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Modelling and H∞ force control of a nonlinear piezoelectric
cantilever

Micky Rakotondrabe, Yassine Haddab and Philippe Lutz

Abstract—During a micromanipulation, it is im-
portant to have the same performances whatever
the manipulated object is. We present in this paper
the control of the force applied to flexible and rigid
micro-objects by a piezoelectric cantilever. First, the
voltage-force transfer function is modeled. The hys-
teresis and creep phenomena are taken into account.
The reliance of the model on the characteristics of the
micro-objects is clearly detailed. Then, in order to re-
ject disturbances and maintain tracking performances
required in micromanipulation, a H∞ controller is
designed. Finally, the experimental results end the
paper.

I. Introduction

Because of their high resolution and rapidity, piezoelec-
tric materials are very used in micromanipulation. One of
their applications is the piezoelectric microgripper which
is made up of two piezoelectric cantilevers (example
in [1]). During the micromanipulation, it is important
to control the manipulation force because the micro-
objects, notably biological and optical micro-objects, are
often breakable. To perform that, the first piezoelectric
cantilever is controlled on position while the second is
controlled on force (Fig. 1). When the piezoelectric can-
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Fig. 1. A piezoelectric microgripper which manipulates a micro-
object.

tilevers work in large deflection, nonlinearities (hysteresis
and creep) become non-negligible. They particularly ap-
pear in the voltage-deflection transfer function [2]. To
reach the performances needed in micromanipulation,
these nonlinearities must be taken into account. To
model the creep, logarithmic functions [3] and linear
operators [4] have been used. Furthermore, hysteresis
has been modeled with the Preisach operator [5], the
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ENSMM - Université de Franche-Comté
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Maxwell operator [6], the polynomial approximation [7]
and the variable-gain/variable-time-delay approximation
[8]. These different models are enough accurate but some
of them need high computing memory and power.

The aim of this paper is the modelling and the control
of the manipulation force applied to a micro-object by a
piezoelectric cantilever. As the controller is dedicated to
an embedded calculator, the simplicity of the model and
of the controller is particularly taken into account. To
modelize the hysteresis and the creep, the quadrilateral
approximation is used because of its simplicity. In addi-
tion, the reliance of the final model on the characteristics
of the manipulated micro-objects is demonstrated. Then,
these characteristics are neglected and the uncertainty
of the model is increased. As the model is subjected to
uncertainty, we propose a H∞ robust controller.

The paper is organized as follow. The second section
is dedicated to the modelling. Then, the identification
of the model is presented. The synthesis of the H∞
controller is detailed in the fourth section. Finally the
experimental results are presented in the last section.

II. Modelling the voltage-force transfer

This section presents the modelling of the transfer be-
tween the voltage U supplied to a piezoelectric cantilever
and the force Fm that it applies to a manipulated micro-
object (Fig. 2). According to Smits and Choi [9], the
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Fig. 2. A piezoelectric cantilever.

relation between the voltage U , the force F applied at
the tip of the cantilever and the resulting deflection δ in
the static phase is affine:

δ = sp · F + dp · U (1)

where sp > 0 is the elastic constant of the cantilever and
dp > 0 is the piezoelectric constant.

In our previous work [1], it has been shown that the
transient part of the (U, δ)-transfer and the transient part
of the (F, δ)-transfer are similar. Thus, we have:

δ = (sp · F + dp · U) ·D(s) (2)



where D(s) (with D(0) = 1) represents the dynamic part
and s the Laplace variable.

However, when the deflexion δ of the cantilever be-
comes large, generally higher than 15% of the maximum
field strength [11], the linear modelling is not applica-
ble anymore and hysteresis and creep phenomena arise
(Fig. 3). The creep is defined as a drift of the deflection
after the end of the transient part. Let ψ(.) be a nonlinear
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Fig. 3. a: hysteresis phenomenon. b: creep phenomenon.

operator taking into account the hysteresis, the creep and
the dynamic part D(s). From the (Equa. 2), we have:

δ = sp · F ·D(s) + ψ(U) (3)

In the sequel, we focus on the manipulation force Fm =
−F . For all the theoretical analyses, the cantilever is
supposed to be in contact with the manipulated micro-
object. Fig. 4 presents the experimental setup. A uni-
morph piezoelectric cantilever has been used. Its sizes
are: 15mm×2mm×0.3mm (length, width and thickness).
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Fig. 4. a: the experimental setup principle. b: photography of the
piezoelectric cantilever.

A. Nonlinear model

Fig. 5 represents the cantilever in contact with a
micro-object. A sufficient model of the micro-object is
composed of an effective mass me, a viscous damper ce
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Fig. 5. A piezoelectric cantilever in contact with a micro-object.

and a stiffness ke [12]. From the Fig. 5 and the (Equa. 3),
we have:  δ = sp · F ·D(s) + ψ(U)

δ = −se · F ·De(s)
Fm = −F

(4)

where,De(s) is the dynamic part of the micro-object and:
De = 1

me
ke

·s2+ ce
ke
·s+1

se = 1
ke

(5)

Using the three equations of (Equa. 4), we infer the
expression of the force applied to the micro-object:

Fm =
1

(se + sp)
· ψ(U) · 1(

se·De(s)+sp·D(s)
(se+sp)

) (6)

with:
(se ·De(0) + sp ·D(0))

(se + sp)
= 1 (7)

On the one hand, the model depends on the characteris-
tics of the micro-object:

• when there is no manipulated micro-object, the
parameters me, ce and ke are null. Then, according
to the (Equa. 6), the force tends towards zero.

• however, when the micro-object is infinitely rigid
(infinite values of ke and ce), the (Equa. 6) becomes
the expression of a piezoelectric cantilever with a
null bending.

To clearly show the reliance of the voltage-force model
on the micro-object characteristics, experiments were
done with a very flexible and a very rigid micro-objects.
The experiments were done with only one piezoelectric
cantilever as shown in Fig. 5. Fig. 6 shows the results
obtained with harmonic experiments. These curves were
compared with the dynamic characteristic D(s) of the
cantilever whose the static gain has been scaled to al-
low the comparison. The difference between the curves
confirms that the voltage-force transfer depends on the
micro-object characteristics. In addition, the transient
part of the voltage-force transfer is different from the
transient part of the voltage-deflection transfer. On the
other hand, the relation between the applied voltage
U and the manipulation force Fm is nonlinear because
of the hysteresis and the creep phenomena inside the
operator ψ(U). Fig. 7 is an experimental result illus-
trating that there is a creep on the measured force
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Fig. 6. Harmonic characteristics of the voltage-force transfer.
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Fig. 7. Creep of the resulting force when a step voltage is applied.

when a step voltage is applied. In the following sub-
section, we model the nonlinear operator ψ(U) using
the quadrilateral approximation. We have demonstrated
the relevance of this approximation in our previous work
[10]. This approximation infers a linear model. In such
approximation, the hysteresis infers an uncertainty while
the creep infers a disturbance. The parameters are easy
to identify and the simplicity of the model leads to
low memory and time consuming controllers which are
appropriate for embedded systems.

B. Quadrilateral approximation of ψ

Let δ = ψ(U) be the relation between the applied
voltage and the resulting deflection when the force is null.
It contains the hysteresis and the creep.

The hysteresis on the (U, δ)-plane can be approximated
by a plurilinear curves, i.e. affine curve piecewise (Fig. 8-
a). Let (∆) be a variable straightline. Because the latter
represents a hysteresis, its offset δ0 and its slope α are
dependent on the past and present values of input U .
We note them δU0 (.) and α (.). Thus, the approximation
model of the hysteresis using the variable straightline is:

(∆) : δ(s) = α(.) · U(s) + δU0(.) (8)

U

straightline (∆)

δ

U

δ

(a) (b)

Fig. 8. a: plurilinear approximation of a hysteresis. b: quadrilateral
approximation.

When the hysteresis does not have a saturation, a quadri-
lateral approximation is sufficient (Fig. 8-b). Let (∆M )
and (∆m) represent the two straightlines of the quadri-
later with respectively the maximal and the minimal
slopes: {

(∆M ) : δ (s) = αM · U (s) + δM (.)
(∆m) : δ (s) = αm · U (s) + δm (.) (9)

where αM (respectively αm) represents the maximal (re-
spectively minimal) slope and δM (.) (respectively δm (.))
represents the corresponding offset.

Let αO be the middle value of the maximal and the
minimal slopes and let αE be their radius:{

αO = αM+αm

2
αE = αM−αm

2

(10)

So, to model the hysteresis, we propose to use one
nominal straightline with a nominal slope and a new
offset δh0 (.):

δ (s) = αO · U (s) + δh0 (.) (11)

Here, the static gain αO is subjected to uncertainty while
δh0 represents a disturbance.

To introduce the creep, we propose to consider it as
an error due to a fictive time-variant force FC . The new
model which includes the hysteresis and creep effects is:

δ(s) = αO · U(s) + δh0 + sC · FC(s) (12)

where sC is the fictive elastic constant.
Finally, we have:

δ(s) = αO · U(s) + δ0 (13)

with δ0 = δh0 + sC · FC(s) is a disturbance to reject.
The (Equa. 13) represents the static modelling of the

voltage-deflection transfer. Two comments can be arised:
• when the hysteresis phenomenon is weak, we have
αO = dp,

• as the creep was represented by the effect of a
fictive force, the dynamic characteristic of the creep-
deflection transfer and the dynamic characteristic of
the force-deflection transfer are similar.



From the precedent two remarks and using the dy-
namic part of the (Equa. 2), we obtain the dynamic
model between the voltage and the deflection:

δ(s) = ψ(U) = (αO · U(s) + δ0) ·D(s) (14)

C. The nominal model
From the nonlinear model of force in (Equa. 6) and

the quadrilateral approximation of ψ(U) in (Equa. 14),
we have:

Fm = αO

(se+sp) · U(s) ·D(s)
(

se·De(s)+sp·D(s)
(se+sp)

)−1

+Fdist ·D(s) ·
(

se·De(s)+sp·D(s)
(se+sp)

)−1 (15)

where the disturbance is represented by:

Fdist =
δ0

(se + sp)
(16)

We notice that the model depends on the parameters se

and De of the micro-object. It is not useful to identify
the model and to synthesize a controller at each change
of manipulated micro-object. Thus, we neglect these
parameters and rely the closed-loop performances on the
robustness of the controller. We use:

se = 0(
se·De(s)+sp·D(s)

(se+sp)

)−1

= 1
(17)

Using the (Equa. 16) and taking into account the
(Equa. 17), the nominal model which represents the
transfer between the applied voltage U and the manipu-
lation force Fm is:

Fm =
αO

sp
· U(s) ·D(s) + Fdist ·D(s) (18)

In this model, Fdist is a disturbance to be rejected.
It contains the creep phenomenon and a part of the
hysteresis (offset of the quadrilateral approximation).
The static gain αO

sp
is subjected to uncertainty and is

defined by the (Equa. 10). The Fig. 9 shows the systemic
scheme of the nominal model.
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Fig. 9. Systemic scheme of the voltage-force transfer.

III. Identification

A. Piezoelectric gain identification
The first identification consists in identifying the pa-

rameter αO. For that, a sine voltage U is applied to
the piezoelectric cantilever and the resulting deflection
δ is measured. A very low frequency (f = 0.1Hz) has

been used in order to avoid the effect of the dynamic
part on the hysteresis. The corresponding (U, δ)-curve is
presented in the Fig. 10. From the curve and using the
(Equa. 10), we easily deduct αO = 502 × 10−9

[
m
V

]
and

αE = 64× 10−9
[

m
V

]
.

−40 −30 −20 −10 0 10 20 30 40
U [V]

δ [µm]

f=0.1Hz

−20

−15

−10

−5

0

5

10

15

20

 

Fig. 10. The hysteresis in the (U, δ)-curve.

B. Elastic gain identification
Here, we want to identify the parameter sp. For that,

the electrodes are short-circuited in order to maintain
the voltage U equal to zero. A weight (= 20.72mN) is
hung on at the tip of the cantilever. The Fig. 11 shows
the resulting deflection. From the results, we have sp =
δ
F = 1.931

[
µm
mN

]
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Fig. 11. The resulting deflection when a weight is hung on at the
tip of the cantilever.

C. Dynamic part identification
In most cases, a second order model can sufficiently

model the dynamic part of piezoelectric cantilevers
[10][13]. It has the following form:

D(s) =
1

a · s2 + b · s+ 1
(19)

where a is an inertial parameter and b a viscous parame-
ter.

To identify D(s), a step voltage is applied to the
cantilever. The Fig. 12-(solid line) shows the resulting
deflection. Using a curve fitting method, we have a =



4.722 × 10−8 and b = 1.304 × 10−5. The simulation of
D(s) · αO is represented by the Fig. 12-(dashed plot).
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Fig. 12. The resulting deflection when a step voltage is applied to
the cantilever.

IV. H∞ control

On the one hand, the nominal model G(s) is subjected
to uncertainty due to the quadrilateral approximation.
On the other hand, the parameters related to the micro-
object have been neglected inside the model. Because of
those approximations, we propose to use a H∞ robust
controller. The objective is to reject the disturbances in
preserving tracking performances required in microma-
nipulation. For that, we use two weighting transfer func-
tions W1 and W2 as shown in the Fig. 13. In this figure,
Fmc represents the reference point of the manipulation
force and b = Fdist·αO

sp
.
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Fig. 13. The closed-loop scheme with the weighting functions.

A. Standard form

Let P (s) be the augmented system including the nom-
inal system and the weighting functions. The Fig. 14
shows the corresponding standard scheme. The standard
H∞ problem consists in finding an optimal value γ > 0
and a controller K(s) stabilizing the closed-loop scheme
of the Fig. 14 and guaranteeing the following inequality
[14]:

‖Fl (P (s),K(s))‖∞ < γ (20)

where Fl(., .) is the lower Linear Fractionar Transforma-
tion and is defined by Fl (P (s),K(s)) = o(s)

e(s) .

K(s)

P(s)

ε

o

U

mc
F

e
i

 
=  
 

Fig. 14. The standard form.

From the Fig. 13, we have:

o = W1 · S · Fmc −W1 · S ·G ·W2 · i (21)

where S = (1 +K ·G)−1 is the sensitivity function.
Using the condition (Inequa. 20) and the (Equa. 21),

we infer:

‖W1 · S‖∞ < γ
‖W1 · S ·G ·W2‖∞ < γ

⇔
|S| < γ

|W1|
|S ·G| < γ

|W1·W2|
(22)

To solve the problem (Equa. 22), we use the Glover-
Doyle algorithm which is based on the Riccati equations
[15][16]. The issued controller K is robust in the fact that
it ensures the stability and the performances even if the
nominal system G has an uncertainty relative to the real
plant. The wanted performances are introduced through
the weighting functions.

B. Choice of the weighting functions

The transfer functions 1
W1

and 1
W1·W2

are chosen from
the specifications respectively on the tracking perfor-
mances and on the disturbance rejection. The weighting
functions W1 and W2 are automatically deduced. The
specifications are:

• the maximal response time must be inferior to 10ms,
• the overshoot must be null,
• the maximal statical error must be inferior to 0.1%,
• finally, the rejection of the disturbance is a lowpass

filter with a cut frequency equal to 160Hz.

From the above specifications, we choose:

1
W1

= 10−3 · 3·s+1
3×10−3·s+1

1
W1·W2

= 10−2 · 0.1·s+1
10−3·s+1

(23)

C. Calculation of the controller

The computed controller has an order of 5. In order
to minimize the memory and time consumptions in the
computer, the controller order has been reduced to 3
using the balanced realization technique [17]. We obtain:

K =
2×10−7·(s+2.7×1015)·(s2+344·s+2.5×107)

(s+0.3)·(s2+2.1×105·s+1.2×1010)

γ = 1.04
(24)



V. Experimental results

The controller has been implemented in a PC-DSpace
setup through the Simulink-Matlab software. The first
experiment consists in analyzing the temporal perfor-
mances of the closed-loop system. A step reference of
8mN amplitude has been applied. The analyses were
performed for two different manipulated micro-objects
(highly flexible and highly rigid micro-objects). The
results (Fig. 15) show that the performances are main-
tained for both. The response time is nearly 10ms while
the overshoot is null. In the second experiment, we
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Fig. 15. Temporal analysis of the force control.

analyze the performances in the frequential domain. The
frequential domain analysis is more concise than the
temporal domain analysis. For that, a sine reference
signal Fmc is applied and the resulting output Fm is
measured. The corresponding magnitude is presented in
the Fig. 16. The results clearly show that whatever the
characteristics of the micro-object are, the H∞ controller
gives the same performances.
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Fig. 16. Frequential analysis of the force control.

VI. Conclusion

In micromanipulation, the control of the force applied
to the manipulated micro-object is important. This al-
lows avoiding the destruction of the micro-object. This
paper has presented the modelling and the control of

force applied by a piezoelectric cantilever to micro-
objects. The nonlinearities, i.e. hysteresis and creep phe-
nomena, have been taken into account by using the
quadrilateral approximation. Such approximation leads
to a linear model under an uncertainty and a disturbance.
Afterwards, a H∞ controller has been designed. Finally,
the experimental results have shown that whatever the
manipulated micro-object is, the controller always gives
good performances.
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