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KEYS AND ALTERNATING SIGN MATRICES

JEAN-CHRISTOPHE AVAL

Abstract. In [11], Lascoux and Schützenberger introduced a notion of key as-
sociated to any Young tableau. More recently Lascoux [9] defined the key of an
alternating sign matrix by recursively removing all −1’s in such matrices. But
alternating sign matrices are in bijection with monotone triangles, which form a
subclass of Young tableaux. We show that in this case these two notions of keys
coincide. Moreover we obtain an elegant and direct way to compute the key of any
Young tableau, and discuss consequences of our result.

1. Introduction

A key is by definition a Young tableau whose columns are comparable for the
inclusion order. They were introduced by A. Lascoux and M.-P. Schützenberger
[11, 12] to study Demazure characters. The Demazure character formula generalizes
the Weyl character formula to extremal weight modules. The notion of key is crucial
in this context (cf. [7, 13, 1, 14] for recent works).

Alternating sign matrices (ASM in short) are combinatorial objects that were ex-
tensively studied in the last two decades [3, 15], with (at least) the great achievment
of their enumeration [19, 6]. They may be seen as a representation of square-ice
configurations [9], and surprisingly appeared in the context of the dense O(n = 1) or
Temperley-Lieb loop model on the square grid [16, 17, 4, 2].

In [9], A. Lascoux defines an operation which consists in iteratively removing the
−1’s of a given ASM to obtain a permutation matrix, called the key of the ASM.
But ASM’s are in bijection with a certain class of Young tableaux, called monotone
triangles (or Gog triangles in [19]). Since a permutation (matrix) may be seen as
a monotone triangle which is a key as a Young tableau, we may ask whether these
two notions coincide. The answer, as stated without proof in [9], is affirmative (cf.
Corollary 9).

More generally we extend Lascoux’s operation of removing the −1’s to matrices
associated to (unrestricted) Young tableaux and obtain (Theorem 3) a very simple
way to compute the left key of a Young tableau, by far easier and quicker than the
original definition [11], and even than the recent method presented in [14].

This article is organized as follows. In Section 2, we recall the definitions of the
left key of a Young tableau, introduce and prove our new way to compute it. We also
explain how this method can be used for the computation of the right key. In Section
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3, we examine consequences of our result for ASMs, including simple formulas for the
number of ASMs with exactly one or two −1 entries.

2. Keys of Young tableaux

A tableau may be seen as a product of columns: T = C1 C2 · · · Cl. For example,

the (Young) tableau T =

4

2 5

1 2 5 is the product of the 3 columns C1 C2 C3 with
C1 = 4 2 1, C2 = 5 2 and C3 = 5. The shape of a tableau is then the list (H1, . . . , Hl)
of the heights of its columns. The shape of our tableau T given above is (3, 2, 1).

The word of a tableau is simply the result of its lecture (column by column). The
tableau T reads: 421 52 5 (the gaps are here to mark the changes of columns, and
are of course unnecessary). We will now not distinguish a tableau and its word.

A key is a tableau such that for any k ∈ {1, . . . , l − 1}, the column Ck+1 is a
subword of the column Ck.

We recall that Schensted’s insertion gives a bijection from words to pairs of Young
tableaux (P, Q) of same shape, with the second one standard. The plactic congruence,
characterized by Knuth, describes the fact for two words to give the same tableau P

by insertion. The following lemma (cf. [12]) is the crucial step to associate a key to
any Young tableau.

Lemma 1. Let T be a Young tableau of shape H = (H1, . . . , Hl). Then for any
permutation I = (I1, . . . , Il) of H, there exists in the congruence class of T exactly
one word V = V1 · · ·Vl, which is a product of columns of respective degrees I1, . . . , Il.
If J is another permutation of I and W = W1 · · ·Wl is the associated word, then
Jk ≥ Ik implies that Vk is a subword of Wk.

The words V introduced in this lemma are called the frank words of T . The keys
are characterized by the fact that their columns (as words) commute (in the plactic
monoid). For a tableau T , we shall say that V1 is the left factor of the couple (I, T ),
and Vl the right factor. Thus, for each height Hk, we obtain this way a unique left
(resp. right) factor of degree Hk. These columns are all ordered by inclusion. The
left (resp.right) key of the Young tableau T is then defined as the product of its left
(resp. right) factors of respective sizes H1, H2, . . . , Hl.

In our example, the tableau T is of shape (3, 2, 1), thus there are six permutations
of its shape, which correspond to the six frank words:

4

2 5

1 2 5 ≡

4 5

2 2

1 5 ≡

4

2

1 5 5

2 ≡

4 5

2

1 5

2 ≡

4 5 5

2 2

1 ≡

4

2 5 5

2

1

We chose a planar presentation of words (i.e. in form of tableaux) to insist on the
fact that the frank words may be computed using the “jeu de taquin”. We will use
the “jeu de taquin” and refer to classical references [18] for definitions. The left and
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right keys of our tableau T are respectively

4

2 4

1 2 4 and

5

2 5

1 2 5 .

We observe that to compute the left key of a tableau T , it is sufficient to compute
its left factors; thus we may restrict the computation to frank words relative to
permutations (Ik, I1, I2, . . . , Ik−1, Ik+1, . . . , Il).

Now we associate to any tableau T a sign matrix M(T ).

Definition 2. A sign matrix is a matrix M = (Mi,j) such that:

• ∀i, j, Mi,j ∈ {−1, 0, 1};

• ∀i, j,
∑i

r=1 Mr,j ∈ {0, 1};

• ∀i, j,
∑j

s=1 Mi,s ≥ 0.

The bijection between Young tableaux and sign matrices is a generalization of the
well-known bijection between ASM and monotone triangle (cf. [19]). We observe the
apparitions and disparitions of the entries in the columns (from right to left), and we
translate it matricially:

M(T )ij =







1 if j ∈ Cl−i+1 and j 6∈ Cl−i+2

−1 if j 6∈ Cl−i+1 and j ∈ Cl−i+2

0 if not

with the convention that Cl+1 is empty.

Proposition 1. The application that sends a Young tableau T to a matrix M(T ) is
a bijection from the set of Young tableaux with m columns and entries in {1, . . . , n}
to sign matrices with m rows and n columns.

Proof. First, if we start with a young tableau T , the matrix obtained is a sign matrix
because:

• since T is a Young tableau, the elements of a column of T are all distinct,
thus in a given column of M(T ), the non-zero entries start with a 1, and then
alternate, whence the second condition of sign matrices;

• the elements of T are weakly increasing along the rows, which translates
matricially as the third condition of the sign matrices definition.

Conversely, if we start from a sign matrix, we construct a tableau, which is a Young
tableau for the same reason. �

For example, the tableau T =

5 5

2 4 5

1 2 4 6 is associated to the sign matrix

M(T ) =









0 0 0 0 0 1
0 0 0 1 1 −1
0 1 0 0 0 0
1 0 0 −1 0 0








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A simple observation is that a Young tableau is a key if and only if its sign matrix
does not contain any −1. Since our goal is to associate to any Young tableau its (left)
key, we introduce a way to remove the −1’s. This is done through an elimination
process. This process, as we shall see in the next section, is an extension of the
removing process defined in [9] for monotone triangles, to general Young tableaux. It
should be observed here that this process is more than just the restriction of Lascoux’s
process to the sub-quadrant of an ASM, as may be seen on the previous example,
where the first two rows are clearly not a part of an ASM.

A −1 entry in a matrix M is said removable if there is no −1 in the rows above
it, nor in its row and on its right, i.e. for the −1 in position (a, b) (we use matricial
coordinates) if:

∀i < a, ∀j, Mi,j 6= −1, and ∀j > b, Ma,j 6= −1.

For such a −1 in a given matrix, its neighbours are the entries Mi,j equal to 1 such
that

i ≤ a, j ≤ b, and ∀i ≤ k ≤ a, ∀j ≤ l ≤ b, Mk,l 6= 1,

i.e. the rectangle of South-East corner (a, b) and of North-West corner (i, j) contains
no other entry equal to 1 than the neighbour itself. For a given removable −1, the
union of these rectangles is a Ferrers diagram:

. . . . . . . 1

. . . . . 1 0 0

. . . . . 0 0 0

. . . 1 0 0 0 0

. . . 0 0 0 0 0

. . . 0 0 0 0 0
1 θ θ θ θ θ θ −1

where the θ entries are either 0’s or −1’s. To remove a (removable) −1 consists in
replacing it by a 0, and to replace its n neighbours by 0 and to place n − 1 entries
equal to 1 such that they form a new Ferrers diagram whose internal corners are the
former n neighbours. On the example, this means replace the sub-matrix given above
by:

. . . . . 1 . 0

. . . 1 . 0 0 0

. . . . . 0 0 0
1 . . 0 0 0 0 0
. . . 0 0 0 0 0
. . . 0 0 0 0 0
0 θ θ θ θ θ θ 0

Now our main result is the following;

Theorem 3. Let T be a Young tableau, and M(T ) the sign matrix associated to T .
By removing all the −1’s of M(T ) by the process described, we obtain a sign matrix
associated to a tableau U which is the left key of T .
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Let us deal with our example T =

5 5

2 4 5

1 2 4 6 . Its sign matrix is

M(T ) =









0 0 0 0 0 1
0 0 0 1 1 −1
0 1 0 0 0 0
1 0 0 −1 0 0









Now we compute:

M(T ) −→









0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 −1 0 0









−→









0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0









= M(U)

with U =

5 5

2 2 5

1 1 2 5 , the left key of T .
The proof of the theorem starts with the following lemma.

Lemma 4. When we apply the “jeu de taquin” to two columns to compute frank
words:

 A  B  A’ B’

it is clear that if b ∈ B ∩ A then b ∈ B′ ∩ A′. Now if A and B do not commute, i.e.
if B − A 6= ∅, let b̃ = max(B − A) and ã = max({a ∈ A − B, a ≤ b̃}). We have

(1) ã ∈ A′;

(2) let B̃ be the column obtained by replacing b̃ by ã in B (maybe reordered), then

if AB̃ −→ Ã′B̃′, we have: Ã′ = A′.

Proof. For the first point, if we suppose that ã slips to B′ during the “jeu de taquin”,
ã should have the hole on its right (and obviously below b̃). Let {x1, x2, . . . , xp} be

the entries in the left column above ã and not above b̃:

x1 b̃

x2

···

xp

ã X

where the X is the hole. Since ∀i ∈ {1, . . . , p}, ã < xi ≤ b̃ and by definition of ã,
we have that all the x1, . . . , xp are in the right column. But these entries should be
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below the box that contains b̃ (since xi ≤ b̃) and above the hole (since xi ≥ ã). This
is impossible since we only have here p − 1 boxes.

For the second point, we observe that for any element a ∈ A, the fact that a stays
in A′ (or not) is the same whether B contains b̃ or ã:

• if a > b̃, it is clear;
• the case a = b̃ does not occur;
• if ã < a < b̃, a is in A if and only if a is in B (or B̃), thus this is clear;
• if a = ã, this is the first point of the lemma;
• if a < ã, it is clear.

�

Proof of the Theorem 3.
Since a sign matrix without any −1 is the matrix of a key, we only have to show

that the elimination of a −1 does not change the left key.
Thus let T be a tableau and T ′ the tableau resulting from the elimination of a −1

(its removable −1). This elimination concerns an entry a appeared in column j and
disappeared in column i (we recall that this story reads from right to left).

The elimination of the −1 consists in replacing in T ′ the entry a in the column k

(for i + 1 ≤ k ≤ j) by the greatest of all entries of Ci less or equal to a and that are
not in Ck.

Now let us compare the computation of frank words for T and T ′. For the left
factors of size ≥ Hi, nothing has changed from T to T ′. Let k ≥ i + 1. By definition
of the removable −1, there is no −1 in the rows of M(T ) above the row i. Thus the
columns on the right of Ci commute, whether we consider T or T ′. We have to deal
with the interversion of CiCk. In the case of T , we know from Lemma 4 that the
entry a is replaced by the greatest of all entries of Ci less or equal to a and which are
not in Ck. Moreover, for all entries less than a, the computation in the same for T

and T ′.
Thus T and T ′ have the same left key. �

Now we show how this process can be used to compute the right key of a Young
tableau. As we shall see in Theorem 8, we can reduce it to the computation of a left
key.

Let us introduce the notion of complement of a tableau, whose definition was
already given in [10].

Definition 5. Let T be a tableau with entries in {1, 2, . . . , n} and columns T =
C1, . . . , Cl. The complement of T , denoted by C(T ) is defined as C(T ) = D1, . . . , Dl

with for 1 ≤ j ≤ n and 1 ≤ i ≤ l:

j ∈ Di ⇐⇒ j 6∈ Cl−i+1.

For example if T =

5 5

2 4 5 6

1 2 4 4 6 then C(T ) =

5

4 5 6

3 3 3 6 6

2 2 2 3 4

1 1 1 1 3 .
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Remark 6. It is clear that the complement of a tableau T depends on the set of
entries that we consider, but all the following results do not depend on this. For
example, if we had considered that our previous example T has entries in {1, . . . , 7},
the only difference would have been the presence of a box with a 7 in each column of
C(T ).

Proposition 2. If T is a Young tableau, then C(T ) is also a Young tableau.

Proof. This is a direct consequence of the following Lemma 7. �

Lemma 7. Let T be a tableau with l columns and M its sign matrix. If M ′ is the
sign matrix of its complement, then we have:

∀i > 1, ∀j, Mi,j = M ′

l−i+1,j .

Proof. Let us introduce the columns: T = C1 . . . Cl and C(T ) = D1 . . .Dl. For i > 1,
we may write:

Mi,j = 1 ⇐⇒ j ∈ Cl−i+1 − Cl−i+2

⇐⇒ j ∈ Di − Di−1

⇐⇒ M ′

l−i+1,j = 1

and the same holds for −1’s, which proves the lemma. �

Theorem 8. Let T be a Young tableau. The complement of the right key of T is the
left key of the complement of T .

Proof. A first observation is that we can restrict to Young tableaux with exactly two
rows, since frank words are computed by iteratively applying the jeu de taquin to
pairs of columns.

Now a consequence of Lemma 4 is that the result of the interversion AB −→ A′B′

depends only on A ∩ B = A′ ∩ B′, A − B and B − A, which we may write:

A′ = (A ∩ B) ⊔ T1(A − B, B − A)

B′ = (A ∩ B) ⊔ T2(A − B, B − A)

with T1(A − B, B − A) ∩ T2(A − B, B − A) = ∅.
If we denote CD = C(AB), we have:

C − D = A − B and D − C = B − A.

We may write

C ′ = (C ∩ D) ⊔ T1(C − D, D − C)

D′ = (C ∩ D) ⊔ T2(C − D, D − C)
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and we want to check that A′ ⊔D′ = {1, . . . , n} = B′ ⊔C ′. By symmetry, we restrict
to the first equality which is proved as follows:


































A′ ∩ D′ =
(

(A ∩ B) ⊔ T1(A − B, B − A
)

∩
(

(C ∩ D) ⊔ T2(C − D, D − C)
)

=
(

(A ∩ B) ⊔ T1(A − B, B − A
)

∩
(

(

{1, . . . , n} − (A ∪ B)
)

⊔ T2(A − B, B − A)
)

= ∅
|A′| + |D′| = n.

�

We deduce from Theorem 8 an easy way to compute the right key of a Young
tableau by taking the complement, applying Theorem 3 to obtain the left key, then

taking the complement again. For example, if we consider T =

5 5

2 4 5 6

1 2 4 4 6 , we

obtain easily that the left key of its complement C(T ) =

5

4 5 6

3 3 3 6 6

2 2 2 3 4

1 1 1 1 3 is

5

4 5 5

3 3 3 5 5

2 2 2 3 3

1 1 1 1 1

thus its right key is

6 6

4 4 6 6

2 2 4 4 6 .

3. Keys of alternating sign matrices

Let us switch to the origin of this work, through A. Lascoux’s paper [9], that is
to the context of alternating sign matrices. In this paper, using the notion of key,
Lascoux obtains a description of Grothendieck polynomials (he already obtained a
description of Schubert polynomials in [8]).

An alternating sign matrix (ASM in short) of size n is a square matrix with entries
in {−1, 0, 1} such that along each row and column:

• the sum of the entries is equal to 1;
• the non-zero entries alternate in sign.

It is clear that an ASM is in particular a sign matrix (in the sense defined in the
previous section). Let us give an example of an ASM of size 5:













0 1 0 0 0
0 0 1 0 0
1 −1 0 1 0
0 1 −1 0 1
0 0 1 0 0













The bijection defined in Section 2 between sign marices and Young tableaux spe-
cializes here in the well-known ([9]) bijection between ASM’s and monotone triangles.
A monotone triangle is by definition a Young tableau of shape (n, n−1, . . . , 2, 1) with
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entries in {1, 2, . . . , n} and such that the entries are non-decreasing along each diag-
onal (from South-East to North-West in French notation). As an example, we give
the monotone triangle associated to the ASM given above:

5

4 5

3 4 4

2 2 3 3

1 1 1 2 2

In [9], A. Lascoux defined a process of elimination of the −1’s of an ASM, to obtain
an ASM without any −1, i.e. the matrix of a permutation, which Lascoux call “the
key of the ASM”. We may temporarily use the notions of matrix-key (or M-key)
to refer to the key defined matricially by Lascoux, and of tableau-key (or T-key) to
refer to the key defined originally on tableaux by Lascoux and Schützenberger in [11].
Lascoux states without proof in [9] that the bijection between ASM and monotone
triangles exchanges these two notions. This assertion now becomes a corollary of
Theorem 3.

Corollary 9. Let M be an ASM and T its associated monotone triangle. If K and U

are repectively the M-key of M and the T-key of T , then U is the monotone triangle
in bijection with K.

Proof. This is a direct consequence of Theorem 3, since the M-key is precisely com-
puted by matricial rules defined in Section 2. �

Thus we may simply speak about “key” for ASM’s or monotone triangles. We
mention here that to index Schubert cells, Ehressmann [5] used combinatorial objects
which can be identified to our keys, ans showed that the order on keys corresponds
to the natural order on cells (later called Bruhat order).

Now for combinatorial reasons, and to easily obtain the number of ASM’s with
exactly one or two −1’s, we introduce the notion of pseudo-key of an ASM. The
definition is almost the same as the definition of the key, but the process of elimination
of the −1’s is simpler.

Here we look at a −1 in position (i, j) in a given ASM M such that there is no
other −1 in its North-West quadrant, i.e.

∀k ≤ i, l ≤ j, (k, l) 6= (i, j), Mk,l 6= −1.

Now in the matrix M we simply replace the pattern

0 · · · 1
...

...
1 · · · −1

by



10 JEAN-CHRISTOPHE AVAL

1 · · · 0
...

...
0 · · · 0

.

The pseudo-key pK(M) of an ASM M is obtained by iteratively removing all −1’s
according to this process. It is quite easy to check that the result does not depend
on the order in which we perform these eliminations.

Let us say a word about the lattice structure on ASM’s. This notion comes from
bijection with monotone triangles. It is quite easy to define the supremum (resp.
infimum) of a family of monotone triangles, by just taking the supremum of the
numbers in each box composing the monotone triangles. The lattice structure on
ASM’s (which extends Bruhat’s order) is then inhereted from the lattice structure on
monotone triangles. We mention the following fact, whose proof is straightforward.

Proposition 3. Let M be an ASM, K(M) its key and pK(M) its pseudo-key. For
the order in the lattice of ASM’s, we have:

pK(M) ≤ K(M) ≤ M.

Now we conclude our work with two enumerative results. Let us denote by A
(k)
n the

number of alternating sign matrices with exactly k entries equal to −1 (for example,

A
(0)
n = n!).

Proposition 4. We have for n ≥ 3:

A(1)
n =

(n!)2

(3!)2(n − 3)!

and for n ≥ 6:

A(2)
n = (n!)2

( 1

36(n − 6)!
+

1

12(n − 4)!
+

11

30(n − 5)!

)

.

Proof. We will only show how to prove the first result, the second result is proved in
the same manner, but with more efforts.

The proof will be in two steps: first we will prove that A
(1)
n is equal to the total

number of patterns 132 in all permutations of Sn, then we will prove that this number

is precisely (n!)2

(3!)2(n−3)!
.

To start, we consider an ASM M with exactly one −1. We compute its pseudo-key
pK(M) which is a permutation matrix. This operation gives a pattern 132 in the
permutation σ associated to the matrix pK(M), i.e. a triple (i, j, k) such that:

i < j < k, and σ(i) < σ(k) < σ(j).
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This fact is illustrated as:

1
...

1 · · · −1 · · · 1
...
1

−→

1 0
...

0 · · · 0 · · · 1
...
1

where the three remaining 1’s form the poattern 132. If we keep track of this triple
(i, j, k), we obtain a bijection between ASM’s with exactly one −1 and permutations
with a marked pattern 132. This is the first point of our proof.

Next, to compute the total number of patterns 132 in all permutations of Sn, we
observe that a pattern 132 is given by:

• the choice of a triple 1 ≤ i < j < k ≤ n, which gives
(

n

3

)

possibilities;

• the choice of a triple 1 ≤ σ(i) < σ(k) < σ(j) ≤ n, which gives
(

n

3

)

possibilities;
• the choice of any permutation in the remaining n − 3 positions.

Thus the total number of patterns 132 is
(

n

3

)2
× (n−3)! = (n!)2

(3!)2(n−3)!
, which completes

the proof. �
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