
HAL Id: hal-00187279
https://hal.science/hal-00187279

Submitted on 14 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hysteretic Q-Learning : an algorithm for decentralized
reinforcement learning in cooperative multi-agent teams.

Laëtitia Matignon, Guillaume J. Laurent, Nadine Le Fort-Piat

To cite this version:
Laëtitia Matignon, Guillaume J. Laurent, Nadine Le Fort-Piat. Hysteretic Q-Learning : an algorithm
for decentralized reinforcement learning in cooperative multi-agent teams.. IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS’07., Oct 2007, San Diego, CA., United States.
pp.64-69. �hal-00187279�

https://hal.science/hal-00187279
https://hal.archives-ouvertes.fr


Hysteretic Q-Learning : an algorithm for Decentralized Reinforcement
Learning in Cooperative Multi-Agent Teams.

Laëtitia Matignon, Guillaume J. Laurent and Nadine Le Fort-Piat
Laboratoire d’Automatique de Besançon UMR CNRS 6596

ENSMM , Université de Franche-Comté
24 rue Alain Savary, 25000 Besançon, France

E-mails : (laetitia.matignon,guillaume.laurent,nadine.piat)@ens2m.fr
Web site : www.lab.cnrs.fr

Abstract— Multi-agent systems (MAS) are a field of study
of growing interest in a variety of domains such as robotics
or distributed controls. The article focuses on decentralized
reinforcement learning (RL) in cooperative MAS, where a team
of independent learning robots (IL) try to coordinate their
individual behavior to reach a coherent joint behavior. We
assume that each robot has no information about its teammates’
actions. To date, RL approaches for such ILs did not guarantee
convergence to the optimal joint policy in scenarios where the
coordination is difficult. We report an investigation of existing
algorithms for the learning of coordination in cooperative MAS,
and suggest a Q-Learning extension for ILs, called Hysteretic
Q-Learning. This algorithm does not require any additional
communication between robots. Its advantages are showing off
and compared to other methods on various applications : bi-
matrix games, collaborative ball balancing task and pursuit
domain.

I. INTRODUCTION
Learning in multi-agent systems (MAS) are a field of

study of growing interest in a wide variety of domains, and
especially in multi-robot systems [1]. Indeed, a decentralized
MAS point of view offers several potential advantages as
speed-up, scalability or robustness [2].

In this paper, we are interested in learning in MAS thanks
to reinforcement learning (RL) methods, where an agent
learns by interacting with its environment, using a scalar
reward signal called reinforcement as performance feedback
[3]. Over the last decade, many approaches are concerned
with the extension of RL to MAS [4], e.g. team of soccer
robots [5] or distributed control of a robotic manipulator [6].

We investigate the case of cooperative MAS where all
agents share the same goal and the common return can
be jointly maximized. As pointed out by Boutilier [7], a
cooperative MAS could be solved by classical RL algorithms
in a centralized view in which one agent represents the
whole team. But the size of the state-action space should
quickly become too big for RL. So we investigate the case of
agents which learn their own behavior in a decentralized way.

In this framework, Claus & Boutilier [8] distinguish two
cases of reinforcement learners : the case of agents that get
information about their own choice of action as well as their
partners’ choices, called “joint action learners” (JALs), and
the case of agents which only know their own action, called
“independent learners” (ILs). The former case suffers from

combinatorial explosion of the size of the state-action space
with the number of agents given that each agent learns the
value of joint actions, while the latter one brings the benefit
of a state space size independent of the number of agents.
We focus on ILs which is a more realistic assumption and
don’t require any communication between agents.

The use of ILs in cooperative MAS induces three major
difficulties. The first one is the fact that other learning agents
are unpredictable elements of the environment because of
the local view of each agent. Secondly, from the viewpoint
of any agent in MAS, the environment is not any longer
markovian since a past action can have an effect on the other
agents current behaviors. This fact destroys the theoretical
convergence guarantees of single-agent RL algorithms.
Finally, the third difficulty is the multi-agent coordination
problem : how to make sure that all ILs coherently choose
their individual action such that the resulting joint action is
optimal?

In this paper, we present a decentralized RL algorithm for
ILs which computes a better policy in a cooperative MAS
without additional information or communication between
agents than existing algorithms, presented in Section II.
Our algorithm, called Hysteretic Q-Learning, is a variant
of Q-learning [9] and is compared with existing algorithms
designed for the cooperation/coordination of ILs. First, we
study the case of cooperative repeated matrix games where
the coordination is difficult (Sect. III). Then, we extend the
comparison to identical payoff stochastic games (Sect. IV)
through a collaborative ball balancing task and a multi-agent
pursuit benchmark (Sect. V). The study is lastly extended to
a partial observable benchmark with 4 players (Sect. VI).

II. RELATED WORKS

In this section, related works dealing with RL algorithms
in cooperative MAS are reviewed, with an emphasis on
research dealing with Q-learning [9] and Q-learning variants
for ILs. It was one of the first algorithms applied to
multi-agent environments [10]. Such works focus on game
theory - more particularly repeated games (Sect. III) - and
stochastic games (Sect. IV).



Claus & Boutilier [8] compare the performance of JALs
and ILs on repeated coordination game (Tab. I) and found
that even though JALs have much more information at their
disposal, they do not perform much differently from ILs
in the straightforward application of Q-learning to MAS.
Notably, they show that convergence to global optimum is
not always achieved in these games even if each agent can
immediately perceive the actions of all other agents in the
environment.

They investigate too the crucial effect the applied
exploration policy has on the performance of the learning
when the single-agent RL methods are utilized in MAS.
Notably, they try to compute an equilibrium point by
continuously reducing the exploration frequency, so as
to avoid concurrent exploration. This problem is also
investigated in [11].

Lauer & Riedmiller [12] introduced the Distributed Q-
Learning algorithm. Optimistic independent agents neglect
the penalties due to a non-coordination of agents in their
update. They show that their algorithm will find the unique
optimal equilibrium solution in deterministic cooperative
MAS. Nevertheless, this algorithm used without any addi-
tional coordination mechanism is not able to manage the
coordination in case of multiple optimal joint actions.

Kapetanakis & Kudenko [13] point out another flaws in
Lauer’s approach when dealing with stochastic environments,
and present a modified exploration strategy. In their
algorithm, the Q-value of an action in the Boltzmann
exploration strategy is changed by an heuristic value,
taking into account how frequently an action produces its
maximum corresponding reward. This heuristic, which is
called FMQ, works only in repeated games. It solves the
reward uncertainty issue due to the other agents’ actions, but
does not overcome the difficulty of games strongly noised.

Besides the theoretical examinations, several successful
applications of decentralized RL have been reported, like
in the control of a group of elevators [14] or in the task of
multi-robot box-pushing [15]. They use ordinary Q-Learning
without any consideration of the existence of other agents.

III. FULLY COOPERATIVE REPEATED GAMES

The studies of learning algorithms in MAS are based on
game theory and more particularly on repeated games. In this
section, we first setup this framework. Then, we present a
version of the Hysteretic Q-Learning for repeated games and
some results on two usual cooperative games with regard to
other algorithms.

A. Definition

A matrix game1 (MG) is a multiple-agent, sin-
gle state framework. It is defined as a tuple <
n, A1, ..., An, R1, ..., Rn > where n is the number of players,
Ai is the set of actions available to player i (and A is the

1also called strategic game

TABLE I
TWO COOPERATIVE BI-MATRIX GAMES

joint action space A1× ...×An) and Ri is player i’s payoff
function A→ <.

If R1 = ... = Rn = R, the MG is fully cooperative.
We are interested in repeated games which consist of the
repetition of the same MG by the same agents. Among
matrix games, bi-matrix games are often used to formulate
the 2-agents case.

Table I shows 2 cooperative MG : the Climbing game
and the Penalty game, introduced in [8] for the study of
coordination in cooperative MG. Each agent have 3 actions
and the table specifies the joint rewards. Each of these
games is challenging due to mis-coordination penalties. In
the Climbing game, the optimal joint action is (a, a) but if
an agent chooses its individual optimal action a when the
other agent chooses action b, a severe penalty is received.
However, there are no mis-coordination penalties associated
with action c, potentially making it tempting for the agents.
In the Penalty game, K is usually chosen inferior to 0.
This game introduces another mis-coordination issue due to
the presence of two optimal joint actions (a, a) and (c, c) :
simply choosing its individual optimal action does not
guarantee that the other agent will choose the same optimal.

In the case of only one state, Q-Learning is reduced to the
update equation of the Q-value function [8] :

Qi(ai)← Qi(ai) + α(r −Qi(ai)) (1)

where ai is the agent’s chosen action, r the reward it receives,
Qi(ai) is the value of action ai for the agent i and α ∈]0; 1]
is the learning rate.

B. Hysteretic Q-learning

In a MAS, the reinforcement received by an agent relies
on actions chosen by the team. So an agent can be punished
because of a bad choice of the team even if it has chosen
an optimal action. Then the agent had better to attach less
importance to a punishment received after the choice of an
action which has been satisfying in the past. This is the idea
of the optimistic agents used in the Distributed Q-Learning
algorithm. Distributed Q-Learning update equation is [12] :

δ ← r −Qi(ai)

Qi(ai)←
{

Qi(ai) + αδ if δ ≥ 0
Qi(ai) else (2)

However, the key issue with Distributed Q-Learning al-
gorithm is that optimistic agents do not manage to achieve



TABLE II
PERCENTAGE OF TRIALS CONVERGING TO THE OPTIMAL JOINT ACTION

(AVERAGE ON 3000 TRIALS).

Climbing game Penalty game
(K = −100)

Decentralized Q-Learning 12.1% 64%
Distributed Q-Learning 95.8% 50.6%

FMQ 99.8% 99.9%
Hysteretic Q-Learning 99.5% 99.8%

the coordination between multiple optimal joint actions [12].
Agents must not be altogether blind to penalties at the risk
of staying in sub-optimal equilibrium or mis-coordinating on
the same optimal joint action. That’s why we suggest to use
two learning rates according to the result of a joint action.

Thus, the update equation (1) is modified :

δ ← r −Qi(ai)

Qi(ai)←
{

Qi(ai) + αδ if δ ≥ 0
Qi(ai) + βδ else (3)

where α and β are the increase and decrease rates of Q-
values. The Hysteretic Q-learning is decentralized : each
ILs builds its own Q-table whose size is independent of the
agents number and linear in function of its own actions.

C. Experimentations

We tested different algorithms on both cooperative re-
peated games (Tab. I) : decentralized Q-Learning, FMQ,
Distributed Q-Learning and Hysteretic Q-Learning. Decen-
tralized Q-Learning is the straightforward application of
update equation 1 to ILs.

A trial consists of 7500 repetitions of the game. At the
beginning of a trial, Q-tables are initialized at 0. At the end
of each trial, we determine if the last chosen joint action
is optimal. We take α = 0.1 for all methods, β = 0.01
for Hysteretic Q-Learning and c = 10 for the weight in
the FMQ. Concerning the action selection method, we
have chosen an action selection according to Boltzmann
distribution where T is a temperature parameter. T is setting
up at T = T × 0.99 with Tinit = 5000. Results are shown
in Table II.

First, decentralized Q-Learning is inefficient to reach the
optimal joint action in both games. Indeed, all rewards are
equally considered. So, high penalties for mis-coordination
caused the agents to be attracted by safer sub-optimal equilib-
rium in both games. Distributed Q-Learning performs rather
well in the Climbing game because of agents omission of
penalties. But in the Penalty game, they don’t overcome the
issue of coordination : each agent has two optimal individual
actions so four greedy policies can be generated (a, a), (c, c),
(c, a) and (a, c), and only the first two are optimal. That’s
why the agents choose the two optimal with a probability
of 50%. Both algorithms FMQ and Hysteretic Q-Learning
discovered the optimal joint action more than 99% of the
time. Anyway, it is important to notice that FMQ requires

larger memory size than Hysteretic Q-Learning, storing only
the Qi-values.

So in cooperative MG, Hysteretic Q-Learning manages
to solve the coordination issue and requires agent’s internal
status smaller than FMQ. Indeed, FMQ augments the agent’s
internal status by maintaining 3 values for each of its actions
so as to carry the information of how frequently an action
produces its maximum corresponding reward.

IV. STOCHASTIC GAMES

A. Definition

Stochastic games (SG) can be seen as the extension of
matrix game to the multi-states framework. Specifically,
each state of a SG can be viewed as a matrix game. They
were first examined in the field of game theory and more
recently in the field of multi-agent RL.

A stochastic game2 is defined as a tuple
< n, S, A1, ..., An, T, R1, ..., Rn > where :

• n is the number of agents;
• S is a finite set of states;
• Ai is the set of actions available to the agent i (and

A =
∏

Ai the joint action space);
• T : S×A×S → [0, 1] a transition function that defines

transition probabilities between states;
• Ri : S ×A→ < the reward function for agent i.

In a SG framework, all agents have access to the complete
observable state s. The joint actions of the agents determine
the next state and the rewards received by each agent. If all
agents receive the same rewards, the SG is fully cooperative.
It is then defined as an identical payoff stochastic game
(IPSG)3. The objective of each agent is then to find the
optimal policy maximizing the expected sum of the discount
rewards in the future.

The straightforward extension of centralized Q-Learning to
SG considers joint actions in the computation of Q-values.
Thus, the update equation in a centralized view is :

Q(s, a1, ..., an)← (1− α)Q(s, a1, ..., an)+

α

[
r + γ max

a′
1,...,a′

n

Q(s′, a′1, ..., a
′
n)

]
(4)

where s′ is the new state, α the learning rate and γ ∈ [0; 1[
the discount factor.

In a decentralized framework, the Q-learning update equa-
tion for ILs is :

Qi(s, ai)← (1− α)Qi(s, ai) + α
[
r + γ max

a′
Qi(s′, a′)

]
(5)

It is obvious that such Qi tables for ILs are smaller. But each
agent has only a local view because it has no access to the
actions of the others.

2also called Markov game.
3also called Multi-agent Markov Decision Process (MMDP).



B. Hysteretic Q-learning

We extend the equation (3) to SG. Then, the Hysteretic Q-
Learning update equation for an agent i executing the action
ai from state s ending up in state s′ is :

δ ← r + γ max
a′

Qi(s′, a′)−Qi(s, ai)

Qi(s, ai)←
{

Qi(s, ai) + αδ if δ ≥ 0
Qi(s, ai) + βδ else (6)

V. EXPERIMENTS ON STOCHASTIC GAMES

We propose to compare the performance of Hysteretic Q-
Learning in SG tasks with a centralized Q-Learning view
(update equation 4), a decentralized Q-Learning framework
(update equation 5) and the Distributed Q-Learning algo-
rithm (update equation 2).

A. Experiments on a collaborative ball balancing task

Fig. 1. Overview of a collaborative ball balancing task

1) Benchmark: We take up an example task whose pur-
pose is to keep balance of a rolling ball in the center of a
flat table holding by two robots at the extremities [16]. Each
robot control hi values. The dynamics are given by :

mẍ = −cẋ + mg

(
h1 − h2

l

)
(7)

with m = 0.5, g = 9.8, l = 2 and c = 0.01.

2) State space: The complete plant state is given by
x = (x, ẋ). If centralized learning is used, the command
is a = (h1, h2); for decentralized learning with two robots
controlling each extremity of the table, the robot commands
are a1 = h1 and a2 = h2. To apply RL in the form presented
previously, the time axis and the continuous state and action
must be first discretized. The sample time is 0.03 seconds.
For state space, a 100×50 discretization is chosen. For each
control, 15 values are used equally distributed between −1
and 1. So, this yields a Q-table of size 100 × 50 × 152 in
a centralized view, to compare with two Qi-tables of size
100× 50× 15 in a decentralized view.

Each trial starts from an initial state x = (0.5, 0.1) and
goes on at the most 20 seconds. A trial ends if the ball is
fallen from the table.

3) Reinforcement: According to [17], the chosen reward
function is :

r = 0.8e−
x2

0.252 + 0.2e−
ẋ2

0.252 . (8)

Fig. 2. Sum of rewards (averaged over 20 runs) with α = 0.9 β = 0.1
γ = 0.9 ε = 0.1.

4) Results: All trials use a discount factor γ = 0.9 and
follow the ε-greedy action selection method4 (ε = 0.1). We
have plotted the sum of rewards obtained at each trial over
5000 successive trials. Results are shown Fig. 2.

First, Distributed Q-Learning shows a very slow con-
vergence. Otherwise, with decentralized Q-Learning, re-
sults are only slightly less successful than with centralized
Q-Learning, although Q-tables sizes are smaller and no-
coordination mechanisms are setting up. So this confirms the
fact that ordinary decentralized Q-Learning could be applied
to some cooperative MAS systems. Anyway, only Hysteretic
Q-Learning reaches the same convergence as centralized
algorithm. The best coordination in this decentralized frame-
work is obtained with the Hysteretic Q-Learning algorithm.

B. Experiments on a pursuit domain

The pursuit problem is a popular multi-agent domain in
which some agents, called predators, have to capture one
other agent, called the prey [18].

1) Benchmark: We use a discrete 10 × 10 toroidal grid
environment in which two predators have to explicitly
coordinate their actions in order to capture a single prey
(Fig. 3a). At each time step, all predators simultaneously
execute one of the 5 possible actions : move north, south,
east, west or stand still. The prey moves according to a
randomized policy : it remains on its current position with
a probability of 0.2, and otherwise moves to ones of its free
adjacent cells with uniform probability. A prey is captured
when both predators are located in cells adjacent to the
prey, and one of the two predators moves to the location of
the prey while the other predator remains, for support, on
its current position (Fig. 3b).

4the probability of taking a random action is ε and, otherwise, the selected
action is the one with the largest Q-value in the current state.



(a) (b)

Fig. 3. Example pursuit problem. (a) Complete 10× 10 toroidal grid. (b)
Possible capture position.

Fig. 4. Number of capture for 1000 steps (averaged over 20 runs) with
α = 0.1 β = 0.01 γ = 0.9 ε = 0.1.

2) State space: The state space is represented by
the relative position of the two predators to the prey. The
complete state-action space then consists of all combinations
of the two predators relative position. In total this yields
99 × 98 × 52, that is 242, 550 state-action pairs in a
centralized view stored in the unique Q function. This is
to compare with Qi tables for each ILs in a decentralized
framework, corresponding to 99 × 98 × 5, i.e. 48, 510
different state-action pairs for each of both agents.

3) Reinforcement: When two predators end up in the
same cell, they are penalized (Ri = −10) and are moved
to a random empty position on the grid. A capture results
in a reward Ri = 37.5 for each agent, and predators and
prey are replaced to random positions. Furthermore, each
predator receives a reward of −25 when one of them moves
to the prey without support and both are moved to random,
empty cell.

4) Results: All trials use a discount factor γ = 0.9,
a learning rate α = 0.1, a decrease rate (Hysteretic
Q-Learning) β = 0.01 and follow the ε-greedy method
(ε = 0.1). Results are shown Fig. 4.

The Decentralized Q-Learning performs worst. Indeed,
the learned policy oscillates because it stores Qi tables
based on the individual actions of the agents, so they update
the same Qi-value both after successful and unsuccessful

coordination with the other agent. For example, when both
predators are located next to the prey and one predator
moves to the prey position, this predator is not able to
distinguish between the situation in which the other remains
on its current position or moves. Thus the same Qi-value is
updated in both cases, although a positive reward is received
in the first case and a large negative one in the second case.
So Decentralized Q-Learning is not able to perform the
coordination between both predators. Distributed Q-Learning
performs better but does not manage to reach the same
performance as centralized Q-Learning. Finally, Hysteretic
Q-Learning presents the same convergence as centralized
method, although five times less Q-values are used !

C. Conclusion

To conclude, these two experiments confirms that Hys-
teretic Q-Learning is able to manage the coordination be-
tween agents in cooperative MAS better than other tested
algorithms. Without any additional communication, this
method performs as well as a centralized algorithm and
moreover, uses smaller Q table. On the other hand, it
seems that the straightforward application of decentralized
Q-Learning to cooperative MAS is able to perform approx-
imately successful coordination, but this is not guaranteed.

VI. PARTIALLY OBSERVABLE STOCHASTIC GAMES.
Finally, we extend our study to partially observable frame-

work. Especially, we test our algorithm in a pursuit domain
where 4 agents have partially observable perceptions.

A. Definition

A partially observable stochastic game (POSG) is a tuple
< n, S, A1, ..., An,Γ1, ...,Γn, O, T, R1, ..., Rn > where <
n, S,A1, ..., An, T, R1, ..., Rn > is a SG and:

• Γi is a finite set of observations for agent i (and Γ =∏
Γi is the set of joint observations);

• O : S × A × Γ → [0, 1] defines the observations
probabilities.

B. Experiments on a pursuit domain

In this section, we use a pursuit domain [18] different
from the one previously presented. The task consists in 4
predators situated in a 7 × 7 toroidal grid. The objective is
always to achieve coordination in order to capture a prey
by surrounding it (Fig. 5a). Predators and prey are the same
as in the other pursuit domain, but predators perceptions
differs. Indeed, a predator perceives something according
to the 8 cardinal directions and a close or distant criterion
(Fig. 5b), so 16 perceptions. Given that each predators
perceives its 3 teammates plus the prey, there are 164

possible observations per agent. Each agent has 5 possible
actions, i.e. a Qi-table of size 164 × 5 for each predator.
An agent receives independently Ri = 25 in the situation in
Fig. 5c.

We do not test centralized Q-Learning because the size
of the state-action space is too big, i.e. 164 × 54 Q-values.



(a) Capture (b) Perceptions (c) Reinforcement

Fig. 5. a) The prey is captured. b) (2× 8)4 perceptions per agent. c) The
reinforcement is attributed in an individual way and is only function of local
perceptions (and similar situations obtained by rotation of 90◦).

Fig. 6. Number of captures for 1000 steps (averaged over 20 runs) with
α = 0.3 β = 0.03 γ = 0.9 ε = 0.05.

Anyway, we experimented with Decentralized Q-Learning
and observed that the agents are not able to learn even a sub-
optimal strategy after 10.106 steps. But with the Hysteretic
Q-Learning, the predators manage to achieve coordination
to surround the prey much more often than with Distributed
Q-Learning (Fig. 6). The coordination learning stabilizes
around 5.106 steps with 115 captures for 1000 steps.

So Hysteretic Q-Learning manages the coordination in this
partially observable environment.

VII. CONCLUSIONS

In this paper, we investigated the issue of developing an
algorithm for decentralized RL on the basis of Q-Learning.
The major difficulty remains the coordination problem. First,
we investigate the case of ILs so as to obtain sizes of Qi-
tables independent of the number of agents and linear in
function of their own actions. Furthermore, we are looking
for a method which does not require any additional commu-
nication.

To overcome the issue of coordination, two learning rates
are introduced for the increase and decrease of Qi-values.
Thanks to these learning rates, hysteretic agents are chiefly
optimistic to reduce oscillations in the learned policy.
Indeed, we have studied here the case of an increase rate
largely superior to the decrease rate (α > β). Anyway, they
are not absolutely blind to the received penalties to avoid
mis-coordination in case of multiple optimal joint actions.

It has been shown on various multi-agent benchmarks
that Hysteretic Q-Learning algorithm achieves successfully
coordination’s purpose. Actually, Hysteretic Q-Learning’s

convergence is closed to centralized Q-Learning’s. Moreover,
computed policies are better than results with existing
algorithms. Therefore, Hysteretic Q-Learning is an attractive
decentralized RL algorithm for the learning of the
coordination in cooperative MAS.

In perspectives, we intend to widen the idea of hysteretic
agents to other RL algorithms, especially TD(λ). Indeed, we
assume that the idea of hysteretic agents could be imple-
mented in various RL algorithms to achieve coordination in
cooperative MAS. Besides, it could be interesting to study
the influence of the two learning rate parameters.

REFERENCES

[1] E. Yang and D. Gu, “Multiagent reinforcement learning for multi-robot
systems: A survey,” Department of Computer Science, University of
Essex, Tech. Rep., 2004.

[2] P. Stone and M. M. Veloso, “Multiagent systems: A survey from a
machine learning perspective,” Autonomous Robots, vol. 8, no. 3, pp.
345–383, 2000.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, Cambridge, 1998.

[4] L. Busoniu, R. Babuska, and B. D. Schutter, “Multi-agent reinforce-
ment learning: A survey,” in Proc. of the 9th ICARCV, December 2006,
pp. 527–532.

[5] A. M. Tehrani, M. S. Kamel, and A. M. Khamis, “Fuzzy reinforcement
learning for embedded soccer agents in a multi-agent context,” Int. J.
Robot. Autom., vol. 21, no. 2, pp. 110–119, 2006.

[6] L. Busoniu, R. Babuska, and B. D. Schutter, “Decentralized reinforce-
ment learning control of a robotic manipulator,” in Proc. of the 9th
ICARCV, Singapore, Dec. 2006, pp. 1347–1352.

[7] C. Boutilier, “Planning, learning and coordination in multiagent deci-
sion processes,” in Theoretical Aspects of Rationality and Knowledge,
1996, pp. 195–201.

[8] C. Claus and C. Boutilier, “The dynamics of reinforcement learning
in cooperative multiagent systems.” in Proceedings of the Fifteenth
National Conference on Artificial Intelligence, 1998, pp. 746–752.

[9] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine
Learning, vol. 8, pp. 279–292, 1992.

[10] M. Tan, “Multiagent reinforcement learning: Independent vs. cooper-
ative agents,” in 10th International Conference on Machine Learning,
1993, p. 330 337.

[11] S. Kapetanakis and D. Kudenko, “Improving on the reinforce-
ment learning of coordination in cooperative multi-agent sys-
tems,” Second Symposium on Adaptive Agents and Multi-Agent
Systems(AISB/AAMAS-II), Imperial College, London, April 2002.

[12] M. Lauer and M. Riedmiller, “An algorithm for distributed rein-
forcement learning in cooperative multi-agent systems,” in Proc. 17th
ICML. Morgan Kaufmann, San Francisco, CA, 2000, pp. 535–542.

[13] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coordi-
nation in heterogeneous cooperative multi-agent systems,” in Proc. of
AAMAS ’04, 2004, pp. 1258–1259.

[14] R. H. Crites and A. G. Barto, “Elevator group control using multiple
reinforcement learning agents,” Machine Learning, vol. 33, no. 2-3,
pp. 235–262, 1998.

[15] Y. Wang and C. W. de Silva, “Multi-robot box-pushing: Single-agent
q-learning vs. team q-learning,” in Proc. of IROS, 2006, pp. 3694–
3699.

[16] T. Taniguchi and T. Sawaragi, “Adaptive organization of generalized
behavioral concepts for autonomous robots: schema-based modular
reinforcement learning,” in Proc. of Computational Intelligence in
Robotics and Automation, June 2005, pp. 601–606.

[17] L.Matignon, G. J. Laurent, and N. LeFort-Piat, “Improving reinforce-
ment learning speed for robot control,” in Proc. of IROS, 2006, pp.
3172–3177.

[18] M. Benda, V. Jagannathan, and R. Dodhiawala, “On optimal co-
operation of knowledge sources - an experimental investigation.”
Boeing Advanced Technology Center, Boeing Computing Services,
Seattle,Washington, Tech. Rep. BCS-G2010-280, 1986.


