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Abstract

In this paper, we propose a nonlocal anisotropic discrete regularization on graphs of
arbitrary topologies as a framework for image, data filtering and clustering. Inspired
by recent works on nonlocal regularization and on the TV digital filter, a family of
discrete anisotropic functional regularization on graphs. This regularization is based
on the Lp norm of the nonlocal gradient and the discrete p-Laplacian on graphs. It
can be viewed as the discrete analogue on graphs of the continuous p-TV anisotropic
functionals regularization formulations. After providing definitions and algorithms
to resolve such a discrete nonlocal anisotropic regularization, we show its properties
for filtering, clustering on different types of data living on different graph topologies
(image, data). In particular we investigate the cases of p = 2, p = 1 and p < 1, this
latter being very few considered in literature.

Key words: anisotropic discrete regularization; nonlocal operators; graph
p-Laplacian; filtering; clustering

1 Introduction

Image regularization, based on variational and partial differential equations
(PDEs) approaches, are one of the most important tools in image process-
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ing and computer vision. They have been applied to handle a wide variety of
problems such as denoising, segmentation, optical flow or object tracking. A
complete review regarding the theory and the applications of this area can
be found, in [15], [32], [1], [4] and references therein. However, partial and
variational methods have some limitations in the functionals used in regular-
ization processes, such as the anisotropic diffusion models [33], [25], the total
variation (TV) models [28], [15] or the active contour models [32]. Indeed,
these methods are based on derivatives which only consider local features of
the data.

Recently, the use of nonlocal interactions to capture the complex structure
within images, has received a lot of attention. This methodology has shown
to be very effective, and allows more flexibility in the regularization processes.
Filters based on nonlocal interactions shown superior abilities for image and
video processing such as denoising [13], [21], enhancement, demosaicing [12],
texture analysis and synthesis [26]. Kindermann and Osher [22] were the first
to interpret the nonlocal means filters and neighborhoods filters as nonlocal
regularization functionals. Later, Guilboa and Osher [19] proposed a nonlocal
functional, based on weighted differences, for image regularization and semi-
supervised segmentation. These works can be regarded as the nonlocal ana-
logues of total variation models for image regularization. Moreover, the use
of nonlocal functionals, into regularization and diffusion processes not new.
Indeed, it has been widely used to model diffusion processes arising from sta-
tistical mechanics [5], or neural activity modelization [34]. For recent works,
see [2], [8] and references therein.

Most of the proposed nonlocal regularization functionals have been formulated
for image processing, where images are expressed as continuous functions on
continuous domains. Then, a continuous energy functional is considered and
classically solved by the corresponding continuous Euler-Lagrange equations
or its associated flows. Unfortunately, the discretization of these equations
is difficult for high dimensional data, or function defined on this data. It is
also the case for irregular domains. Moreover, in many research fields such as
geography, data-mining, social sciences, or robotics, data can be represented
by graphs. The interactions within the data can be expressed by functionals
on graphs, and the related problems can be treated in terms of regularization.

To regularize images or discrete data on irregular domains, another methodol-
ogy consists in performing complete digitization of continuous models [24]. The
latter approach directly considers discrete variational problems, and therefore
works on general discrete data. An example of such a digitization is the TV
digital filter, introduced and analyzed by [14] in the context of image restora-
tion. This filter can be interpreted as a precise translation of the TV model [28]
in discrete settings on unweighted graphs. Inspired by this work, we have re-
cently proposed a general p-TV discrete model on weighted graphs [10] [18]. A
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similar approach has also been investigated in the context of semi-supervised
learning on graphs [37].

Our previously proposed regularization is based on the L2 norm of the nonlocal
gradient and on the discrete p-Laplacian on graphs. It can be viewed as the
discrete analogue of the continuous p-TV isotropic regularization. We have
shown that our discrete p-TV isotropic regularization framework leads to a
family of linear and nonlinear processing on graphs. In particular, this family
of methods includes exact expression of several local and nonlocal filters such
as the bilateral filter [31], [30], the TV digital filter, or the nonlocal means filter
[13]. Moreover, for image processing, we have also shown that the continuous
local and nonlocal regularizations, based on p-total variation models, are the
continuous analogue of our discrete regularization approach. Indirectly and
naturally, our methodology provides a discrete extension of these continuous
regularization methods for any discrete data or functions.

In this paper, we propose to extend our isotropic regularization framework by
introduce a new family of discrete anisotropic regularization functionals. This
new family is based the Lp norm, and generalize significantly our previous
studies. Moreover, it can be considered as the nonlocal discrete analogue of
the p-TV anisotropic regularization in the continuous case [20].

Let G = (V, E, w) be a weighted graph which consists in a set of vertices V ,
a set of edges E ⊆ V × V , and a weight function w defined on the edges. The
discrete p-TV anisotropic regularization of a function f 0 : V → R is performed
by the following energy minimization:

min
f :V →R

{

Ew(f, f 0,λ, p) = Rw(f, p) + λ
2‖f − f 0‖2

2

}

, (1)

where p ∈ [0, +∞] is the smoothness degree, and λ ≥ 0 is the Lagrange multi-
plier or fidelity parameter. The first term in (1), is defined as 1

2p

∑

v∈V
|∇wf(v)|pp,

where |.|p is the Lp norm and ∇wf is the weighted gradient of f over G. The
second term is the fidelity term, where the function K estimates the variations
between the functions f 0 and f . For the case of p = 2, one can easily show
that Eq. (1) corresponds to the Tikhonov regularization. For several values of
p, this family of functionals is related to numerous processing methods involve
in image restoration, graphs cuts or random walks techniques [29].

This paper is organized as follows. Firstly we introduce the basic operators
needed for the formulation, and for the resolution, of the proposed minimiza-
tion problem. Then, we propose two different diffusion processes to approxi-
mate its solution. Finally, we the obtained regularization is applied to filter
and to classify images, and discrete data.
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2 Discrete Operators on Weighted Graphs

This section recall useful notations on weighted graphs and define the basic
discrete operators involved in the proposed regularization framework. Simi-
lar definitions and properties have also been used in the context of spectral
graph theory [16], differential calculus on graphs [7,23], semi-supervised learn-
ing [35,36], or image and mesh processing [9,10,14,24]. In these works, the dis-
crete operators are usually defined in order to formalize and to solve isotropic
regularizations, which leads to diffusion processes based on isotropic graph
Laplacians or p-Laplace operators. In the following, we propose to construct
analogue operators for the anisotropic framework. In particular, we define the
discrete anisotropic p-Laplace operator.

2.1 Preliminary Definitions

A weighted graph G = (V, E, w) is composed of a finite set V of N vertices,
a finite set E ⊂ V × V of edges, and a weight function w : E → R+. An
edge of E, which connects two vertices u and v of V , is noted uv. In this
paper, graphs are supposed to be connected, with no self-loops or multiple
edges, and undirected (for each edge uv ∈ E, vu ∈ E). This implies that
the weight function w is symmetric, i.e. wuv = wvu for all edge uv ∈ E. The
weight function measures the dissimilarity of two vertices of the graph. When
wuv → 0, the two vertices u and v are dissimilar. By convention, we set wuv = 0
if the vertices are not connected by an edge of E.

Let H(V ) be the Hilbert space of real-valued functions on the vertices of
a graph G = (V, E, w), with V = {v1, . . . , vN}. Each function f ∈ H(V ),
f : V → R, assigns a vector f(vi) to each vertex vi ∈ V . The function f
forms a finite N -dimensional space. It can be thought as a column vector
f = [f(v1), . . . , f(vN)]T . By analogy with functional analysis in continuous
spaces, the integration of f over the graph, is noted

∫

V f =
∑

V f . Similarly,
let H(E) be the Hilbert space of real-valued functions F : E → R, defined on
the edges of the graph. These two spaces are endowed with the usual inner
products:

〈f, g〉H(V ) =
∑

u∈V

f(u)g(u), 〈F, G〉H(E) =
∑

u∈V

∑

v∼u

F (uv)G(uv),

where f, g : V → R and F, G : E → R.
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2.2 Discrete difference, derivative and adjoint

The difference operator of a function f : V → R, noted d : H(V ) → H(E), is
defined on an edge uv ∈ E by:

(df)(uv) =
f(v) − f(u)

µw(u, v)
,

where µ : V × V → R+ is a similarity measure which depends on the weight
function w. In the sequel, we restrict ourselves to µw(u, v) = 1/

√
wuv. This

implies the following definition of the difference operator:

(df)(uv) =
√

wuv(f(v) − f(u)) (2)

The directional derivative of the function f , at a vertex u, and over an edge
uv, is defined to be:

∂vf(u) = (df)(uv) =
√

wuv(f(v) − f(u)). (3)

The difference operator and the directional derivative are antisymmetric, i.e.
(df)(uv) = −(df)(vu). They also share the following property with the con-
tinuous definition of the derivative of function defined in the Euclidean space:

f(u) = f(v) ⇒ (df)(uv) = 0. (4)

The adjoint operator of the difference operator, noted d∗ : H(E) → H(V ), is
defined by:

〈df, H〉H(E) = 〈f, d∗H〉H(V ), ∀f ∈ H(V ), H ∈ H(E). (5)

Then, from the expressions of the inner products in H(E) and H(V ), one can
deduce the expression of the adjoint operator at a vertex u ∈ V :

(d∗H)(u) =
∑

v∈V

√
wuv(H(vu) − H(uv)). (6)

The adjoint is a linear operator which measures the flow of H over the graph.
By analogy with continuous differential operators, the divergence operator of
the function H is defined as divH = −d∗H . Then, one can show that any
function H ∈ H(E) has a null flow (divergence theorem):

∑

u∈V

(divH)(u) =
∑

u∈V

∑

v∈V

√
wuv(H(uv)− H(vu)) = 0. (7)

Remark. There exists other expressions of the difference operator, depend-
ing on the context. For example, the difference operator defined in [35, 36] is
formulated as:

(df)(uv) =

√

wuv

δv
f(v) −

√

wuv

δu
f(u),
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where δu =
∑

v∼u wuv is the degree of the vertex u in the graph. One can note
that this formulation does not respect the property (4). Moreover, its adjoint
operator does not satisfy the divergence theorem (Eq. (7)).

2.3 Gradient operator and local variations

The gradient operator of a function f : V → R, at a vertex u ∈ V , is the
vector operator defined by:

∇wf(u) =
(

∂vf(u) : v ∼ u
)T

=
(

∂v1
f(u), . . . , ∂vk

f(u)
)T

,

where v1, . . . , vk are the neighbors of the vertex u.

The local variation of the function f measures its regularity in the neighbor-
hood of a vertex. Several norms of ∇wf(u) can be used. In this paper, we
propose to use the L2-norm:

|∇wf(u)|2 =

(

∑

v∼u

(∂vf(u))2

)
1

2

=

(

∑

v∼u

wuv(f(v) − f(u))2

)
1

2

, (8)

and more generally the Lp-norm:

|∇wf(u)|p =

(

∑

v∼u

|∂vf(u)|p
)

1

p

=

(

∑

v∼u

w
p
2
uv|f(v) − f(u)|p

)
1

p

. (9)

The Lp-norm of the local variation is a seminorm for p ≥ 1, and it is not a
norm for p < 1.

When the set of vertices V represents a set of organized data, such as digital
images or meshes, the initial organization, which is a graph by nature, traduces
local interactions between the data. On this initial graph, the gradient operator
involves these local interactions. A gradient operator, which involves nonlocal
interactions, can be obtained by constructing neighborhood graphs from the
initial organization. One can remark that in both cases, the expression of the
local variation is the same. However, due to the fact that wuv = 0 if uv 1∈ E,
a totally nonlocal expression of the local variation can be written as :

|2NL
w f(u)|p =

(

∑

v∈V

|∂vf(u)|p
)

1

p

=

(

∑

v∈V

w
p
2
uv|f(v) − f(u)|p

)
1

p

. (10)
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2.4 Anisotropic p-Laplace operator

The anisotropic p-Laplace operator ∆p
w : H(V ) → H(V ), of a function f :

V → R, is defined using the difference operator:

∆p
wf = 1

2d
∗
(

|df |p−2df
)

(11)

Its expression, at a vertex u ∈ V , is given by:

∆p
wf(u)= 1

2

∑

v∼u

√
wuv

(

|(df)(vu)|p−2(df)(vu)− |(df)(uv)|p−2(df)(uv)
)

=
∑

v∼u

√
wuv

(

|(df)(vu)|p−2(df)(vu)
)

=
∑

v∼u

w
p
2
uv|f(u) − f(v)|p−2(f(u) − f(v)). (12)

Two specific cases of the anisotropic p-Laplace operator are given for p = 1
and p = 2. When p = 1, an interesting rewriting of Eq. (12) is given by:

∆1
wf(u) =

∑

v∼u

√
wuvsign(f(u) − f(v)). (13)

When p = 2, ∆2
wf = ∆wf = 1

2d
∗(df), which the definition of the combinatorial

(isotropic) graph Laplacian. In this case, Eq. (12) becomes:

∆wf(u) =
∑

v∼u

wuv(f(u) − f(v)). (14)

In order to avoid numerical instabilities when p < 2, the anisotropic p-Laplace
operator is regularized as:

∆p,ε
w f(u) =

∑

v∼u

w
p
2
uv (|f(u) − f(v)| + ε)p−2 (f(u) − f(v)), (15)

where ε > 0 is fixed constant.

Remark. There exists much more discrete expressions of the isotropic p-
Laplace operator, defined as ∆p

wf = 1
2d

∗
(

|2w f |p−2
2 df

)

. Using the difference
operator and its adjoint of Section 2.2, the expression of the isotropic p-Laplace
operator is given by:

∆p
wf(u) =

∑

v∼u

wuv(|2w f(u)|p−2
2 + |2w f(v)|p−2

2 )(f(u) − f(v)).

See [10] for more details.
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3 Discrete anisotropic regularization framework

Let G = (V, E, w) be a weighted graph, and let f 0 : V → R be a function
of H(V ). To regularize f 0, we propose to consider the following variational
problem:

min
f∈H(V )

{

Ew(f, f 0,λ, p) = Rw(f, p) + λ
2‖f − f 0‖2

2

}

, (16)

where Rw(f, p) is the anisotropic p-TV functional defined as:

Rw(f, p) = 1
2p

∑

u∈V

|∇wf(u)|pp, p ∈]0, +∞[

= 1
2p

∑

u∈V

∑

v∼u

w
p
2
uv|f(v) − f(u)|p.

(17)

For p ≥ 1, both functionals in the minimizer (16) are convex, and the solution
of the minimization is unique. This is not the case when p < 1, for which
the regularization functional Rw(f, p) is not convex, and the uniqueness of
the minimization solution is not insured. However, this case is also considered
in the following, in order to analyze the behavior of the associated diffusion
processes beyond the usual bound p = 1, which have been very few investigated
by researchers (see Section 5 and Section 6).

In particular, when p = 1, the regularization functional is the anisotropic total
variation of a function f : V → R:

Rw(f, 1) = 1
2

∑

u∈V

|∇wf(u)|1 = 1
2

∑

u∈V

∑

v∼u

√
wuv|f(v) − f(u)|. (18)

When p = 2, Rw(f, 2) is the classical (isotropic) regularization functional:

Rw(f, 2) = 1
4

∑

u∈V

|∇wf(u)|22 = 1
4

∑

u∈V

∑

v∼u

wuv(f(v) − f(u))2, (19)

and the minimization of Ew(f, f 0,λ, 2) is the Tikhonov regularization of the
function f 0 on a weighted graph.

Remark. The anisotropic regularization functional Rw(f, p) is the discrete
weighted transcription of the continuous regularization functional of a real-
valued function f : Ω ⊂ Rm → R, defined on a bounded domain Ω of the
m-dimensional Euclidean space:

J(f, p) =
∫

Ω
|2 f |ppdx.

One can note that the resolution of the discrete minimization problem does not
require specific boundary conditions. They are naturally encoded by the graph
structure.
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To establish the solution of the minimization problem (16), on can solve the
following system of equations:

∂

∂f
Ew(f, f 0,λ, p)

∣

∣

∣

∣

∣

f(u)

=
∂

∂f
Rw(f, p)

∣

∣

∣

∣

∣

f(u)

+ λ((f(u) − f 0(u)) = 0, ∀u ∈ V.

Then, if this system has a solution, it is the unique solution of the mini-
mizer (16), for p ≥ 1.

Property 1 ∂
∂f Rw(f, p)

∣

∣

∣

f(u)
= ∆p

wf(u).

PROOF. Let u1 be a vertex of V . The u1-th term of the partial derivative
of Rw(f, p) is given by:

∂

∂f
Rw(f, p)

∣

∣

∣

∣

∣

f(u1)

(17)
=

∂

∂f

(

1

2p

∑

u∈V

∑

v∼u

w
p
2
uv|f(v) − f(u)|p

)∣

∣

∣

∣

∣

f(u1)

.

The partial derivative depends only on the edges incident to u1 . Let v1, . . . , vk

be the vertices of V connected to u1 by an edge of E. Then, using the chain
rule, we have:

2
∂Rw(f, p)

∂f

∣

∣

∣

∣

∣

f(u1)

= −
∑

v∼u1

w
p
2
u1v (f(v) − f(u1)) |f(v) − f(u1)|p−2

+ w
p
2
u1v1(f(u1) − f(v1))|f(u1) − f(v1)|p−2

+ . . . + w
p
2
u1vk(f(u1) − f(vk))|f(u1) − f(vk)|p−2

=2
∑

v∼u1

w
p
2
u1v(f(u1) − f(v))|f(u1) − f(v)|p−2

(12)
= 2∆p

wf(u1). !

Based on Property 1, the solution becomes:

∆p
wf(u) + λ(f(u) − f 0(u)) = 0, ∀u ∈ V. (20)

This latter equation can be considered as the discrete Euler-Lagrange equation
associated to the minimization problem (16). Contrary to the continuous case,
it does not involve any PDE. By replacing the expression of the anisotropic
p-Laplace operator ∆p

w in the system (20), we obtain the following nonlinear
system:

∑

v∼u

w
p
2
uv|f(u) − f(v)|p−2(f(u) − f(v)) + λ(f(u) − f 0(u)) = 0, ∀u ∈ V. (21)

Several methods can be used to solve this system. In particular, for p = 1,
commonly used methods are based on graph cut techniques [11, 17]. In the
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sequel, we propose to use two simple methods to approximate the solution of
the system (21). These methods leads to semi-discrete and discrete diffusion
processes.

Semi-Discrete Diffusion process. The first method, considered in this pa-
per, is the infinitesimal steepest descent method:











f (0) = f 0

d

dt
f (t)(u) = −∆p

wf(u) + λ(f (0)(u) − f(u)), ∀u ∈ V,
(22)

where f (t) is the parametrization of the function f by an artificial time. This
is a system of ordinary differential equations. Contrary to PDEs methods, no
space discretization is necessary. Its solution can be efficiently approximated
by local iterative methods, such as the Euler method, given by:























f (0) = f 0

∆ =
∑

v∼u

wp/2
uv (|f (t)(u) − f (t)(v)| + ε)p−2(f (t)(v) − f (t)(u))

f (t+1)(u) = f (t)(u) + τ(∆ + λ(f 0(u) − f (t)(u)))

(23)

In order to satisfy the minimization problem, the stopping criterion, of the
above diffusion process, is a convergence condition. Meanwhile a fixed total
number of iterations corresponds to an anisotropic semi-discrete diffusion pro-
cess. When p = 1, an interesting expression of an iteration of the process (23)
(lines 4 and 5) is given by:

f (t+1)(u) = f (t) + τ

(

∑

v∼u

√
wuvsign(f (t)(v) − f (t)(u)) + λ(f 0(u) − f (t)(u))

)

.

This allows to avoid the use of the regularized anisotropic 1-Laplace opera-
tor ∆p,ε

w . When p = 2, the diffusion process is the classical linear isotropic
geometric diffusion based on the combinatorial Laplace operator [16]. In this
case, an iteration of the process (23) is rewritten as:

f (t+1)(u) = f (t) + τ

(

∑

v∼u

wuv(f
(t)(v) − f (t)(u)) + λ(f 0(u) − f (t)(u))

)

.

The behavior of diffusion process (23) is illustrated, for several values of p ≤ 2
and graph structures (topologies and weight functions), in the context of image
filtering and simplification (see Section 5).

Discrete diffusion process. To approximate the solution of the minimiza-
tion problem (16), another method is to linearize the system of equations (21),
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which can be rewritten as:

(21) ⇔ f(u) =
λf 0(u) +

∑

v∼u w
p
2
uv(|f(u) − f(v)| + ε)p−2f(v)

λ +
∑

v∼u w
p
2
uv(|f(u) − f(v)| + ε)p−2

, ∀u ∈ V.

Using the linearized Gauss-Jacobi method, the solution of this system is sum-
marized by the following iterative algorithm:



























f (0) = f 0

γuv(f
(t)) = w

p
2
uv(|f (t)(u) − f (t)(v)| + ε)p−2

f (t+1) =
λf 0(u) +

∑

v∼u γuv(f (t))f (t)(v)

λ +
∑

v∼u γuv(f (t))
, ∀u ∈ V.

(24)

Let ϕ be the function defined by:

ϕuv(f) =
γuv(f)

λ +
∑

v∼u γuv(f)
, if u 1= v, or ϕuu(f) =

λ

λ +
∑

v∼u γuv(f)
.

Then, the diffusion process (24) is rewritten as:











f (0) = f 0

f (t+1)(u) = ϕuu(f
(t))f 0(u) +

∑

v∼u

ϕuv(f
(t))f (t)(v). (25)

At each iteration of this adaptive process, the new value f (t+1) , at a vertex u,
depends on two quantities: the original value f 0(u), and a weighted average of
the existing values in a neighborhood of u. Since ϕuu(f) +

∑

v∼u ϕuv(f) = 1,
this diffusion process is a forced low-pass filter. Through the values of the reg-
ularization parameter p, it describes a family of iterative filters. In particular,
when p = 2, γuv(f) reduces to wuv, and the above discrete diffusion process
corresponds to the one proposed in [9,10,24], in the context of isotropic regu-
larization. The behavior of the diffusion process (24) is illustrated in Section 6,
for several values of p and graph structures, in the context of semi-supervised
image segmentation.

4 Nonlocal regularization of discrete data and related works

The regularization framework, proposed in the previous section, can be used
to process any set of discrete data or function defined on these data. The data
can be organized or not. Let V = {v1, . . . , vN} be a finite set of data, such
that each data vi is a vector in a given metric space. To regularize V , or a
function f 0 : V → R, the first step is to construct a graph G = (V, E, w). The
edges of E can express different kind of interactions. A particular case consists
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in generating the complete graph, where E = V × V \ {uu, u ∈ V }. In this
case, the anisotropic regularization functional Rw(f, p) (Eq. (17)) takes into
account nonlocal interactions:

Rw(f, p) = 1
2p

∑

v∈V

∑

v∈V

w
p
2
uv|f(v) − f(u)|p. (26)

One can remark that this last expression is always true, whatever the structure
of the graph is. This due to the fact that, by definition, wuv = 0 if the vertex u
is not connected to the vertex v by an edge of E. This shows that local
and nonlocal regularizations have exactly the same expression when they are
performed on graphs.

The nonlocal functional (26) is the discrete analogue of the continuous nonlocal
functional of functions f : Ω ⊂ Rm → R, defined in a bounded domain Ω of
the Euclidean space:

Jw(f, p) = 1
2p

∫

Ω×Ω
w

p
2
xy|f(y)− f(x)|pdydx.

When p = 1, Eq. (26) is the discrete analogue of the nonlocal anisotropic
functional based on differences, and proposed by Gilboa and Osher [20]:

Jw(f, 1) = 1
2

∫

Ω×Ω

√
wxy|f(y) − f(x)|dydx.

When p = 2 , Eq. (26) is the discrete analogue of the nonlocal isotropic
functional proposed in [19, 22]:

Jw(f, 2) = 1
4

∫

Ω×Ω
wxy(f(y) − f(x))2dydx.

This last functional is the variational interpretation of a family of neighbor-
hood filters, widely used in image processing, such as the nonlocal means
filter [13].

One can remark that one iteration of the discrete diffusion process (24), for p =
2, λ = 0 and specific weight functions, corresponds to well-known filters. In
particular, we can retrieve the bilateral filter [30,31] using the following weight
function:

wuv = exp

(

−‖u − v‖2

σ2
V

)

exp



−‖f 0(v) − f 0(u)‖2

σ2
H(V )



 , (27)

where σV and σH(V ) are the variances respectively in the discrete domain V
and in the space of functions H(V ). Similarly, the expression of the nonlocal
means filter [13] is given using the weight function:

wuv = exp

(

−ρ(Ff0(v), Ff0(u))

h2

)

, (28)
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where Ff0(u) is a feature vector associated to the vertex u ∈ V , which is
generally a patch of vertices, centered at u. The function ρ measures the
distance between the two feature vectors. With these two weight functions,
the anisotropic regularization framework behaves like an iterated bilateral
filter or an iterated nonlocal means filter, without updating the weights at
each iteration of the diffusion processes.

When λ = 0, and for p = 1 and p = 2, our regularization functional corre-
sponds to the functional used in spectral graph analysis, recently proposed in
the context of semi-supervised image segmentation. When p = 1, the mini-
mization problem is solved with graph cut techniques, and when p = 2 with
random walks approaches [16, 29].

5 Image filtering and simplification

In this section, the behavior of the proposed anisotropic regularization frame-
work is illustrated in the context of image filtering and simplification, for p ≤ 2
and several graph topologies. An image I : Ω ⊂ Z2 → R is modelized by a
neighborhood graph G = (V, E, w) and a function f 0 : V → R. To each pixel
(i, j) of the discrete domain Ω corresponds a vertex u = (i, j) of V . The set E
of edges is generated using the nearest neighbors of the vertices, based on
the Chebyshev distance. Let u = (i, j) be a vertex of V , its neighborhood is
defined by:

Nk(u) = {v = (i′, j′) ∈ V \ {u} : max{|i − i′|, |j − j′|} ≤ k, k > 0}.

Then the edge uv is in Gk iff v ∈ Nk(u) (and reciprocally). G1 is the 8-
adjacency graph, and the complete graph is noted G∞.

To regularize the image I (the function f 0), we use the semi-discrete diffusion
process. In our experiments, we found that using p ≤ 1, with a local or a
nonlocal representation of the image, helps to preserve sharp edges during the
regularization. This behavior is illustrated in Figure 1 on an unweighted graph
of 8-adjacency (G1). The results are given for two different values of λ. One
can observe the difference between the isotropic regularization with p = 2, and
the anisotropic regularization with p ≤ 1. The anisotropic case behaves like
a simplification procedure, in which the image discontinuities are more well-
preserved. This is also the case when the graph is weighted (see Figure 2), or
when it is generated from larger neighborhoods (see Figure 3). In the nonlo-
cal scheme, the main textures are also preserved. The local case, which can
be computed efficiently, may be used in simplification and segmentation pro-
cesses.
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f0 : V → R p = 1, λ = 0.1 p = 0.5, λ = 0.1

p = 2, λ = 0.0001 p = 1, λ = 0.0001 p = 0.5, λ = 0.0001

Fig. 1. Regularization of an image, on a 8-adjacency unweighted graph (G1).

p = 2, λ = 0.0001 p = 1, λ = 0.0001 p = 0.5, λ = 0.0001

Fig. 2. Regularization of an image, on a 8-adjacency graph (G1), weighted by the
function of Eq. (27).

6 Semi-supervised Classification

Recent approaches based diffusion processes show the efficiency of label prop-
agation to achieve manifold semi-supervised classification as in [36], [6], which
use the p-Laplacian diffusion regularization. More recently [29] uses approaches
based on the Lp norm to solve image segmentation problem. In this section, we
use our discrete anisotropic regularization framework to address this learning
problem for image semi-supervised segmentation and data clustering.
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p = 2, λ = 0.0001 p = 1, λ = 0.0001 p = 0.5, λ = 0.0001

Fig. 3. Regularization of an image, on a the graph (G4), weighted by the function
of Eq. (28), with a patch of size 5 × 5 as a feature vector.

6.1 Problem Formulation

Let V = {v1, . . . vn} be a finite set of data, where each data vi is a vector
of Rm. Let G = (V, E, w) be a weighted graph such that data are connected
by an edge of E. The semi-supervised classification of the set V consists in
classify the set V into k classes where the number of k classes is given. For
this, the set V is composed of labeled and unlabeled data. The objective is to
estimate the unlabeled data from labeled ones.

Let ci be the set of vertices which belong to the ith class. The set C =
{ci}i=1,...,k is the initial set of labeled data, and the initial unlabeled data be-
long to the set V \C. This is equivalent to consider k label functions f 0

i : V → R

such as

f 0
i (v) =















+1 if v ∈ ci with i ∈ [1, k], ∀c ∈ C

−1 otherwise

0 v ∈ V \ C

(29)

where each f 0
i , with i = 1, . . . , k, corresponds to a given class. Starting form

the labeled data (the f 0
i ’s), the classification is accomplished by k regulariza-

tion processes by estimating the resultant function fi : V → R.

Using our proposed anisotropic regularization framework, this is formalized as
follows:

min
fi∈H(V )

{

Rw(fi, p) + λ
2‖fi(v) − gi(v)‖2

2

}

, ∀i = 1, . . . , k.

We use the discrete diffusion process to compute each minimization. At the
end of the label propagation algorithm, one can estimate the class membership
probability, for all i ∈ 1, . . . , k, by:

p
(

ω = ci|f(v)
)

=
fi(v)

∑

i
fi(v)

,
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and assign to the vertex v the most plausible one by

c(v) = arg max
i

p
(

ω = ci|f(v)
)

. (30)

The following section shows the application of this classification problem to
image segmentation and data clustering.

6.2 Semi-supervised Image Segmentation and Data Classification

Image segmentation lies in searching relevant image regions or objects. Many
successful automatic image segmentation approaches have been proposed in
the literature. But, sometimes, their segmentation results are not accurate
when image are more complex. Recent interactive image segmentation ap-
proaches have became increasingly popular in the image processing commu-
nity. They reformulate image segmentation tasks into semi-supervised clas-
sification approaches. Thus, the segmentation is solved by label propagation
strategies. We propose to use our anisotropic regularization framework to ad-
dress the image semi-supervised task. Recently [29] similar approaches have
also been proposed.

Image semi-supervised segmentation consists in finding objects in images by
completing the user initial labels. Commonly, the user marks the desired ob-
jects to be segmented, or/and the image background. In the sequel, we directly
consider the raw images without any pre-processing.

Grid Graph Based Image Semi-Supervised Segmentation. Fig. 4 shows
the behavior of our anisotropic semi-supervised image segmentation based on
grid graphs. These experiments show segmentation results for different grid
graphs. Figs. 4(c), 4(d), 4(e) is a local semi-supervised segmentation using a
8-adjacency graph (G1). Figs. 4(f), 4(g), 4(h) correspond to nonlocal process-
ing with the graph G11, and the weight function (28), where Ff (v) = f(v).
Figs. 4(i), 4(j), 4(k) is also a nonlocal processing with the graph G11, and the
weight function (28), where Ff(v) is defined as a patch of size 5 × 5.

One can note that in the case of 8-adjacency graphs, we obtain a correct
segmentation of the object. When we use a larger searching window, the object
boundary are less smooth than in the local case, especially for the case where
p < 1. This effect is corrected by using patches as observed in the last row of
Fig. 4.

Fast Image Semi-Supervised Segmentation with Simplified Images.
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(a) Original Image (16 960
pixels)

(b) Original+labels

(c) p = 0.5, G3 (d) p = 1, G3 (e) p = 2, G3

(f) p = 0.5, G11 (g) p = 1, G11 (h) p = 2, G11

(i) p = 0.5, G11, patch 3×3 (j) p = 1, G11, patch 3 × 3 (k) p = 2, G11, patch 3× 3

Fig. 4. Grid graph based image semi-supervised segmentation. All the images were
whitened in order to accentuate the user labels and the segmented boundary. 4(a)
original image (16 960 pixels). 4(b) original image with user labels.

As in Fig. 4, common image semi-supervised segmentation are usually based
on a pixel label propagation scheme. Their application becomes difficult when
the image is of large size. To avoid this computing restriction, we can consider
that image pixels are not the only relevant elements. Then, more abstract
structures can be used for the segmentation process, such as image regions
or ”superpixels” [27]. We suggest to work, not directly with the image pixel
graph representation but, with a reduced version of the image. This simplifica-
tion can be thought as a graph simplification or a data reduction. To achieve
this image pre-pre-processing, any well known image pre-segmentation can be
performed such as watershed techniques. In this work, this simplification is
performed by an approach based on generalized Voronöı diagram [3] and [9].
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Fig. 5(b) shows the image simplification of the image of Fig. 4(a). One can
note that the approach respect the main image components, notably the edge
information (see the energy image Fig. 5(a)). Meanwhile, the data are signifi-
cantly reduced. Fig. 5 shows the semi-supervised segmentation accomplished
with a simplified version of the image Fig. 4(a). Fig. 5(b) is the simplified
mosaic image with a mean color value for each zone from the original one.
Fig. 5(c) is the mosaic image with the initial labeled zones. Figs. 5(d), 5(e)
and 5(f) are the obtained final segmentation with several values of p. In this
experiment, the initial conditions are the same as in Fig. 4, for the param-
eter λ and the weight function. We use the Region Adjacency Graph as the
graph representation of the mosaic image, where each vertex corresponds to
an image zone.

The benefits of using a simplified version of the image provides a fast seg-
mentation scheme due to the reduced number of data to be analyze. Hence a
minimal number of iterations is needed to obtain a correct segmentation.

(a) (b) (1 927 zones) (c) Mosaic image+labels

(d) p = 0.5 (e) p = 1 (f) p = 2

Fig. 5. Semi-supervised image segmentation based on the region adjacency graph of
the mosaic image. The images are whitened for accentuate the labels and the seg-
mented boundary. 5(a) energy image 5(b) mosaic image (1 927 zones) from Fig. 4(a)
(which contains 16 690 pixels) where each zone corresponds to the mean color model
of the original image. 5(c) mosaic image with the user label 5(d), 5(e), and 5(f) seg-
mentation results obtain with the corresponding p parameter.

Nonlocal Semi-Supervised Segmentation with Simplified Images. In
order to illustrate the natural nonlocal expression of our anisotropic regulation
framework, we perform the semi-supervised image segmentation on a fully con-
nected graph constructed from a simplified images. Fig. 6 shows examples of
this processing on color images. The graph is constructed from pre-segmented
images (mosaic images of Figs. 6(b), Fig. 6(e), and Fig. 6(h)). Each vertex v
corresponds to an influence zone which is described by its mean RGB color.
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This semi-supervised segmentation, provides a fast, simple, efficient and un-
common fully nonlocal image scheme as shown in Figs. 6(c) and 6(i). We can
quote the following interesting properties:

(1) The fully connected graph contains all the image data information on the
weighted edges.

(2) Only few labels, as shown in Figs. 6(a) and 6(g), are needed to obtain
a correct segmentation result. For instance, in Fig. 6(g), the user only
marks one nucleus and our fully nonlocal segmentation has found all the
others (see Fig. 6(i)).

(3) The fully connected graph extends the notion of proximity between two
vertices. They can be similar even if they are not spatially close or ad-
jacent. The diffusion process allows to quickly labeled the objects in the
same class even if they are not spatially adjacent, as shown in Figs. 6(g)
and 6(i).

(4) The regularization process only needs a minimal number of iterations
to compute a correct segmentation result. This approach provides a fast
segmentation strategy.

Semi-Supervised Discrete Data Classification. To illustrate the flexi-
bility of our anisotropic framework on non-organized data classification. Fig. 7
shows a classical example problem: the two moons. In this example the fully
connected graph is computed in order to connect all the data points to each
other. The initial data is composed of 99 unlabeled points in each class. Only
one label per class is placed as show in Fig. 7(a). Fig. 7(b) shows the obtained
result and the correctness of the classification.

7 Conclusion

In this paper, we have proposed a discrete anisotropic regularization frame-
work on arbitrary graphs, to filter and classify discrete data. The regularization
is based on the Lp-norm of the graph gradient. It leads to semi-discrete and dis-
crete anisotropic diffusion processes. When the data are naturally organized,
such as images, we show that local and nonlocal regularization functionals
have the same expression. We apply this framework to perform image and
data filtering and clustering. The main ongoing work is to use the proposed
anisotropic regularization functional in other discrete variational problems,
such as one involves in binary segmentation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Semi-supervised image segmentation. First column: original images with
user initial labels. (a) and (d) Two classes problem (foreground and background).
(g) Three classes problem (nuclei, cytoplasm, and background). Second column:
influence zones images. Third column: segmentation results.
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