
HAL Id: hal-00187069
https://hal.science/hal-00187069

Preprint submitted on 13 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Storage Tradeoffs in a Collaborative Backup Service for
Mobile Devices

Ludovic Courtès, Marc-Olivier Killijian, David Powell

To cite this version:
Ludovic Courtès, Marc-Olivier Killijian, David Powell. Storage Tradeoffs in a Collaborative Backup
Service for Mobile Devices. 2006. �hal-00187069�

https://hal.science/hal-00187069
https://hal.archives-ouvertes.fr


Storage Tradeoffs in a Collaborative Backup Service
for Mobile Devices†

Ludovic Courtès Marc-Olivier Killijian David Powell

first-name.last-name@laas.fr
LAAS-CNRS

7 avenue du Colonel Roche
31077 Toulouse cedex 4

France

Abstract

Mobile devices are increasingly relied on but are
used in contexts that put them at risk of physical dam-
age, loss or theft. We consider a fault-tolerance ap-
proach that exploits spontaneous interactions to imple-
ment a collaborative backup service. We define the con-
straints implied by the mobile environment,analyze how
they translate into the storage layer of such a backup
system and examine various design options. The paper
concludes with a presentation of our prototype imple-
mentation of the storage layer, an evaluation of the im-
pact of several compression methods,and directions for
future work.

1. Introduction
Embedded computers are becoming widely avail-

able, in various portable devices such as PDAs, digital
cameras, music players and laptops. Most of these de-
vices are now able to communicate using wireless net-
work technologies such as IEEE 802.11, Bluetooth, or
Zigbee. Users use such devices to capture more and
more data and are becoming increasingly dependent on
them. Backing up the data stored on these devices is of-
ten done in anad hocfashion: each protocol and/or appli-
cation has its own synchronization facilities that can be
used when a sister device, usually a desktop computer, is
reachable. However, newly created data may be held on
the mobile device for a long time before it can be copied.
This may be a serious issue since the contexts in which
mobile devices are used increase the risks of them being
lost, stolen or broken.

† This work was partially supported by the MoSAIC project (ACI
S&I, French national program for Security and Informatics; see
http://www.laas.fr/mosaic/) and the Hidenets project (EU-IST-
FP6-26979).

Our goal is to leverage the ubiquity of communicat-
ing mobile devices to implement acollaborativebackup
service. In such a system,devicesparticipating in the ser-
vice would be able to use other devices’storage to back
up their own data. Of course, each device would have to
contribute some of its own storage resources for others
to be able to benefit from the service.

Internet-based peer-to-peer systems paved the way
for such services. They showed that excess resources
available at the peer hosts could be leveraged to support
wide-scale resource sharing. Although the amount of
resources available on a mobile device is significantly
smaller than that of a desktop machine, we believe that
this is not a barrier to the creation of mobile peer-to-peer
services. They have also shown that wide-scale services
could be created without relying on any infrastructure
(other than the Internet itself), in a decentralized, self-ad-
ministered way. From a fault-tolerance viewpoint, peer-
to-peer systems provide a high diversity of nodes with
independent failure modes [13].

In a mobile context, we believe there are addition-
al reasons to use a collaborative service. For instance,
access to a cell phone communication infrastructure
(GPRS, UMTS, etc.) may be costly (especially for
non-productive data transmission “just” for the sake of
backup) while proximity communications are not (us-
ing 802.11, Bluetooth, etc.). Similarly, short-distance
communication technologies are often more efficient
than long-distance ones: they offer a higher through-
put and often require less energy. In some scenarios,
infrastructure-based networks are simply not available
but neighboring devices might be accessible using
single-hop communications, or byad hocrouting.

Our target service raises a number of interesting is-
sues, in particular relating to trust management, resource
accounting and cooperation incentives. It raises novel is-
sues due to, for instance, mostly-disconnected operation
and the consequent difficulty of resorting to centralized

http://www.laas.fr/mosaic/


or on-line solutions. A preliminary analysis of these is-
sues may be found in [6,14]. In this paper, the focus is on
the mechanisms employed at the storage layer of such a
service. We investigate the various design options at this
layer and discuss potential trade-offs.

In Section 2, we will detail the requirements of the
cooperative backup service on the underlying storage
layer. Section 3 presents several design options for this
layer based on the current literature and the particular
needs that arise from the kind of devices we target. In
Section 4, using a prototype of this storage layer, we will
evaluate some storage layer algorithms and discuss the
necessary tradeoffs. Finally, we will conclude on our
current work and sketch future research directions.

2. Collaborative Backup for Mobile
Devices
This section gives an overview of the service envis-

aged and related work. Then we describe the require-
ments we have identified for the storage layer of the
service.

2.1. Design Overview and Related Work

Our goal is to design and implement a collaborative
backup system for communicating mobile devices. In
this model, mobile devices can play the role of acon-
tributor, i.e., a device that offers its storage resources to
store data on behalf of other nodes, and adata owner,
i.e.,a mobile device asking a contributor to store some of
its data on its behalf. Practically, nodes are expected to
contribute as much as they benefit from the system; there-
fore, they should play both roles at the same time.

For the service to effectively leverage the availabil-
ity of neighboring communicating devices, the service
has to be functional even in the presence ofmutually sus-
picious device users. We want users with no prior trust re-
lationships to be able to use the service and to contribute
to it harmlessly. This is in contrast with traditional habits
where users usually back up their mobile devices’ data
only on machines they trust, such as their workstation.

This goal also contrasts with previous work on col-
laborative backup for a personal area network (PAN),
such as FlashBack [19], where participating devices are
all trustworthy since they belong to the same user. How-
ever, censorship-resistant peer-to-peer file sharing sys-
tems such as GNUnet [2] have a similar approach to se-
curity in the presence of adversaries.

Recently, a large amount of research has gone into
the design and implementation of Internet-based peer-
to-peer backup systems that do not assume prior trust re-
lationships among participants [1,7,9]. There is, howev-
er, a significant difference between those Internet-based

systems and what we envision:connectivity. Although
these Internet-based collaborative backup systemsare de-
signed to tolerate disconnections, they do assume a high-
level of connectivity. Disconnections are assumed to be
mostly transient, whether they be non-malicious (a peer
goes off-line for a few days or crashes) or malicious (a
peer purposefully disconnects in order to try to benefit
from the system without actually contributing to it).

In the context of mobile devices interacting spon-
taneously, connections are by definition short-lived, un-
predictable, and very variable in bandwidth and reliabil-
ity. Worse than that, a pair of peers may have a chance
encounter and start exchanging data, and then never
meet again.

To tackle this issue, we assume that each mobile de-
vice can at leastintermittentlyaccess the Internet. The
backup software running in those mobile devices is ex-
pected to take advantage of such an opportunity by re-
establishing contacts with (proxies of) mobile devices en-
countered earlier. For instance, a contributor may wish
to send data stored on behalf of another node to some
sort of repositoryassociated with the owner of the data.
Contributors can thus asynchronouslypushdata back to
their owners. The repository itself can be implemented
in variousways: an emailmailbox,an FTP server,a fixed
peer-to-peer storage system, etc. Likewise, data owners
may sometimes need to query their repository as soon as
they can access the Internet in order topull back (i.e., re-
store) their data.

In the remainder of this paper, we will focus on the
design of the storage layer of this service on both the
data owner and contributor sides.

2.2. Requirements of the Storage Layer

We have identified the following requirements for
the mechanisms employed at the storage layer.

Storage efficiency.Backing up data should be as
efficient as possible. Data owners should neither ask
contributors to store more data than necessary nor send
excessive data over the wireless interface. Failing to do
so will waste energy and result in inefficient utilization
of the storage resources available in the node’s vicinity.
Inefficient storage may have a strong impact on energy
consumption since (i) storage costs translate into trans-
mission costs and (ii) energy consumption on mobile
devices is dominated by wireless communication costs,
which in turn increase as more data are transferred [28].
Compression techniquesare thus a key aspect of the stor-
age layer on the data owner side.

Small data blocks. Both the occurrence of encoun-
ters of a peer within radio range and the lifetime of the
resulting connections are unpredictable. Consequently,
the backup application running on a data owner’s device



must be able to conveniently split the data to be backed
up into small pieces to ensure that it can actually be trans-
ferred to contributors. Ideally, data blocks should be
able to fit within the underlying network layer’s maxi-
mum transmission unit or MTU (2304 octets for IEEE
802.11); larger payloads get fragmented into several
packets, which introduces overhead at the MAC layer,
and possibly at the transport layer too.

Backup atomicity. Unpredictability and the poten-
tially short lifetime of connections, compounded with
the possible use of differential compression to save stor-
age resources, mean that it is unlikely to be practical to
store a set of files, or even one complete file, on a single
peer. Indeed, it may even be undesirable to do so in order
to protect data confidentiality [8].Furthermore, it may be
the case that files are modified before their previous ver-
sion has been completely backed up.

The dissemination of data chunks as well as the
coexistence of several versions of a file must not affect
backup consistency as perceived by the end-user: a file
should be either retrievableand correct, or unavailable.
Likewise, the distributed store that consists of various
contributors shall remain in a “legal” state after new data
are backed up onto it. This corresponds to theatomicity
andconsistencyproperties of the ACID properties com-
monly referred to in transactional database management
systems.

Error detection. Accidental modifications of the
data are assumed to be handled by the various lower-lev-
el software and hardware components involved, such as
the communication protocol stack, the storage devices
themselves, the operating system’sfile system implemen-
tation, etc. However, given that data owners are to hand
their data to untrusted peers, the storage layer must pro-
vide mechanisms to ensure thatmaliciousmodifications
to their data are detected with a high probability.

Encryption. Due to the lack of trust in contribu-
tors, data owners may wish to encrypt their data to en-
sure privacy. While there exist scenarios where there is
sufficient trust among the participants such that encryp-
tion is not compulsory (e.g., several people in the same
working group), encryption is a requirement in the gener-
al case.

Backup redundancy. Redundancy is theraison
d’êtreof any data backup system, but when the system
is based on cooperation, the backups themselvesmust be
made redundant. First, the cooperative backup software
must account for the fact that contributorsmay crash acci-
dently. Second, contributor availability is unpredictable
in a mobile environment without continuous Internet ac-
cess. Third, contributors are not fully trusted and may
behave maliciously. Indeed, the literature on Internet-
based peer-to-peer backup systems describes a range of

attacks against data availability, ranging from data reten-
tion (i.e., a contributor purposefully refuses to allow a
data owner to retrieve its data) to selfishness (i.e., a partic-
ipant refuses to spend energy and storage resources stor-
ing data on behalf of other nodes) [7,9]. All these uncer-
tainties make redundancy even more critical in a cooper-
ative backup service for mobile devices.

3. Design Options for the Storage Layer
In this section, we present design options able to

satisfy each of the requirements identified for above.

3.1. Storage Efficiency

In wired distributed cooperative services, storage
efficiency is often addressed by ensuring that a given
content is only stored once. This property is known as
single-instance storage[4]. It can be thought of as a
form of compression among several data units. In a file
system, where the “data unit” is the file, this means that
a given content stored under different file names will be
stored only once. On Unix-like systems,revision control
and backup tools implement this property by using hard
links [20,25]. It may also be provided at a sub-file granu-
larity, instead of at a whole file level, allowing reduction
of unnecessary duplication with a finer-grain.

Archival systems [23,35], peer-to-peer file sharing
systems [2], peer-to-peer backup systems [7], network
file systems [22], and remote synchronization tools [31]
have been demonstrated to benefit from single-instance
storage, either by improving storage efficiency or reduc-
ing bandwidth.

Compression based on resemblance detection, i.e.,
differential compression, or delta encoding, is unsuit-
able for our environment since (i) it requires access to
all the files already stored, (ii) it is CPU- and memory-
intensive,and (iii) the resultingdelta chainsweaken data
availability [15,35].

Traditional lossless compression (i.e.,zip variants),
allows the elimination of duplicationwithin single files.
As such, it naturally complements inter-file and inter-ver-
sion compression techniques [35]. Section 4 contains a
discussion of the combination of both techniques in the
framework of our proposed backup service. Lossless
compressors usually yield better compression when op-
erating on large input streams [15] so compressing con-
catenated files rather than individual files improves stor-
age efficiency [35]. However,we did not consider this ap-
proach suitable for mobile device backup since it may be
more efficient to backup only those files (or part of files)
that have changed.

There exist a number of application-specific com-
pression algorithms,such as thelosslessalgorithms used



by the FLAC audio codec, the PNG image format, and
the XMill XML compressor [17].There isalso a plethora
of lossycompression algorithms for audio samples, im-
ages, videos, etc. While using such application-specific
algorithms might be beneficial in some cases, we have
focused instead on generic lossless compression.

3.2. Small Data Blocks
We now consider the options available to: (1) chop

input streams into small blocks, and (2) create appropri-
ate meta-data describing how those data blocks should
be reassembled to produce the original stream.

3.2.1. Chopping Algorithms

As stated in Section 2.2, the size of blocks that are
to be sent to contributors of the backup service has to be
bounded, and preferably small, to match the nature of
peer interactions in a mobile environment. There are sev-
eral ways to cut input streams into blocks. Which algo-
rithm is chosen has an impact on the improvement yield-
ed by single-instance storage applied at the block level.

Splitting input streams into fixed-size blocks is a nat-
ural solution. When used in conjunction with a single-in-
stance storage mechanism, it has been shown to improve
the compression across files or across file versions [23].
Manber proposed an alternative content-based stream
chopping algorithm [21] that yields better duplication
detection across files, a technique sometimes referred to
ascontent-defined blocks[15].The algorithm determines
block boundaries by computing Rabin fingerprints on
a sliding window of the input streams. Thus, it only al-
lows the specification of anaverageblock size (assum-
ing random input). Various applications such as archival
systems [35], network file systems [22] and backup sys-
tems [7] benefit from this algorithm. Section 4 provides
a comparison of both algorithms.

3.2.2. Stream Meta-Data

Placement of stream meta-data.Stream meta-
data is information that describes which blocks com-
prise the stream and how they should be reassembled
to produce the original stream. Such meta-data can ei-
ther be embedded along with each data block or stored
separately. The main evaluation criteria of a meta-data
structure are read efficiency (e.g., algorithmic complex-
ity of stream retrieval, number of accesses needed) and
size (e.g., how the amount of meta-data grows compared
to data).

We suggest a more flexible approach whereby
stream meta-data (i.e., which blocks comprise a stream)
is separated both from file meta-data (i.e., file name, per-
missions, etc.) and the file content. This has several ad-
vantages. First, it allows a data block to be referenced

 

D0 D1

R0

 

D2 D3

R1

 

D4

Figure 1. A tree structure for stream meta-
data. Leaves represent data blocks while high-
er blocks are meta-data blocks.

multiple times and hence allows for single-instance stor-
age at the block level. Second, it promotesseparation
of concerns. For instance, file-level meta-data (e.g., file
path, modification time, permissions) may change with-
out having to modify the underlying data blocks, which
is important in scenarios where propagating such up-
dates would be next to impossible. Separating meta-
data and data also leaves the possibility of applying the
same “filters” (e.g., compression, encryption), or to use
similar redundancy techniques for both data and meta-
data blocks. This will be illustrated in Section 4. This ap-
proach is different from the one used in Hydra [34] but
not unlike that of OpenCM [27].

Indexing individual blocks. The separation of
data and meta-data means that there must be a way for
meta-data blocks to refer to data blocks: data blocks
must be indexed ornamed1. The block naming scheme
must fulfill several requirements. First, it must not be
based on non-backed-up user state which would be lost
during a crash. Most importantly, the block naming
scheme must guarantee thatname clashesamong the
blocks of a data owner cannot occur. In particular,block
IDs must remain valid in time so that a given block ID is
not wrongfully re-used when a device restarts the back-
up software after a crash. Given that data blocks will
be disseminated among several peers and will ultimately
migrate to their owner’s repository, blocks IDs should re-
main valid in space, that is, they should be independent
of contributor names. This property also allows forpre-
computationof block IDs and meta-data blocks: stream
chopping and indexing do not need to be done upon a
contributor encounter, but can be performeda priori,
once for all. This savesCPU time and energy,and allows
data owners to immediately take advantage of a backup
opportunity. A practical naming scheme widely used in
the literature will be discussed in Section 3.4.

Indexing sequences of blocks.Byte streams (file
contents) can be thought of as sequences of blocks.

1In the sequel we use the terms “block ID”, “name”, and “key” inter-
changeably.



Meta-data describing the list of blocks comprising a byte
stream need to be produced and stored. In their simplest
form, such meta-data are a vector of block IDs, or in oth-
er words,a byte stream. This means that this byte stream
can in turn be indexed, recursively,until a meta-data byte
stream is produced that fits the block size constraints.
This approach yields the meta-data structure shown in
Figure 1 which is comparable to that used by Venti and
GNUnet [2,23].

Contributor interface. With such a design,contrib-
utors do not need to know about the actual implementa-
tion of block and stream indexing used by their clients,
nor do they need to be aware of the data/meta-data dis-
tinction. All they need to do is to provide primitives of a
keyed block storage:

• put (key, data) inserts the data blockdata and
associates it withkey, a block ID chosen by the data
owner according to some naming scheme;

• get (key) returns the data associated withkey.

This simple interface suffices to implement, on the data
owner side, byte stream indexing and retrieval. Also, it
is suitable for an environment in which service providers
and users are mutually suspicious because it places as
little burden as possible on the contributor side. The
same approach was adopted by Venti [23] and by many
peer-to-peer systems [2,7].

3.3. Backup Atomicity

Distributed and mobile file systems such as Coda
[16] which support concurrent read-write access to the
data and do not have built-in support for revision control,
differ significantly from backup systems. Namely, they
are concerned about update propagation and reconcilia-
tion in the presence of concurrent updates. Not surpris-
ingly, a read-write approach does not adapt well to the
loosely connected scenarios we are targeting: data own-
ers are not guaranteed to meeteverycontributor storing
data on their behalf in a timely fashion, which makes
update propagation almost impossible. Additionally,
it does not offer the desired atomicity requirement dis-
cussed in Section 2.2.

Thewrite onceor append onlysemantics adopted
by archival [11,23], backup [7,25] and versioning sys-
tems [20,26,27] solve these problems. Data is always
appended to the storage system, and never modified in
place. This is achieved by assigning each piece of data
a unique identifier. Therefore, insertion of content (i.e.,
data blocks) into the storage mechanism (be it a peer ma-
chine, a local file system or data repository) is atomic.
Because data is only added, never modified, consistency
is also guaranteed: insertion of a block cannot result in
an inconsistent state of the storage mechanism.

A potential concern with this approach is its cost
in terms of storage resources. It has been argued, how-
ever, that the cost of storing subsequent revisions of
whole sets of files can be very low provided inter-ver-
sion compression techniques like those described earlier
are used [10,23,26]. In our case, once a contributor has
finally transferred data to their owner’s repository, it may
reclaim the corresponding storage resources, which fur-
ther limits the cost of this approach.

From an end-user viewpoint,being able to restore an
old copy of a file is more valuable than being unable to
restore the file at all. All these reasons make the write-
only approach suitable to the storage layer of our cooper-
ative backup service.

3.4. Error Detection
Error-detecting codes can be computed either at

the level of whole input streams or at the level of data
blocks. They must then be part of, respectively, the
stream meta-data, or the block meta-data. We argue the
case for cryptographic hash functions as a means of pro-
viding the required error detection and as a block-level
indexing scheme.

Cryptographic hash functions. The error-detect-
ing code we use must be able to detectmaliciousmodifi-
cations. Thismakeserror-detectingcodesdesigned to tol-
erate random, accidental faults inappropriate. We must
instead usecollision-resistantand preimage-resistant
hash functions, which are explicitly designed to detect
tampering [5].

Along with integrity,authenticityof the data must
also be guaranteed, otherwise a malicious contribu-
tor could deceive a data owner by producing fake data
blocks along with valid cryptographic hashes. Thus, dig-
ital signatures should be used to guarantee the authentici-
ty of the data blocks. Fortunately, not all blocks need to
be signed: signing a root meta-data block (as shown in
Figure 1) is sufficient. This is similar to the approach tak-
en by OpenCM [27]. Note, however, that while produc-
ing random data blocks and their hashes is easy, produc-
ing the corresponding meta-data blocks is next to impos-
sible without knowing what particular meta-data schema
is used by the data owner.

Content-based indexing.Collision-resistant hash
functions have been assumed to meet the requirements
of a data block naming scheme as defined in Section
3.2.2, and to be a tool allowing for efficient implemen-
tations of single-instance storage [7,22,23,29,31,35]. In
practice, these implementations assume that whenever
two data blocks yield the same cryptographic hash val-
ue, their contentsare identical. Given this assumption,
implementation of a single-instance store is straight-
forward: a block only needs to be stored if its hash val-



ue was not found in the locally maintained block hash
table.

In [12], Henson argues that accidental collisions, al-
though extremely rare, do have a slight negative impact
on software reliability and yield silent errors. Given an
n-bit hash output produced by one of the functions listed
above, the expected workload to generate a collision out
of two randominputs is of the order of 2n/2 [5]. More pre-
cisely, if we are to store, say, 8 GiBof data in the form of
1 KiB blocks, we end up with 243 blocks, whereas SHA-
1, for instance, would require 280 blocks to be generated
on average before an accidental collision occurs. We con-
sider this to be reasonable in our application since it does
not impede the tolerance of faults in any significant way.
Also,Henson’s fear ofmaliciouscollisionsdoesnot hold
given the preimage-resistance property provided by the
commonly-used hash functions2.

Content-addressable storage (CAS) thus seems a vi-
able option for our software layer as it fulfills both the
error-detection and data block naming requirements. In
[29], the authors assume a block ID space shared across
all CAS users and providers. In our scenario, CAS
providers (contributors) do not trust their clients (data
owners) so they need either to enforce the block naming
scheme (i.e., make sure that the ID of each block is in-
deed the hash value of its content), or to maintain a per-
user name space.

3.5. Encryption

Data encryption may be performed either at the lev-
el of individual blocks, or at the level of input streams.
Encrypting the input streambeforeit is split into smaller
blocks breaks the single-instance storage property at the
level of individual blocks. This is because encryption
aims to ensure that the encrypted output of two similar
input streams will not be correlated.

Leaving input streams unencrypted and encrypting
individual blocks yielded by the chopping algorithm
does not have this disadvantage. More precisely, it pre-
serves single-instance storage at the level of blocks at
leastlocally, i.e.,on the client side. If asymmetriccipher-
ing algorithms are used, the single-instance storage prop-
erty is no longer ensuredacrosspeers, since each peer
encrypts data with its own private key. However, we do
not consider this a major drawback for the majority of
scenarios considered where little or no data are common
to several participants. Moreover, solutions to this prob-
lem exist, notablyconvergent encryption[7].

2The recent attacks found on SHA-1by Wang et al. [33] do not affect
the preimage-resistance of this function.

3.6. Backup Redundancy

Replication strategies.Redundancy management
in the context of our collaborative backup service for
mobile devices introduces a number of new challenges.
Peer-to-peer file sharing systems are not a good source
of inspiration in this respect given that they rely on re-
dundancy primarily as a means of reducing access time
to popular content [24].

For the purposes of fault-tolerance, statically-de-
fined redundancy strategies have been used in Internet-
based scenarios where the set of servers responsible for
holding replicas is knowna priori, and where servers
are usually assumed to be reachable “most of the time”
[8,34]. Internet-based peer-to-peer backup systems [7,9]
have relaxed these assumptions. However,although they
take into account the fact that contributors may become
unreachable, strong connectivity assumptions are still
made: the inability to reach a contributor is assumed to
be the exception, rather than the rule. As a consequence,
unavailability of a contributor is quickly interpreted as a
symptom of malicious behavior [7,9].

The connectivity assumption does not hold in our
case. Additionally, unlike with Internet-based systems,
the very encounter of a contributor is unpredictable.
Thishasa strong impact on the possible replicationstrate-
gies, and on the techniques used to implement redun-
dancy.

Erasure codeshave been used as a means to tolerate
failures of storage sites while being more storage-effi-
cient than simple replication [34]. Usually, (n,k) erasure
codes are defined as follows [18,34]:

• an (n,k) code maps ak-symbol block to ann-symbol
codeword;

• k + ε symbols suffice to recover the exact original
data; the code isoptimalwhenε = 0;

• optimal (n,k) schemes tolerate the loss of (n - k) sym-
bols and have an effective storage use ofk/n.

Such an approach seems very attractive to improve stor-
age efficiency while still maximizing data availability.

However, as argued in [3,18,32], an (n,k) scheme
with k > 1can hinder data availability because it requires
k peers to be available for data to be retrieved, instead of
just 1 with mirroring (i.e., an (n,1) scheme). Also, given
the unpredictability of contributor encounters, a scheme
with k > 1 is risky since a data owner may fail to storek
symbols on different contributors. On the other hand,
from a confidentiality viewpoint, increasing dissemina-
tion and purposefully placing less thank symbols on any
given untrusted contributor may be a good strategy [8].
Intermediate solutions can also be imagined, e.g., mirror-
ing blocks that have never been replicated and choosing



k > 1 for blocks already mirrored at least once. This use
of different levels of dispersalwas also mentioned by
the authors of InterMemory [11] as a way to accommo-
date contradictory requirements. Finally, a dynamically
adaptive behavior of erasure coding may be considered
as [3] suggests.

Replica scheduling and dissemination.As stated
in Section 2.2, it is plausible that a file will be only part-
ly backed up when a newer version of this file enters the
backup creation pipeline. One could argue that the repli-
ca scheduler should finish distributing the data blocks
from the old version before distributing those of the new
version. This policy would guarantee, at least, availabili-
ty of the old version of the file. On the other hand, in cer-
tain scenarios, users might want to favor freshness over
availability, i.e., they might request that newer blocks are
scheduled first for replication.

This clearly illustrates that a wide range ofreplica
scheduling and dissemination policies and correspond-
ing algorithmscan be defended depending on the sce-
nario considered. At the core of a given replica schedul-
ing and dissemination algorithm is adispersal function
that decides on a level of dispersal for any given data
block. The algorithm must evolvedynamicallyto ac-
count for several changing factors. In FlashBack [19],
the authors identify a number of important factors that
they use to define adevice utility function. Those factors
include locality (i.e., the likelihood of encountering a
given device again later) as well aspower and storage
resourcesof the device.

In addition to those factors, our backup software
needs to account for the current level of trust in the con-
tributor at hand. If a data owner fully trusts a contribu-
tor, e.g., because it has proven to be well-behaved over a
given period of time, the data owner may choose to store
complete replicas (i.e., mirrors) on this contributor.

4. Preliminary Evaluation
This section presents our prototype implementation

of the storage layer of the envisaged backup system, as
well as a preliminary evaluation of key aspects.

4.1. Implementation Overview

We have implemented a prototype of the storage
layer discussed above, a basic building block of the co-
operative backup framework we are designing. This
layer is performance-critical and we implemented it in
C. The resulting library,libchop, consists of 7 K physi-
cal source lines of code. It was designed to be flexible
enough so that different techniques could be combined
and evaluated,by providinga few well-defined interfaces
as shown in Figure 2. The library itself is not concerned

zlib filter block indexer zlib filter

stream chopper stream indexer block store

Figure 2. Data flow in the libchop backup cre-
ation pipeline.

with the backup of file system-related meta-data such as
file paths, permissions, etc. Implementing this is left to
higher-level layers akin to OpenCM’s schemas [27].

Implementations of thechopper interface chop in-
put streams into small fixed-size blocks, or according to
Manber’s algorithm [21]. Block indexers name blocks
and store them in a keyed block store (e.g., an on-disk
database). Thestream_indexer interface provides a
method that iterates over the blocks yielded by the given
chopper, indexes them, produces corresponding meta-
data blocks, and stores them in a block store. In the pro-
posed cooperative backup service, chopping and index-
ing are to be performed on the data owner side, while the
block store itself will be realized by contributors. Final-
ly, libchop also providesfilters, such aszlibcompression
and decompression filters, which may be conveniently
reused in different places, for instance between a file-
based input stream and a chopper, or between a stream
indexer and a block store.

In the following experiments, the only stream index-
er used is a “tree indexer” as shown in Figure 1. We used
an on-disk block store that uses TDB as the underlying
database [30]. For each file set, we started with a new,
empty database.

4.2. Evaluation of Compression Techniques

Our implementation has allowed us to evaluate
more precisely some of the tradeoffs outlined in Section
3. After describing the methodology and workloads that
were used, we will comment the results obtained.

4.2.1. Methodology and Workloads

Methodology. The purpose of our evaluation is to
compare the various compression techniques described
earlier in order to better understand the tradeoffs that
must be made. We measured the storage efficiency and
computational cost of each method, both of which are
critical criteria for resource-constrained devices. The
measures were performed on a 500 MHz G4 Macintosh
running GNU/Linux (running them on, say, an ARM-
based mobile device would have resulted in lower
throughputs; however, since we are interested incompar-
ing throughputs, this would not make any significant dif-
ference).



Name Size Files Avg. Size

Lout (versions 3.20 to 3.29) 76 MiB 5853 13 KiB

Ogg Vorbis files 69 MiB 17 4 MiB

mbox-formatted mailbox 7 MiB 1 7 MiB

Figure 3. File sets.

We chose several workloads and compared the re-
sults obtained using different configurations. These file
sets, shown in Figure 3, qualify assemi-syntheticwork-
loads because they are actual workloads, although they
were not taken from a real mobile device. The motiva-
tion for this choice was to purposefully target specific
file classes. The idea is that the results should remain
valid for any file of these classes.

File sets. In Figure 3, the first file set contains 10
successive versions of the source code of the Lout doc-
ument formatting system, i.e., low-density, textual in-
put (C and Lout code), spread across a number of small
files. Of course, this type of data is not typical of mo-
bile devices like PDAs and cell phones. Nevertheless,
the results obtained with this workload should be sim-
ilar to those obtained with widely-used textual data for-
mat such as XML. The second file set shown in Figure 3
consists of 17 Ogg Vorbis files, a high-density binary for-
mat (Ogg Vorbis is a lossy audio compression format),
typical of the kind of data that may be found on devices
equipped with sampling peripherals. The third file set
consists of a single, large file: a mailbox in the Unix
mbox format which is an append-only textual format.
Such data are likely to be found in a similar form on com-
municating devices.

Configurations. Figure 4 shows the storage config-
urations we have used in our experiments. For each con-
figuration, it indicates whether single-instance storage
was provided, which chopping algorithm was used and
what the expected block size was, as well as whether the
input stream or output blocks were compressed using a
lossless stream compression algorithm (zlib in our case).
Our intent is not to evaluate the outcome of each algo-
rithm independently, but rather that of whole configura-
tions. Thus, instead of experimenting with every possi-
ble combination, we chose to retain only those that (i)
made sense from an algorithmic viewpoint and (ii) were
helpful in understanding the tradeoffs at hand.

ConfigurationsA1 andA2 serve as baselines for the
overall compression ratio and computational cost. Com-
paring them is also helpful in determining the computa-
tional cost due to single-instance storage alone. Subse-
quent configurations all chop input streams into small
blocks whose size fits our requirements (1 KiB, which
should yield packets slightly smaller than IEEE 802.11’s

Config. Single
Instance?

Chopping
Algo.

Expected
Block
Size

Input
Zipped?

Blocks
Zipped?

A1 no — — yes —

A2 yes — — yes —

B1 yes Manber’s 1024 B no no

B2 yes Manber’s 1024 B no yes

B3 yes fixed-size 1024 B no yes

C yes fixed-size 1024 B yes no

Figure 4. Description of the configurations ex-
perimented.

MTU); they all implement single-instance storage of the
blocks produced.

Common octet sequences are unlikely to be found
within a zlib-compressed stream, by definition. Hence,
zipping the input precludes advantages to be gained by
block-level single-instance storage afterwards. Thus,
we did not include a configuration where a zipped input
stream would then be passed to a chopper implementing
Manber’s algorithm.

TheB configurations favor sub-file single-instance
storage by not compressing the input before chopping it.
B2 improves overB1 by adding the benefits ofzlib com-
pression at the block-level. Conversely, configuration
C favors traditional lossless compression over sub-file
single-instance storage since it applies lossless compres-
sion to the input stream.

Our implementation of Manber’s algorithm uses a
sliding window of 48 B which was reported to provide
good results [22]. All configurations butA1 use single-in-
stance storage, realized using thelibchop “hash” block
indexer that uses SHA-1 hashes as unique block identi-
fiers. ForA1,a block indexer that systematicallyprovides
unique IDs (per RFC 4122) was chosen.

The chosen configurations and file sets are quite
similar to those described in [15,35], except that, as as
explained in Section 3.1, we do not evaluate the storage
efficiency of the delta encoding technique proposed
therein.

4.2.2. Results
Figure 5 shows the compression ratios obtained

for each configuration and each file set. The bars show
the ratio of the size of the resulting blocks,including
meta-data (sequences of SHA-1 hashes), to the size of
the input data, for each configuration and each data set.
The lines represent the corresponding throughputs.

Impact of the data type. Not suprisingly, the set
of Vorbis files defeats all the compression techniques.
Most configurations incur a slight storage overhead due
to the amount of meta-data generated.



Lout Ogg Vorbis mbox
re

su
lt
in

g
si
ze

(%
)

A1 A2 B1 B2 B3 C
0

20

40

60

80

100

120

configuration

0

4

8

12

16

20

24

28

th
ro

u
gh

p
u
t
(K

iB
/s

)

Figure 5. Storage efficiency and computational
cost of several configurations.

Impact of single-instance storage.Comparing the
results obtained forA1 andA2 shows benefits only in the
case of the successive source code distributions,where it
halves the amount of data stored (13 % vs. 26 %). This
is due to the fact that successive versions of the software
have a lot of files in common. Furthermore, it shows that
single-instance storage implemented using cryptograph-
ic hashes does not degrade throughput, which is the rea-
son why we chose to use it in all configurations.

As expected, single-instance storage applied at the
block-level is mainly beneficial for the Lout file set
where it achieves noticeable inter-version compression,
comparable with that produced withzlib in A1. The best
compression ratio overall is obtained withB2 where in-
dividual blocks arezlib-compressed. However, the com-
pression ratios obtained withB2 are comparable to those
obtained withC, and only slightly better in the Lout case
(11%vs. 13%).Thus,we conclude that there is little stor-
age efficiency improvement to be gained from the combi-
nation of single-instance storage and Manber’schopping
algorithm compared to traditional lossless compression,
especially when applied to the input stream.

The results in [35] are slightly more optimistic re-
garding the storage efficiency of a configuration simi-
lar to B2, which may be due to the use a smaller block
(512 B) and a larger file set.

Computational cost. Comparing the computation-
al costs of theB configurations with that ofC provides
an important indication as to which kind of configura-
tion suits our needs best. Indeed, input zipping and
fixed-size chopping inC yield a processing throughput
three times higher than that ofB2 (except for the set of
Vorbis files). Thus,C is the configuration that offers the
best tradeoff between computational cost and storage ef-
ficiency for low-entropy data.

Additional conclusions can be drawn with respect
to throughput. First, the cost ofzlib-based compression
appears to be reasonable, particularly when performed
on the input stream rather than on individual blocks, as
evidenced, e.g., byB3 andC. Second, the input data type
has a noticeable impact on the computational cost. In
particular, applying lossless compression is more costly
for the Vorbis files than for low-entropy data. Therefore,
it would be worthwhile to disablezlib compression for
compressed data types.

5. Conclusion and Future Work
In this paper, we have considered the viability of col-

laboration between peer mobile devices to implement a
cooperativebackupservice. We have identified six essen-
tial requirements for the storage layer of such a service,
namely: (i) storage efficiency; (ii) small data blocks; (iii)
backup atomicity; (iv) error detection; (v) encryption;
(vi) backup redundancy. The various design options for
meeting these requirements have been reviewed and a
preliminary evaluation carried out using a prototype im-
plementation of the storage layer.

Our evaluation has allowed us to assess different
storage techniques, both in terms of storage efficiency
and computational cost. We conclude that the most suit-
able combination for our purposes combines the use of
lossless input compression with fixed-size chopping and
single-instance storage. Other techniques were rejected
for providing little storage efficiency improvement com-
pared to their CPU cost.

Future work on the optimization of the storage layer
concerns several aspects. First, the energy costs of the
various design options need to be assessed, especially
those related to the wireless transmission of backup data
between nodes. Second, the performance and depend-
ability impacts of various replica scheduling and dissem-
ination strategies need to be evaluated as a function, for
example, of the expected frequencies of data updates,
cooperative backup opportunities and infrastructure con-
nections. Third, it seems likely that no single configura-
tion of the backup service will be appropriate for all situ-
ations, so dynamic adaptation of the service to suit differ-
ent contexts needs to be investigated.

Finally, the issues relating to trust management, re-
source accounting and cooperation incentives need to be
addressed, especially insomuch as the envisaged mode
of mostly-disconnected operation imposes additional
constraints. Current research in this direction, in collabo-
ration with our partners in the MoSAIC project, is direct-
ed at evaluatingmechanismssuch asmicroeconomicand
reputation-based incentives.



References
[1] C.BATTEN,K.BARR,A.SARAF, S.TREPTIN.pStore: A secure

peer-to-peer backup system. MIT-LCS-TM-632, MIT
Laboratory for Computer Science, December 2001.

[2] K. BENNETT, C. GROTHOFF, T. HOROZOV, I. PATRASCU. Effi-
cient Sharing of Encrypted Data.Proc. of the 7th Aus-
tralasian Conf. on Information Security and Privacy
(ACISP 2002), (2384)pp. 107–120, 2002.

[3] R. BHAGWAN, K. TATI, Y-C. CHENG, S. SAVAGE, G. M.
VOELKER. Total Recall: System Support for Automated
Availability Management.Proc. of the ACM/USENIX
NSDI, 2004.

[4] W.J.BOLOSKY, J.R.DOUCEUR, D.ELY, M.THEIMER.Feasibil-
ity of a Serverless Distributed File System Deployed on
an Existing Set of Desktop PCs.Proc. of the Int. Conf .
on Measurement and Modeling of Computer Systems, pp.
34–43, 2000.

[5] NESSIE CONSORTIUM. NESSIE Security Report.
NES/DOC/ENS/WP5/D20/2, February 2003.

[6] L. COURTÈS, M-O. KILLIJIAN , D. POWELL, M. ROY. Sauve-
garde coopérative entre pairs pour dispositifs mobiles.
Actes des deuxièmes journées francophones Mobilité et
Ubiquité (UbiMob), pp. 97–104, 2005.

[7] L. P. COX, B. D. NOBLE. Pastiche: Making Backup Cheap
and Easy.5th USENIX OSDI, pp. 285–298, 2002.

[8] Y. DESWARTE, L. BLAIN , J-C. FABRE. Intrusion Tolerance
in Distributed Computing Systems.Proc. of the IEEE
Symp. on Research in Security and Privacy, pp. 110–121,
1991.

[9] S. ELNIKETY, M. LILLIBRIDGE, M. BURROWS. Peer-to-peer
Cooperative Backup System.The USENIX FAST, 2002.

[10] T. J. GIBSON, E. L. MILLER. Long-Term File Activity Pat-
terns in a UNIX Workstation Environment.Proc. of the
15th IEEE Symp. on MSS, pp. 355–372, 1998.

[11] A. V. GOLDBERG, P. N. YIANILOS. Towards an Archival
Intermemory.Proc. IEEE Int. Forum on Research and
Technology Advances in Digital Libraries (ADL’98), pp.
147–156, 1998.

[12] V. HENSON. An Analysis of Compare-by-hash.Proc. of
HotOS IX: The 9th HotOS, pp. 13–18, 2003.

[13] F. JUNQUEIRA, R. BHAGWAN, K. MARZULLO, S. SAVAGE, G.
M. VOELKER. The Phoenix Recovery System: Rebuild-
ing from the Ashes of an Internet Catastrophe.9th Ho-
tOS, 2003.

[14] M-O. KILLIJIAN , D. POWELL, M. BANÂTRE, P. COUDERC, Y.
ROUDIER. Collaborative Backup for Dependable Mobile
Applications.Proc. of 2nd Int. Workshop on Middle-
ware for Pervasive and Ad-Hoc Computing (Middleware
2004), pp. 146–149, 2004.

[15] P. KULKARNI, F. DOUGLIS, J. LAVOIE, J. M. TRACEY. Redun-
dancy Elimination Within Large Collections of Files.
Proc. of the USENIX Annual Technical Conf., 2004.

[16] Y-W. LEE, K-S. LEUNG, M. SATYANARAYANAN . Operation-
based Update Propagation in a Mobile File System.Proc.
of the USENIX Annual Technical Conf., pp. 43–56,
1999.

[17] H. LIEFKE, D. SUCIU. XMill: an Efficient Compressor for
XML Data. Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pp. 153–164, 2000.

[18] W.K.LIN, D.M.CHIU,Y.B.LEE.Erasure Code Replication
Revisited.Proc. of the 4th P2P, pp. 90–97, 2004.

[19] B. T. LOO, A. LAMARCA, G. BORRIELLO. Peer-To-Peer Back-
up for Personal Area Networks. IRS-TR-02-015, UC
Berkeley; Intel Seattle Research (USA), May 2003.

[20] T. LORD. The GNU Arch Distributed Revision Control
System. 2005,http://www.gnu.org/software/gnu-arch/.

[21] U. MANBER. Finding Similar Files in a Large File Sys-
tem. Proc. of the USENIX Winter 1994 Conf., pp. 1–10,
1994.

[22] A. MUTHITACHAROEN, B. CHEN, D. MAZIÈRES. A Low-Band-
width Network File System.Proc. of the 18th ACM
SOSP, pp. 174–187, 2001.

[23] S. QUINLAN, S. DORWARD. Venti: A New Approach to
Archival Storage.Proc. of the 1st USENIX FAST, pp.
89–101, 2002.

[24] K. RANGANATHAN, A. IAMNITCHI, I. FOSTER. Improving Data
Availability Through Dynamic Model-Driven Replica-
tion in Large Peer-to-Peer Communities.Proc. of the
Workshop on Global and Peer-to-Peer Computing on
Large Scale Distributed Systems, pp. 376–381, 2002.

[25] M. RUBEL. Rsnapshot: A Remote Filesystem Snapshot
Utility Based on Rsync. 2005,http://rsnapshot.org/.

[26] D. S. SANTRY, M. J. FEELEY, N. C. HUTCHINSON, A. C.
VEITCH, R. W. CARTON, J. OFIR. Deciding when to forget in
the Elephant file system.Proc. of the 17th ACM SOSP,
pp. 110–123, 1999.

[27] J. S. SHAPIRO, J. VANDERBURGH. CPCMS: A Configuration
Management System Based on Cryptographic Names.
Proc. of the USENIX Annual Technical Conf.,FREENIX
Track, pp. 207–220, 2002.

[28] M. STEMM, P. GAUTHIER, D. HARADA, R. H. KATZ. Reduc-
ing Power Consumption of Network Interfaces in Hand-
Held Devices.IEEE Transactions on Communications,
E80-B(8), August 1997, pp. 1125–1131.

[29] N. TOLIA, M. KOZUCH, M. SATYANARAYANAN , B. KARP, T.
BRESSOUD, A. PERRIG. Opportunistic Use of Content Ad-
dressable Storage for Distributed File Systems.Proc.
of the USENIX Annual Technical Conf., pp. 127–140,
2003.

[30] A. TRIDGELL, P. RUSSEL, J. ALLISON. The Trivial Database.
1999,http://samba.org/.

[31] A. TRIDGELL, P. MACKERRAS. The Rsync Algorithm. TR-
CS-96-05, Department of Computer Science, Australian
National University Canberra, Australia, 1996.

[32] A. VERNOIS, G. UTARD. Data Durability in Peer to Peer
Storage Systems.Proc. of the 4th Workshop on Global
and Peer to Peer Computing, pp. 90–97, 2004.

[33] X. WANG, Y. YIN, H. YU. Finding Collisions in the Full
SHA-1.Proc. of the CRYPTO Conf., pp. 17–36, 2005.

[34] L. XU. Hydra: A Platform for Survivable and Secure
Data Storage Systems.Proc. of the ACM Workshop on
Storage Security and Survivability, pp. 108–114, 2005.

[35] L. L. YOU, K. T. POLLACK, AND D. D. E. LONG. Deep Store:
An Archival Storage System Architecture.Proc. of the
21st ICDE, pp. 804–815, 2005.

http://www.gnu.org/software/gnu-arch/
http://rsnapshot.org/
http://samba.org/

	
	1. Introduction
	2. Collaborative Backup for Mobile Devices
	2.1. Design Overview and Related Work
	2.2. Requirements of the Storage Layer

	3. Design Options for the Storage Layer
	3.1. Storage Efficiency
	3.2. Small Data Blocks
	3.2.1. Chopping Algorithms
	3.2.2. Stream Meta-Data

	3.3. Backup Atomicity
	3.4. Error Detection
	3.5. Encryption
	3.6. Backup Redundancy

	4. Preliminary Evaluation
	4.1. Implementation Overview
	4.2. Evaluation of Compression Techniques
	4.2.1. Methodology and Workloads
	4.2.2. Results


	5. Conclusion and Future Work
	References

