situ x-ray energy dispersive spectrometry (EDS) analysis enabled checking the chemical 

composition of each film and evidenced a thick Ni-rich layer above Si-rich layer, the upper top 

layer being Pt. Unfortunately, the EDS detector used was not sensitive to light elements such as 

oxygen. Consequently, the presence of NiO layer cannot be clearly established from EDS analyses. 

To prove the presence of NiO layer, selected area electron diffraction experiments were 

performed using the smallest available aperture. Although this aperture was still too large to select 

only one layer, the presence of NiO was confirmed. Indeed, some NiO d-spacings (Powder 

Diffraction File, PDF no. 47-1049) such as d(111)[NiO] differ enough from the d-spacings of the 

surrounding layers to unambiguously identify the nickel oxide. Using a similar approach with Ni d-

spacings (PDF no. 04-0850), the presence of Ni layer was checked. Furthermore, dark field imaging 

experiments were performed using the diffraction spot corresponding to either d(111)[NiO] = 2.412 

Å or d(200)[Ni] = 1.762 Å (Fig. 2b). These experiments have then definitely confirmed the presence 

of NiO layer and have enabled locating both Ni and NiO layers within the stack (Fig. 2a). 

As shown on TEM cross-section in Fig. 2a, there is a large spread of NiO thicknesses typically 

ranging from 40 to 75 nm. The Ni layer is dense and constituted by columnar grains with an 

average size up to 350 nm parallel to the surface. Micro-diffraction experiments (not shown here) 

suggested that the Ni layer is preferentially oriented with the [111] crystallographic direction 
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parallel to the substrate's normal, in agreement with the previous x-ray texture analyses. Besides, 

the Ni/SiO2 interface is flat and clear of defects whereas Pt/NiO and NiO/Ni interfaces are rough 

and enclose some voids. The NiO layer is constituted of smaller grains as compared to Ni with a 

maximum size 120 nm. 

 

3.2. Oxidation kinetics of Ni metallic layer 

 

3.2.1. Ex situ x-ray diffraction to apprehend RTA oxidation 

A detailed analysis of NiO/Ni stack formation was performed from x-ray diffraction patterns 

collected on a 100 nm thick Ni film after RTA oxidation at 400°C in pure O2 with annealing times 

ranging from 10 seconds to 30 minutes. In Fig. 3a, concomitant diffracted intensity variations of 

both Ni (decrease) and NiO (increase) phases are observed with increasing oxidation times. This 

feature indicates that the Ni metallic film is progressively consumed as the NiO film grows. In 

addition, the peak profiles were individually adjusted using the program Winplotr [14] to extract the 

time-dependent evolution of integrated intensity and full width at half maximum (FWHM) of both 

(111)NiO and (111)Ni reflections. The time-dependent variation of the intensities indicates that the 

initial extremely rapid oxidation is followed by a slower oxidation rate (not shown here). In 

addition, the integral breadth β (linked to FWHM) of the (111)NiO Bragg peak decreases with 

increasing oxidation time (Fig. 3b). The integral breadth β may be interpreted in terms of crystallite 

size using the Scherrer formulae β = λ / (D × cos θ), where D is the apparent crystallite size (in the 

present case, the local strain effect was not taken into account). Consequently, the decrease of β is 

interpreted as a growth of NiO crystallites along with oxidation times (Fig. 3b). 

 

3.2.2. Oxidation kinetics from in situ time-dependent x-ray diffraction 

To complement previous ex situ analyses, in situ temperature and time-dependent x-ray 

diffraction experiments were performed on 100 nm thick Ni films annealed at 400 or 500°C in pure 
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O2. Before the oxidation step, the Ni metallic films were heated under vacuum in the furnace 

mounted on the diffractometer and x-ray diffraction patterns were collected from 25°C to 400 or 

500°C. As shown in Fig. 4a, the temperature-dependent evolution of the (111)Ni Bragg reflection 

exhibits a drastic intensity increase. Using an individual profile fitting procedure, the integrated 

intensity (Fig. 4b) and integral breadth β (Fig. 4c, left) were extracted. Both evolutions indicate a 

further crystallization of Ni layer during heating and the decrease of β above 100°C may be 

interpreted as an increase of the average Ni crystallite size (Fig. 4c, right). The same tendency was 

observed for sample heated up to 500°C. 

In a second step, time-dependent x-ray diffraction patterns were collected in pure O2 at constant 

temperature for 15 hours. The scanned angular range was limited to 36–46° in 2θ, domain that 

contains the (111)Ni and (111)NiO reflections. Whatever the isotherm, concomitant variation between 

both Ni and NiO intensities was observed with increasing oxidation times as illustrated in Fig. 5a 

for isotherm at 400°C. Figure 5b presents the time-dependent variation at 400°C of integrated 

intensity for (111)NiO and (111)Ni Bragg peaks. These evolutions indicate that the Ni metallic film is 

progressively consumed as the NiO film grows up to the total consumption of the Ni layer. The 

same kind of evolution was observed at 500°C with faster oxidation kinetics. Figure 6a shows the 

time-dependent variation, at 400 and 500°C, of the (111)NiO integrated intensity ratio I(t) / I∞(t → 

∞) between time t and final time (i.e. t → ∞) after total Ni consumption. These ratios qualitatively 

point out that the Ni oxidation rate increases with increasing annealing temperature.  

Figure 6b shows, at 400 and 500°C, the time-dependent increase of NiO average crystallite size 

D deduced from the decrease of the (111)NiO integral breadth β. Isothermal nucleation/growth 

process of particles is usually described by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory 

[15-17]. This model gives the time-dependent evolution of the volume V(t) of a nucleating and 

growing phase. In the present case, the evolution in time of NiO crystallite size D has been fitted 

using a JMAK-type equation: D(t) = D∞ [1 – exp(– k × tn)], where D∞ corresponds to the final 
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crystallite size when t → ∞. The satisfactory fitting of experimental data shown in Fig. 6b clearly 

indicates that the growth of NiO crystallites follows the JMAK model. Table 1 summarizes the 

parameters of the JMAK model for each temperature. The parameters n and k are respectively the 

JMAK coefficient and the growth rate constant depending on temperature. The growth rate constant 

k is around 0.96 at 400°C while at 500°C, k equals 1.42. Besides, the crystallite size is also 

influenced by the temperature: at 400°C, D∞ ≈ 26 nm while D∞ ≈  32 nm at 500°C. These results 

clearly show that growth of NiO crystallites is significantly accelerated at 500°C. 

 

3.2.3. Comparison of RTA and in situ oxidation conditions 

Inset in Fig. 6b illustrates the growth of NiO crystallites versus oxidation times (< 2 hours) (i) for 

pre-treated Ni films at 400 or 500°C (in situ diffraction experiments) and (ii) for a Ni layer directly 

subjected to the oxidizing atmosphere (ex situ diffraction experiments). At 400°C, the rather 

different growth rate constants k indicate that the oxidation kinetics is much faster for RTA route 

(Table 1). The main difference between these two sets of conditions stands in the pre-treatment of 

Ni metallic layer prior to oxidation. Furthermore, at 400°C after 30 minutes in pure O2, the 

crystallite size is about 14 nm when the Ni film is pre-treated under vacuum whereas it is of 21 nm 

without pre-treatment. Hence, these analyses show that the oxidation kinetics of Ni layer strongly 

depends on its own microstructure, which is modified by the thermal pre-treatment. 

 

4. Electrical behavior of NiO films obtained in various conditions 

 

4.1. Typical switching characteristic 

 

Figure 7 shows a typical current-voltage I(V) switching characteristic measured with a staircase 

voltage ramp on a Pt/NiO/Ni stack. The measurements were performed on an initial 100 nm thick 

Ni layer oxidized in pure O2 using RTA at 400°C for 10 seconds. For a voltage sweep 0 → 4 V → 0 
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→ – 4 V → 0, no switching occurs and the high current response is indicative of the initial low 

resistance state. As the voltage is ramped up to 4.5 V, the current abruptly decreases at 4.2 V 

pointing out a resistance switching of the MRM structure from a low (RON = 55 Ω) to a high 

resistance state (ROFF = 2 360 Ω). In this latter case, the switching was irreversible, the structure 

remaining in OFF state whatever the bias imposed. 

The Pt top electrode area dependence of resistance switching was also studied: in reducing TE 

diameter from 540 to 160 µm, the current in the low resistance (LRS) state remains quite unchanged 

whereas a decrease of one order of magnitude is observed in the high resistance state (HRS). These 

results indicate that the conduction in HRS is strongly dominated by the area of top electrode 

whereas the formation of filamentary paths in the oxide can be proposed to explain the conduction 

in LRS. Besides, it has been mentioned in the previous paragraph that the MRM structures 

systematically turn off around 4.2 V in applying a positive voltage to the bottom electrode with a 

sweep of 0.2 V/msec. In decreasing the voltage sweep, the current through the structure increases 

whereas the threshold voltage decreases (e.g. for a sweep of 0.02 V/msec, the switching is observed 

at 3.7 V). Consequently, the opposite variations of current level and threshold voltage seem to be in 

favor of a heating Joule effect with a subsequent destruction of filaments in LRS and a switching to 

HRS. 

 

4.2. Influence of annealing time and temperature under pure oxygen 

 

I(V) measurements were performed on samples coated with a 24 or 100 nm thick Ni layer, 

oxidized in pure O2 at different temperatures (200, 300 and 400°C) with RTA times ranging from 

10 seconds to 5 minutes. The observed electrical behavior was systematically correlated with ex situ 

x-ray diffraction patterns enabling detection of Ni and/or NiO phases. Fig. 8a shows that the 

threshold voltage Vth increases along with annealing time whatever the initial thickness of Ni film. 
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For samples with a 100 nm thick Ni layer, an annealing at 300°C or above in pure O2 is required 

to at least partially oxidize the metallic film and to form NiO-based structures exhibiting a 

resistance switching with threshold voltages ranging from 3.5 to 5 V (Table 2a). Indeed, the 

observation of (111)NiO Bragg reflection for RTA at 300 and 400°C is in agreement with the 

formation of a bi-stable NiO layer whereas the absence of NiO phase for RTA at 200°C explains the 

lack of switching behavior. Moreover, the threshold voltage Vth increases along with the annealing 

temperature: for instance after 180 seconds of oxidation, Vth raises from 4.3 V at 300°C to 5 V at 

400°C. 

For samples with initial 24 nm thick Ni layer, Vth follows the same tendency since it increases 

along with annealing time and temperature (Fig. 8a). For instance, after 180 seconds of annealing, 

Vth increases from 3.1 V at 200°C to 3.8 V at 300°C. Furthermore, it is observed that no switching 

occurs when the Ni films were annealing at 400°C for times larger than 30 seconds. X-ray 

diffraction experiments have shown that, in these conditions, the Ni metallic film is fully consumed 

(with subsequent disappearance of bottom electrode). In this latter case, electrical measurements are 

impossible. Besides the threshold voltage, the evolution of RON and ROFF resistances deduced from 

the slope of I(V) curves measured on samples annealed at 300°C shows a very slight increase with 

annealing time although the ROFF/RON ratio remains quite unchanged (Fig. 8b). The average 

ROFF/RON ratio is around 55 for samples with an initial 100 nm thick Ni layer annealed at 300°C, 

whereas it is only around 15 for samples with 24 nm thick Ni layer. Therefore, in the perspective of 

memory devices, 100 nm thick Ni layers provide a large memory window enabling a better 

discrimination between ON and OFF states. In contrast, the lower threshold voltages measured on 

24 nm thick Ni layers oxidized at moderate temperature with short annealing times would match the 

low-voltage application requirements. 

  

4.3. Influence of oxidizing atmosphere 
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Different oxidizing atmospheres (20 and 500 ppm of O2; pure O2) were tested on samples coated 

with initial 24 or 100 nm thick Ni layer and annealed using RTA at 200 and 400°C for 30 seconds 

and 3 minutes. Once again I(V) characteristics were systematically correlated with x-ray diffraction 

patterns. Figure 9 presents the distribution of threshold voltages Vth measured in different 

experimental conditions. The main trend is the augmentation of Vth with increasing oxygen partial 

pressure: Vth varies from 2.2 V (24 nm thick Ni layer annealed at 200°C for 30 seconds under 20 

ppm of O2) to 5 V (100 nm thick Ni layer annealed at 400°C for 180 seconds in pure O2). It is worth 

to note that in few cases no switching was observed for 24 nm thick Ni layers (Table 2b). For 

instance at 400°C, whatever the oxygen partial pressure, the annealing time has to be limited to 

30 seconds to prevent the total oxidation of Ni layer (checked by x-ray diffraction). In contrast, for 

lower temperatures (i.e. 200 and 300°C), the Ni layer is only partially oxidized whatever the 

annealing time and oxygen partial pressure and a switching is observed. 

As partial conclusion, Fig. 9 helps to establish the experimental conditions required to form bi-

stable NiO films with switching voltages which may be easily tailored in monitoring annealing time 

and/or O2 partial pressure. 

 

5. Discussion 

 

In this section, both microstructural and electrical characteristics of Pt/NiO/Ni MRM structures 

are discussed in correlation with the experimental conditions. Tables 2a and 2b gather the 

experimental conditions, the presence of Ni and/or NiO layers (detected by x-ray diffraction) and 

the threshold voltage of the MRM structures when switching was observed. 

 

5.1. Impact of Ni microstructure on oxidation kinetics 
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Electrical testing presented in previous section revealed major differences in the switching 

behavior which may be linked to the Ni microstructure before oxidation step. Indeed, a resistive 

switching occurs on a 24 nm Ni layer oxidized at 200°C whereas it is not observed on a 100 nm Ni 

film annealed in the same conditions (cf. Tables 2a and 2b). This peculiar behavior may find its 

origin in the thickness-dependent microstructure of Ni layer which influences the oxidation kinetics. 

As shown in Fig. 1a, the 24 nm thick Ni layer presents much smaller crystallites and a lower texture 

along [111]Ni direction as compared to the 100 nm thick Ni layer. Consequently, the growth kinetics 

of NiO film seems to depend on the texture and crystallite size of the initial Ni metallic layer. 

Several arguments may support this hypothesis: 

– Firstly, x-ray texture analyses (Fig. 1d) showed a fibre texture of NiO film along the [111] 

direction (cf. section 3.1.). This result is in good agreement with the work of Czerwinski et al. 

which showed that the stronger the [111]Ni substrate texture, the stronger the [111]NiO 

oxidized layer texture became after oxidation [18]. In contrast, López-Beltrán et al. obtained 

texture-free polycrystalline NiO layer from the oxidation of a weakly textured Ni film [19]. 

– Second, concerning the Ni film texture, Czerwinski et al. and Peraldi et al. have demonstrated 

the important role of crystallographic orientation of nickel on its oxidation kinetics [18,20-22]. 

Hence, a strong [111] texture of Ni leads to formation of highly protective and slow growing 

NiO film, i.e. a weaker Ni texture significantly decreases the resistance to the oxidation. 

– Finally, Graham et al. demonstrated that the oxidation rate is strongly dependent on the Ni 

surface morphology [23,24]. Moreover, at lower temperatures, the influence of oxygen 

transport increases through short circuit paths, such as grain boundaries and dislocations 

[23,25,26]. As a result, smaller Ni crystallites result in a larger amount of grain boundaries 

which may facilitate the oxygen diffusion and accelerate the NiO formation. 

Consequently, the non-oxidation of 100 nm thick Ni film at 200°C (with subsequent lack of 

switching) may find its origin (i) in a stronger [111]Ni texture that increases the resistance to 
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oxidation and (ii) in larger crystallites that decrease the amount of grain boundaries and limit 

oxygen diffusion. 

Besides, as seen in inset of Fig. 6b, the comparison of time-dependent growth of NiO crystallites 

(extracted from ex situ and in situ x-ray diffraction experiments) confirms again the influence of Ni 

microstructure on the NiO growth. When the Ni metallic film is annealed under vacuum prior to 

oxidation, a further crystallization occurs with an enhancement of [111]Ni texture and a growth of 

Ni crystallites (cf. Figs. 4b and 4c). In contrast, the RTA conditions lead to a rather different 

situation with two competitive mechanisms that simultaneously occur: Ni crystallization with 

subsequent changes in the microstructure; growth of NiO film with progressive consumption of the 

Ni layer. Thus, the different "history" of Ni layer before oxidation may explain the faster kinetics 

(cf. Table 1) observed in RTA conditions in which metallic layer is directly subjected to the 

oxidizing atmosphere without pre-treatment. 

To conclude, in agreement with previous published works [23-26], the Ni surface morphology 

and its thermal treatment prior to the oxidation radically change the growth kinetics of the NiO film. 

Consequently, the present experiments emphasize the importance of thermal pre-treatment in order 

to avoid the competition between Ni crystallization and oxidation. 

 

5.2. Initial ON state 

 

As compared to sputtered films reported in literature, the NiO films obtained from Ni oxidation 

are initially in ON state without special electro-forming generally required to reach the conductive 

state. Oxygen content in oxide films may explain such a behavior. Varying oxygen content in 

sputtering gas mixture, several authors have shown a drastic modification of the electrical 

properties of NixO films from a metallic behavior (highly Ni-excess films) at low oxygen content (< 

5 % of oxygen in sputtering gas) to a monostable threshold switching (Ni-deficient films) at high 

oxygen content (> 20 %), the memory switching region being limited to intermediate oxygen 
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contents (10-17%) [27,28]. The comparison of the cubic cell parameter of films obtained in pure 

oxygen (a = 4.18 Å) with those of Ni-deficient (a = 4.23 Å) and Ni-excess (a = 4.17 Å) films 

suggests that nickel oxide films obtained from Ni oxidation are close to the Ni-excess region within 

memory switching area [27,28]. Moreover, the vicinity of the metallic behavior region may 

certainly explain the initial conductive state. 

 

5.3. Irreversible switching 

 

On the basis of the previous discussion, one could expect a reversible switching of NiO-based 

structures. On the contrary the MRM structures remained in the OFF state after the first and unique 

switching. This irreversibility certainly originates in the roughness of NiO/Ni and Pt/NiO interfaces 

seen on TEM cross-section images (Fig. 2a). Indeed, the TEM observations have revealed that the 

Ni metal surface is covered by a continuous but irregular oxide layer with thicknesses ranging from 

40 to 75 nm. This latter characteristic may have a crucial role on the reversibility of switching since 

several authors have attributed the switching to the formation/rupture of conductive paths near the 

interface [4,9]. During oxidation, the growth of the NiO oxide film is rather non-uniform as a 

consequence of different growth rates for different Ni grain orientations. Indeed, Peraldi et al. have 

demonstrated the important role of the crystallographic orientation of nickel on the oxidation 

kinetics [21,22]. For instance, oxidation of the (100) nickel face is more rapid than oxidation of 

(110), (111), and (112) faces. Once again, it appears crucial to stabilize the Ni film microstructure 

before oxidation step in order to decrease the roughness of the NiO film. 

Finally, in previous works, Haugsrud mentioned the existence of microfissures within the NiO 

oxide obtained from Ni oxidation at high temperatures [26,29]. Several main routes were suggested 

to account for the presence of microfissures [29]. Based on these results, one can propose the 

existence of such microfissures within the NiO film which may explain the difficulty to re-form the 

conductive paths after switching. These microfissures may also lead to a partial delamination at the 
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interface between Ni and NiO films, such a delamination being sometimes observed during TEM 

cross-section sample preparation by mechanical polishing (Tripod technique). 

 

6. Conclusion 

 

In this paper, the oxidation kinetics of Ni metallic films were apprehended in order to form NiO 

layers exhibiting a voltage-induced resistive switching within Pt/NiO/Ni MRM structures. Process 

parameters (temperature, annealing time and oxidizing atmosphere) of Rapid Thermal Annealing 

route were tested to achieve oxidation. Different thermal treatments were selected to oxidize the 

metallic film with conditions (i) preventing the complete consumption of Ni film used as bottom 

electrode and (ii) producing bi-stable oxide films. With these experimental conditions, the as-grown 

NiO films were initially in the low resistance ON state without special electro-forming usually 

required for sputtered NiO films. The obtaining of Ni-excess oxide films may explain the initial 

metallic behavior. Nevertheless, above a threshold voltage, varying from 2 to 5 V depending on the 

oxidizing conditions, the MRM structures irreversibly switched into a high resistance OFF state. 

This irreversibility may be linked to the roughness of NiO/Ni and Pt/NiO interfaces due to a non-

stabilized Ni film microstructure prior to oxidation. 

In the perspective of memory devices, further microstructural and electrical analyses are required 

to decrease the threshold voltage of reversible memory elements. Currently, new experimental 

conditions are evaluated in order to control the Ni crystallization prior to oxidation and alternative 

routes for Ni oxidation such as plasma treatment under N2O or O2 is explored. Finally, fully 

integrated bi-stable NiO/Ni stacks in via structures will be fabricated and the stability of the MRM 

structures in conditions close to those used in the back-end process will be checked. 
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Table captions 

 

Table 1. Parameters of the Johnson-Mehl-Avrami-Kolmogorov (so-called JMAK) equation: D(t) = 

D∞ [1 – exp(– k × tn)] which may describe the nucleation/growth process of NiO crystallites in 

various experimental conditions (RTA conditions or in situ oxidation). 

 

Table 2. Sum up of electrical behavior correlated with the presence of NiO and/or Ni phases 

checked by x-ray diffraction. The initial Ni thickness is 100 nm (a) or 24 nm (b) (NSW = no 

switching; SW = switching; corresponding Vth is given when a resistive switching is observed). 

 

 

       

 

 

 T (°C) D∞ (nm) k n 

RTA conditions 400 19.6 8.8 0.35 

400 26.5 1.0 0.41 In situ 

oxidation 500 32.4 1.4 0.22 

 

Table 1 
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200°C 300°C 400°C 
(a) 

30 s 180 s 300 s 30 s 180 s 300 s 30 s 180 s 300 s 

Pure O2 

NSW 

– 

Ni 

NSW 

– 

Ni 

NSW 

– 

Ni 

SW 

3.8 V 

NiO/Ni 

SW 

4.3 V 

NiO/Ni 

SW 

4.7 V 

NiO/Ni 

SW 

4.4 V 

NiO/Ni 

SW 

4.9 V 

NiO/Ni 

SW 

5 V 

NiO/Ni 

500 ppm O2 

NSW 

– 

Ni 

NSW 

– 

Ni 

    

SW 

3.3 V 

NiO/Ni 

SW 

3.8 V 

NiO/Ni 

 

PO2 

20 ppm O2 

NSW 

– 

Ni 

NSW 

– 

Ni 

    SW 

2.9 V 

NiO/Ni 

SW 

3.3 V 

NiO/Ni 

 

 

200°C 300°C 400°C 
(b) 

30 s 180 s 300 s 30 s 180 s 300 s 30 s 180 s 300 s 

Pure O2 

SW 

3.1 V 

NiO/Ni 

SW 

3.2 V 

NiO/Ni 

SW 

3.3 V 

NiO/Ni 

SW 

3.3 V 

NiO/Ni 

SW 

3.7 V 

NiO/Ni 

SW 

3.8 V 

NiO/Ni 

NSW 

– 

NiO 

NSW 

– 

NiO 

NSW 

– 

NiO 

500 ppm O2 

SW 

2.8 V 

NiO/Ni 

SW 

3.1 V 

NiO/Ni 

    

SW 

3.2 V 

NiO/Ni 

NSW 

– 

NiO 

 PO2 

20 ppm O2 

SW 

2.2 V 

NiO/Ni 

SW 

2.7 V 

NiO/Ni 

    

SW 

2.5 V 

NiO/Ni 

NSW 

– 

NiO 

 

 

Table 2 
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Figure captions 

 

Fig. 1. (a) Comparison of (111)Ni Bragg reflections for 24 and 100 nm thick Ni layers prior to 

oxidation (θ-2θ diffraction patterns). (b) {111}Ni and (c) {200}Ni pole figures of a non-oxidized 100 

nm thick Ni layer. (d) {111}NiO pole figure of NiO film formed from oxidation of Ni layer (100 nm 

thick) at 400°C for 120 seconds in pure O2. 

 

Fig. 2. (a) TEM cross-section of the stack Pt/NiO/Ni/SiO2/Si3N4/Si: the NiO film was obtained from 

oxidation of Ni layer using RTA at 400°C for 30 seconds in pure O2. The upper layer protects the 

stack during before FIB cutting. (b) Selected area electron diffraction pattern and dark field images 

corresponding to (111)NiO and (200)Ni Bragg spots. 

 

Fig. 3. (a) Evolution versus oxidation time of (111)NiO (on left) and (111)Ni (on right) Bragg 

reflections. (b) Annealing time-dependent evolution of integral breadth β of (111)NiO Bragg 

reflection and corresponding average size of NiO crystallites. 

 

Fig. 4. (a) Temperature-dependence of diffraction patterns recorded under vacuum from 25 to 

400°C (100 nm thick Ni layer). (b) Corresponding temperature-dependent evolution of (111)Ni 

integrated intensity. (c) Using a profile fitting procedure, diffraction peak broadening analysis was 

performed to extract the integral breadth β of the (111)Ni reflection which may be interpreted in 

terms of Ni crystallite size. 

 

Fig. 5. (a) Time-dependent evolution of diffraction patterns recorded at isotherm 400°C in pure O2 

and showing concomitant evolutions of (111)Ni and (111)NiO Bragg reflections. (b) Corresponding 

evolution of integrated intensities. 
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Fig. 6. (a) Evolution versus oxidation time of integrated intensity ratio I(t) / I(t→∞) of (111)NiO 

Bragg reflection measured at 400 and 500°C. (b) Time-dependent growth of NiO apparent 

crystallite size deduced from the integral breadth β of (111)NiO reflection measured at 400 and 

500°C. The solid lines are the curves calculated from the JMAK model (see text for details). Inset 

compares the evolution of NiO crystallite size (t < 2 hours) for pre-treated Ni films at 400 and 

500°C and for a Ni layer directly subjected to the oxidizing atmosphere at 400°C. 

 

Fig. 7. Typical I(V) switching characteristics of the Pt/NiO/Ni MRM structures: the NiO film was 

obtained from oxidation of a 100 nm thick Ni layer using RTA at 400°C for 10 seconds in pure O2. 

 

Fig. 8. (a) Evolution of threshold voltage (Vth) as a function of the annealing time for Pt/NiO/Ni 

MRM structures. I(V) characteristics were measured on samples with initial 24 or 100 nm thick Ni 

layers, annealed under pure O2 at different temperatures (200, 300 and 400°C) from 10 to 300 

seconds. No switching was observed for 100 nm thick Ni layer annealed at 200°C. (b) Typical 

annealing time-dependent variation of low (RON) and high (ROFF) resistances of 24 or 100 nm thick 

Ni layer oxidized at 300°C in pure O2. 

 

Fig. 9. Distribution of threshold voltages (Vth) for Pt/NiO/Ni MRM structures produced under 

different oxidizing atmospheres (RTA at 200 and 400°C for 30 and 180 seconds). 
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