Ludovic Courtès

Marc-Olivier Killijian

David Powell

Storage Tradeoffs in a Collaborative Backup Service for Mobile Devices †

Mobile devices are increasingly relied on but are used in contexts that put them at risk of physical damage, loss or theft. We consider a fault-tolerance approach that exploits spontaneous interactions to implement a collaborative backup service. We define the constraints implied by the mobile environment,analyze how they translate into the storage layer of such a backup system and examine various design options. The paper concludes with a presentation of our prototype implementation of the storage layer, an evaluation of the impact of several compression methods,and directions for future work.

Introduction

Embedded computers are becoming widely available, in various portable devices such as PDAs, digital cameras, music players and laptops. Most of these devices are now able to communicate using wireless network technologies such as IEEE 802.11, Bluetooth, or Zigbee. Users use such devices to capture more and more data and are becoming increasingly dependent on them. Backing up the data stored on these devices is often done in an ad hoc fashion: each protocol and/or application has its own synchronization facilities that can be used when a sister device, usually a desktop computer, is reachable. However, newly created data may be held on the mobile device for a long time before it can be copied. This may be a serious issue since the contexts in which mobile devices are used increase the risks of them being lost, stolen or broken.

Our goal is to leverage the ubiquity of communicating mobile devices to implement a collaborative backup service. In such a system, devices participating in the service would be able to use other devices' storage to back up their own data. Of course, each device would have to contribute some of its own storage resources for others to be able to benefit from the service.

Internet-based peer-to-peer systems paved the way for such services. They showed that excess resources available at the peer hosts could be leveraged to support wide-scale resource sharing. Although the amount of resources available on a mobile device is significantly smaller than that of a desktop machine, we believe that this is not a barrier to the creation of mobile peer-to-peer services. They have also shown that wide-scale services could be created without relying on any infrastructure (other than the Internet itself), in a decentralized, self-administered way. From a fault-tolerance viewpoint, peerto-peer systems provide a high diversity of nodes with independent failure modes [START_REF] Junqueira | The Phoenix Recovery System: Rebuilding from the Ashes of an Internet Catastrophe[END_REF].

In a mobile context, we believe there are additional reasons to use a collaborative service. For instance, access to a cell phone communication infrastructure (GPRS, UMTS, etc.) may be costly (especially for non-productive data transmission "just" for the sake of backup) while proximity communications are not (using 802.11, Bluetooth, etc.). Similarly, short-distance communication technologies are often more efficient than long-distance ones: they offer a higher throughput and often require less energy. In some scenarios, infrastructure-based networks are simply not available but neighboring devices might be accessible using single-hop communications, or by ad hoc routing.

Our target service raises a number of interesting issues, in particular relating to trust management, resource accounting and cooperation incentives. It raises novel issues due to, for instance, mostly-disconnected operation and the consequent difficulty of resorting to centralized or on-line solutions. A preliminary analysis of these issues may be found in [START_REF] Courtès | Sauvegarde coopérative entre pairs pour dispositifs mobiles[END_REF][START_REF] Killijian | Collaborative Backup for Dependable Mobile Applications[END_REF]. In this paper, the focus is on the mechanisms employed at the storage layer of such a service. We investigate the various design options at this layer and discuss potential trade-offs.

In Section 2, we will detail the requirements of the cooperative backup service on the underlying storage layer. Section 3 presents several design options for this layer based on the current literature and the particular needs that arise from the kind of devices we target. In Section 4, using a prototype of this storage layer, we will evaluate some storage layer algorithms and discuss the necessary tradeoffs. Finally, we will conclude on our current work and sketch future research directions.

Collaborative Backup for Mobile Devices

This section gives an overview of the service envisaged and related work. Then we describe the requirements we have identified for the storage layer of the service.

Design Overview and Related Work

Our goal is to design and implement a collaborative backup system for communicating mobile devices. In this model, mobile devices can play the role of a contributor, i.e., a device that offers its storage resources to store data on behalf of other nodes, and a data owner, i.e., a mobile device asking a contributor to store some of its data on its behalf. Practically, nodes are expected to contribute as much as they benefit from the system; therefore, they should play both roles at the same time.

For the service to effectively leverage the availability of neighboring communicating devices, the service has to be functional even in the presence of mutually suspicious device users. We want users with no prior trust relationships to be able to use the service and to contribute to it harmlessly. This is in contrast with traditional habits where users usually back up their mobile devices' data only on machines they trust, such as their workstation.

This goal also contrasts with previous work on collaborative backup for a personal area network (PAN), such as FlashBack [START_REF] Loo | Peer-To-Peer Backup for Personal Area Networks[END_REF], where participating devices are all trustworthy since they belong to the same user. However, censorship-resistant peer-to-peer file sharing systems such as GNUnet [START_REF] Bennett | Efficient Sharing of Encrypted Data[END_REF] have a similar approach to security in the presence of adversaries.

Recently, a large amount of research has gone into the design and implementation of Internet-based peerto-peer backup systems that do not assume prior trust relationships among participants [START_REF] Batten | pStore: A secure peer-to-peer backup system[END_REF][START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF][START_REF] Elnikety | Peer-to-peer Cooperative Backup System[END_REF]. There is, however, a significant difference between those Internet-based systems and what we envision: connectivity. Although these Internet-based collaborative backup systems are designed to tolerate disconnections, they do assume a highlevel of connectivity. Disconnections are assumed to be mostly transient, whether they be non-malicious (a peer goes off-line for a few days or crashes) or malicious (a peer purposefully disconnects in order to try to benefit from the system without actually contributing to it).

In the context of mobile devices interacting spontaneously, connections are by definition short-lived, unpredictable, and very variable in bandwidth and reliability. Worse than that, a pair of peers may have a chance encounter and start exchanging data, and then never meet again.

To tackle this issue, we assume that each mobile device can at least intermittently access the Internet. The backup software running in those mobile devices is expected to take advantage of such an opportunity by reestablishing contacts with (proxies of) mobile devices encountered earlier. For instance, a contributor may wish to send data stored on behalf of another node to some sort of repository associated with the owner of the data. Contributors can thus asynchronously push data back to their owners. The repository itself can be implemented in various ways: an email mailbox, an FTP server, a fixed peer-to-peer storage system, etc. Likewise, data owners may sometimes need to query their repository as soon as they can access the Internet in order to pull back (i.e., restore) their data.

In the remainder of this paper, we will focus on the design of the storage layer of this service on both the data owner and contributor sides.

Requirements of the Storage Layer

We have identified the following requirements for the mechanisms employed at the storage layer.

Storage efficiency. Backing up data should be as efficient as possible. Data owners should neither ask contributors to store more data than necessary nor send excessive data over the wireless interface. Failing to do so will waste energy and result in inefficient utilization of the storage resources available in the node's vicinity. Inefficient storage may have a strong impact on energy consumption since (i) storage costs translate into transmission costs and (ii) energy consumption on mobile devices is dominated by wireless communication costs, which in turn increase as more data are transferred [START_REF] Stemm | Reducing Power Consumption of Network Interfaces in Hand-Held Devices[END_REF]. Compression techniques are thus a key aspect of the storage layer on the data owner side.

Small data blocks. Both the occurrence of encounters of a peer within radio range and the lifetime of the resulting connections are unpredictable. Consequently, the backup application running on a data owner's device must be able to conveniently split the data to be backed up into small pieces to ensure that it can actually be transferred to contributors. Ideally, data blocks should be able to fit within the underlying network layer's maximum transmission unit or MTU (2304 octets for IEEE 802.11); larger payloads get fragmented into several packets, which introduces overhead at the MAC layer, and possibly at the transport layer too.

Backup atomicity. Unpredictability and the potentially short lifetime of connections, compounded with the possible use of differential compression to save storage resources, mean that it is unlikely to be practical to store a set of files, or even one complete file, on a single peer. Indeed, it may even be undesirable to do so in order to protect data confidentiality [START_REF] Deswarte | Intrusion Tolerance in Distributed Computing Systems[END_REF]. Furthermore, it may be the case that files are modified before their previous version has been completely backed up.

The dissemination of data chunks as well as the coexistence of several versions of a file must not affect backup consistency as perceived by the end-user: a file should be either retrievable and correct, or unavailable. Likewise, the distributed store that consists of various contributors shall remain in a "legal" state after new data are backed up onto it. This corresponds to the atomicity and consistency properties of the ACID properties commonly referred to in transactional database management systems.

Error detection. Accidental modifications of the data are assumed to be handled by the various lower-level software and hardware components involved, such as the communication protocol stack, the storage devices themselves, the operating system's file system implementation, etc. However, given that data owners are to hand their data to untrusted peers, the storage layer must provide mechanisms to ensure that malicious modifications to their data are detected with a high probability.

Encryption. Due to the lack of trust in contributors, data owners may wish to encrypt their data to ensure privacy. While there exist scenarios where there is sufficient trust among the participants such that encryption is not compulsory (e.g., several people in the same working group), encryption is a requirement in the general case.

Backup redundancy. Redundancy is the raison d'être of any data backup system, but when the system is based on cooperation, the backups themselves must be made redundant. First, the cooperative backup software must account for the fact that contributors may crash accidently. Second, contributor availability is unpredictable in a mobile environment without continuous Internet access. Third, contributors are not fully trusted and may behave maliciously. Indeed, the literature on Internetbased peer-to-peer backup systems describes a range of attacks against data availability, ranging from data retention (i.e., a contributor purposefully refuses to allow a data owner to retrieve its data) to selfishness (i.e., a participant refuses to spend energy and storage resources storing data on behalf of other nodes) [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF][START_REF] Elnikety | Peer-to-peer Cooperative Backup System[END_REF]. All these uncertainties make redundancy even more critical in a cooperative backup service for mobile devices.

Design Options for the Storage Layer

In this section, we present design options able to satisfy each of the requirements identified for above.

Storage Efficiency

In wired distributed cooperative services, storage efficiency is often addressed by ensuring that a given content is only stored once. This property is known as single-instance storage [START_REF] Bolosky | Feasibility of a Serverless Distributed File System Deployed on an Existing Set of Desktop PCs[END_REF]. It can be thought of as a form of compression among several data units. In a file system, where the "data unit" is the file, this means that a given content stored under different file names will be stored only once. On Unix-like systems, revision control and backup tools implement this property by using hard links [START_REF] Lord | The GNU Arch Distributed Revision Control System[END_REF][START_REF] Rubel | Rsnapshot: A Remote Filesystem Snapshot Utility Based on Rsync[END_REF]. It may also be provided at a sub-file granularity, instead of at a whole file level, allowing reduction of unnecessary duplication with a finer-grain.

Archival systems [START_REF] Quinlan | Venti: A New Approach to Archival Storage[END_REF][START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF], peer-to-peer file sharing systems [START_REF] Bennett | Efficient Sharing of Encrypted Data[END_REF], peer-to-peer backup systems [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF], network file systems [START_REF] Muthitacharoen | A Low-Bandwidth Network File System[END_REF], and remote synchronization tools [START_REF] Tridgell | The Rsync Algorithm[END_REF] have been demonstrated to benefit from single-instance storage, either by improving storage efficiency or reducing bandwidth.

Compression based on resemblance detection, i.e., differential compression, or delta encoding, is unsuitable for our environment since (i) it requires access to all the files already stored, (ii) it is CPU-and memoryintensive, and (iii) the resulting delta chains weaken data availability [START_REF] Kulkarni | Redundancy Elimination Within Large Collections of Files[END_REF][START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF].

Traditional lossless compression (i.e., zip variants), allows the elimination of duplication within single files. As such, it naturally complements inter-file and inter-version compression techniques [START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF]. Section 4 contains a discussion of the combination of both techniques in the framework of our proposed backup service. Lossless compressors usually yield better compression when operating on large input streams [START_REF] Kulkarni | Redundancy Elimination Within Large Collections of Files[END_REF] so compressing concatenated files rather than individual files improves storage efficiency [START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF]. However, we did not consider this approach suitable for mobile device backup since it may be more efficient to backup only those files (or part of files) that have changed.

There exist a number of application-specific compression algorithms, such as the lossless algorithms used by the FLAC audio codec, the PNG image format, and the XMill XML compressor [START_REF] Liefke | XMill: an Efficient Compressor for XML Data[END_REF]. There is also a plethora of lossy compression algorithms for audio samples, images, videos, etc. While using such application-specific algorithms might be beneficial in some cases, we have focused instead on generic lossless compression.

Small Data Blocks

We now consider the options available to: (1) chop input streams into small blocks, and (2) create appropriate meta-data describing how those data blocks should be reassembled to produce the original stream.

Chopping Algorithms

As stated in Section 2.2, the size of blocks that are to be sent to contributors of the backup service has to be bounded, and preferably small, to match the nature of peer interactions in a mobile environment. There are several ways to cut input streams into blocks. Which algorithm is chosen has an impact on the improvement yielded by single-instance storage applied at the block level.

Splitting input streams into fixed-size blocks is a natural solution. When used in conjunction with a single-instance storage mechanism, it has been shown to improve the compression across files or across file versions [START_REF] Quinlan | Venti: A New Approach to Archival Storage[END_REF]. Manber proposed an alternative content-based stream chopping algorithm [START_REF] Manber | Finding Similar Files in a Large File System[END_REF] that yields better duplication detection across files, a technique sometimes referred to as content-defined blocks [START_REF] Kulkarni | Redundancy Elimination Within Large Collections of Files[END_REF]. The algorithm determines block boundaries by computing Rabin fingerprints on a sliding window of the input streams. Thus, it only allows the specification of an average block size (assuming random input). Various applications such as archival systems [START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF], network file systems [START_REF] Muthitacharoen | A Low-Bandwidth Network File System[END_REF] and backup systems [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF] benefit from this algorithm. Section 4 provides a comparison of both algorithms.

Stream Meta-Data

Placement of stream meta-data. Stream metadata is information that describes which blocks comprise the stream and how they should be reassembled to produce the original stream. Such meta-data can either be embedded along with each data block or stored separately. The main evaluation criteria of a meta-data structure are read efficiency (e.g., algorithmic complexity of stream retrieval, number of accesses needed) and size (e.g., how the amount of meta-data grows compared to data).

We suggest a more flexible approach whereby stream meta-data (i.e., which blocks comprise a stream) is separated both from file meta-data (i.e., file name, permissions, etc.) and the file content. This has several advantages. First, it allows a data block to be referenced multiple times and hence allows for single-instance storage at the block level. Second, it promotes separation of concerns. For instance, file-level meta-data (e.g., file path, modification time, permissions) may change without having to modify the underlying data blocks, which is important in scenarios where propagating such updates would be next to impossible. Separating metadata and data also leaves the possibility of applying the same "filters" (e.g., compression, encryption), or to use similar redundancy techniques for both data and metadata blocks. This will be illustrated in Section 4. This approach is different from the one used in Hydra [START_REF] Xu | Hydra: A Platform for Survivable and Secure Data Storage Systems[END_REF] but not unlike that of OpenCM [START_REF] Shapiro | CPCMS: A Configuration Management System Based on Cryptographic Names[END_REF].

D 0 D 1 R 0 D 2 D 3 R 1 D 4
Indexing individual blocks. The separation of data and meta-data means that there must be a way for meta-data blocks to refer to data blocks: data blocks must be indexed or named 1 . The block naming scheme must fulfill several requirements. First, it must not be based on non-backed-up user state which would be lost during a crash. Most importantly, the block naming scheme must guarantee that name clashes among the blocks of a data owner cannot occur. In particular, block IDs must remain valid in time so that a given block ID is not wrongfully re-used when a device restarts the backup software after a crash. Given that data blocks will be disseminated among several peers and will ultimately migrate to their owner's repository, blocks IDs should remain valid in space, that is, they should be independent of contributor names. This property also allows for precomputation of block IDs and meta-data blocks: stream chopping and indexing do not need to be done upon a contributor encounter, but can be performed a priori, once for all. This saves CPU time and energy, and allows data owners to immediately take advantage of a backup opportunity. A practical naming scheme widely used in the literature will be discussed in Section 3.4.

Indexing sequences of blocks. Byte streams (file contents) can be thought of as sequences of blocks.

Meta-data describing the list of blocks comprising a byte stream need to be produced and stored. In their simplest form, such meta-data are a vector of block IDs, or in other words, a byte stream. This means that this byte stream can in turn be indexed, recursively, until a meta-data byte stream is produced that fits the block size constraints. This approach yields the meta-data structure shown in Figure 1 which is comparable to that used by Venti and GNUnet [START_REF] Bennett | Efficient Sharing of Encrypted Data[END_REF][START_REF] Quinlan | Venti: A New Approach to Archival Storage[END_REF].

Contributor interface. With such a design, contributors do not need to know about the actual implementation of block and stream indexing used by their clients, nor do they need to be aware of the data/meta-data distinction. All they need to do is to provide primitives of a keyed block storage:

• put (key, data) inserts the data block data and associates it with key, a block ID chosen by the data owner according to some naming scheme;

• get (key) returns the data associated with key.

This simple interface suffices to implement, on the data owner side, byte stream indexing and retrieval. Also, it is suitable for an environment in which service providers and users are mutually suspicious because it places as little burden as possible on the contributor side. The same approach was adopted by Venti [START_REF] Quinlan | Venti: A New Approach to Archival Storage[END_REF] and by many peer-to-peer systems [START_REF] Bennett | Efficient Sharing of Encrypted Data[END_REF][START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF].

Backup Atomicity

Distributed and mobile file systems such as Coda [START_REF] Lee | Operationbased Update Propagation in a Mobile File System[END_REF] which support concurrent read-write access to the data and do not have built-in support for revision control, differ significantly from backup systems. Namely, they are concerned about update propagation and reconciliation in the presence of concurrent updates. Not surprisingly, a read-write approach does not adapt well to the loosely connected scenarios we are targeting: data owners are not guaranteed to meet every contributor storing data on their behalf in a timely fashion, which makes update propagation almost impossible. Additionally, it does not offer the desired atomicity requirement discussed in Section 2.2.

The write once or append only semantics adopted by archival [START_REF] Goldberg | Towards an Archival Intermemory[END_REF][START_REF] Quinlan | Venti: A New Approach to Archival Storage[END_REF], backup [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF][START_REF] Rubel | Rsnapshot: A Remote Filesystem Snapshot Utility Based on Rsync[END_REF] and versioning systems [START_REF] Lord | The GNU Arch Distributed Revision Control System[END_REF][START_REF] Santry | Deciding when to forget in the Elephant file system[END_REF][START_REF] Shapiro | CPCMS: A Configuration Management System Based on Cryptographic Names[END_REF]] solve these problems. Data is always appended to the storage system, and never modified in place. This is achieved by assigning each piece of data a unique identifier. Therefore, insertion of content (i.e., data blocks) into the storage mechanism (be it a peer machine, a local file system or data repository) is atomic. Because data is only added, never modified, consistency is also guaranteed: insertion of a block cannot result in an inconsistent state of the storage mechanism.

A potential concern with this approach is its cost in terms of storage resources. It has been argued, however, that the cost of storing subsequent revisions of whole sets of files can be very low provided inter-version compression techniques like those described earlier are used [START_REF] Gibson | Long-Term File Activity Patterns in a UNIX Workstation Environment[END_REF][START_REF] Quinlan | Venti: A New Approach to Archival Storage[END_REF][START_REF] Santry | Deciding when to forget in the Elephant file system[END_REF]. In our case, once a contributor has finally transferred data to their owner's repository, it may reclaim the corresponding storage resources, which further limits the cost of this approach.

From an end-user viewpoint, being able to restore an old copy of a file is more valuable than being unable to restore the file at all. All these reasons make the writeonly approach suitable to the storage layer of our cooperative backup service.

Error Detection

Error-detecting codes can be computed either at the level of whole input streams or at the level of data blocks. They must then be part of, respectively, the stream meta-data, or the block meta-data. We argue the case for cryptographic hash functions as a means of providing the required error detection and as a block-level indexing scheme.

Cryptographic hash functions. The error-detecting code we use must be able to detect malicious modifications. This makes error-detecting codes designed to tolerate random, accidental faults inappropriate. We must instead use collision-resistant and preimage-resistant hash functions, which are explicitly designed to detect tampering [START_REF][END_REF].

Along with integrity, authenticity of the data must also be guaranteed, otherwise a malicious contributor could deceive a data owner by producing fake data blocks along with valid cryptographic hashes. Thus, digital signatures should be used to guarantee the authenticity of the data blocks. Fortunately, not all blocks need to be signed: signing a root meta-data block (as shown in Figure 1) is sufficient. This is similar to the approach taken by OpenCM [START_REF] Shapiro | CPCMS: A Configuration Management System Based on Cryptographic Names[END_REF]. Note, however, that while producing random data blocks and their hashes is easy, producing the corresponding meta-data blocks is next to impossible without knowing what particular meta-data schema is used by the data owner.

Content-based indexing. Collision-resistant hash functions have been assumed to meet the requirements of a data block naming scheme as defined in Section 3.2.2, and to be a tool allowing for efficient implementations of single-instance storage [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF][START_REF] Muthitacharoen | A Low-Bandwidth Network File System[END_REF][START_REF] Quinlan | Venti: A New Approach to Archival Storage[END_REF][START_REF] Tolia | Opportunistic Use of Content Addressable Storage for Distributed File Systems[END_REF][START_REF] Tridgell | The Rsync Algorithm[END_REF][START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF]. In practice, these implementations assume that whenever two data blocks yield the same cryptographic hash value, their contents are identical. Given this assumption, implementation of a single-instance store is straightforward: a block only needs to be stored if its hash val-ue was not found in the locally maintained block hash table.

In [START_REF] Henson | An Analysis of Compare-by-hash[END_REF], Henson argues that accidental collisions, although extremely rare, do have a slight negative impact on software reliability and yield silent errors. Given an n-bit hash output produced by one of the functions listed above, the expected workload to generate a collision out of two random inputs is of the order of 2 n/2 [START_REF][END_REF]. More precisely, if we are to store, say, 8 GiB of data in the form of 1 KiB blocks, we end up with 2 43 blocks, whereas SHA-1, for instance, would require 2 80 blocks to be generated on average before an accidental collision occurs. We consider this to be reasonable in our application since it does not impede the tolerance of faults in any significant way. Also, Henson's fear of malicious collisions does not hold given the preimage-resistance property provided by the commonly-used hash functions 2 .

Content-addressable storage (CAS) thus seems a viable option for our software layer as it fulfills both the error-detection and data block naming requirements. In [START_REF] Tolia | Opportunistic Use of Content Addressable Storage for Distributed File Systems[END_REF], the authors assume a block ID space shared across all CAS users and providers. In our scenario, CAS providers do not trust their clients (data owners) so they need either to enforce the block naming scheme (i.e., make sure that the ID of each block is indeed the hash value of its content), or to maintain a peruser name space.

Encryption

Data encryption may be performed either at the level of individual blocks, or at the level of input streams. Encrypting the input stream before it is split into smaller blocks breaks the single-instance storage property at the level of individual blocks. This is because encryption aims to ensure that the encrypted output of two similar input streams will not be correlated.

Leaving input streams unencrypted and encrypting individual blocks yielded by the chopping algorithm does not have this disadvantage. More precisely, it preserves single-instance storage at the level of blocks at least locally, i.e., on the client side. If asymmetric ciphering algorithms are used, the single-instance storage property is no longer ensured across peers, since each peer encrypts data with its own private key. However, we do not consider this a major drawback for the majority of scenarios considered where little or no data are common to several participants. Moreover, solutions to this problem exist, notably convergent encryption [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF].

Backup Redundancy

Replication strategies. Redundancy management in the context of our collaborative backup service for mobile devices introduces a number of new challenges. Peer-to-peer file sharing systems are not a good source of inspiration in this respect given that they rely on redundancy primarily as a means of reducing access time to popular content [START_REF] Ranganathan | Improving Data Availability Through Dynamic Model-Driven Replication in Large Peer-to-Peer Communities[END_REF].

For the purposes of fault-tolerance, statically-defined redundancy strategies have been used in Internetbased scenarios where the set of servers responsible for holding replicas is known a priori, and where servers are usually assumed to be reachable "most of the time" [START_REF] Deswarte | Intrusion Tolerance in Distributed Computing Systems[END_REF][START_REF] Xu | Hydra: A Platform for Survivable and Secure Data Storage Systems[END_REF]. Internet-based peer-to-peer backup systems [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF][START_REF] Elnikety | Peer-to-peer Cooperative Backup System[END_REF] have relaxed these assumptions. However, although they take into account the fact that contributors may become unreachable, strong connectivity assumptions are still made: the inability to reach a contributor is assumed to be the exception, rather than the rule. As a consequence, unavailability of a contributor is quickly interpreted as a symptom of malicious behavior [START_REF] Cox | Pastiche: Making Backup Cheap and Easy[END_REF][START_REF] Elnikety | Peer-to-peer Cooperative Backup System[END_REF].

The connectivity assumption does not hold in our case. Additionally, unlike with Internet-based systems, the very encounter of a contributor is unpredictable. This has a strong impact on the possible replication strategies, and on the techniques used to implement redundancy.

Erasure codes have been used as a means to tolerate failures of storage sites while being more storage-efficient than simple replication [START_REF] Xu | Hydra: A Platform for Survivable and Secure Data Storage Systems[END_REF]. Usually, (n,k) erasure codes are defined as follows [START_REF] Lin | Erasure Code Replication Revisited[END_REF][START_REF] Xu | Hydra: A Platform for Survivable and Secure Data Storage Systems[END_REF]:

• an (n,k) code maps a k-symbol block to an n-symbol codeword;

• k + ε symbols suffice to recover the exact original data; the code is optimal when ε = 0;

• optimal (n,k) schemes tolerate the loss of (n -k) symbols and have an effective storage use of k/n.

Such an approach seems very attractive to improve storage efficiency while still maximizing data availability. However, as argued in [START_REF] Bhagwan | Total Recall: System Support for Automated Availability Management[END_REF][START_REF] Lin | Erasure Code Replication Revisited[END_REF][START_REF] Vernois | Data Durability in Peer to Peer Storage Systems[END_REF], an (n,k) scheme with k > 1 can hinder data availability because it requires k peers to be available for data to be retrieved, instead of just 1 with mirroring (i.e., an (n,1) scheme). Also, given the unpredictability of contributor encounters, a scheme with k > 1 is risky since a data owner may fail to store k symbols on different contributors. On the other hand, from a confidentiality viewpoint, increasing dissemination and purposefully placing less than k symbols on any given untrusted contributor may be a good strategy [START_REF] Deswarte | Intrusion Tolerance in Distributed Computing Systems[END_REF]. Intermediate solutions can also be imagined, e.g., mirroring blocks that have never been replicated and choosing k > 1 for blocks already mirrored at least once. This use of different levels of dispersal was also mentioned by the authors of InterMemory [START_REF] Goldberg | Towards an Archival Intermemory[END_REF] as a way to accommodate contradictory requirements. Finally, a dynamically adaptive behavior of erasure coding may be considered as [START_REF] Bhagwan | Total Recall: System Support for Automated Availability Management[END_REF] suggests.

Replica scheduling and dissemination. As stated in Section 2.2, it is plausible that a file will be only partly backed up when a newer version of this file enters the backup creation pipeline. One could argue that the replica scheduler should finish distributing the data blocks from the old version before distributing those of the new version. This policy would guarantee, at least, availability of the old version of the file. On the other hand, in certain scenarios, users might want to favor freshness over availability, i.e., they might request that newer blocks are scheduled first for replication.

This clearly illustrates that a wide range of replica scheduling and dissemination policies and corresponding algorithms can be defended depending on the scenario considered. At the core of a given replica scheduling and dissemination algorithm is a dispersal function that decides on a level of dispersal for any given data block. The algorithm must evolve dynamically to account for several changing factors. In FlashBack [START_REF] Loo | Peer-To-Peer Backup for Personal Area Networks[END_REF], the authors identify a number of important factors that they use to define a device utility function. Those factors include locality (i.e., the likelihood of encountering a given device again later) as well as power and storage resources of the device.

In addition to those factors, our backup software needs to account for the current level of trust in the contributor at hand. If a data owner fully trusts a contributor, e.g., because it has proven to be well-behaved over a given period of time, the data owner may choose to store complete replicas (i.e., mirrors) on this contributor.

Preliminary Evaluation

This section presents our prototype implementation of the storage layer of the envisaged backup system, as well as a preliminary evaluation of key aspects.

Implementation Overview

We have implemented a prototype of the storage layer discussed above, a basic building block of the cooperative backup framework we are designing. This layer is performance-critical and we implemented it in C. The resulting library, libchop, consists of 7 K physical source lines of code. It was designed to be flexible enough so that different techniques could be combined and evaluated,by providing a few well-defined interfaces as shown in Figure 2. The library itself is not concerned with the backup of file system-related meta-data such as file paths, permissions, etc. Implementing this is left to higher-level layers akin to OpenCM's schemas [START_REF] Shapiro | CPCMS: A Configuration Management System Based on Cryptographic Names[END_REF]. Implementations of the chopper interface chop input streams into small fixed-size blocks, or according to Manber's algorithm [START_REF] Manber | Finding Similar Files in a Large File System[END_REF]. Block indexers name blocks and store them in a keyed block store (e.g., an on-disk database). The stream_indexer interface provides a method that iterates over the blocks yielded by the given chopper, indexes them, produces corresponding metadata blocks, and stores them in a block store. In the proposed cooperative backup service, chopping and indexing are to be performed on the data owner side, while the block store itself will be realized by contributors. Finally, libchop also provides filters, such as zlib compression and decompression filters, which may be conveniently reused in different places, for instance between a filebased input stream and a chopper, or between a stream indexer and a block store.

In the following experiments, the only stream indexer used is a "tree indexer" as shown in Figure 1. We used an on-disk block store that uses TDB as the underlying database [START_REF] Tridgell | The Trivial Database[END_REF]. For each file set, we started with a new, empty database.

Evaluation of Compression Techniques

Our implementation has allowed us to evaluate more precisely some of the tradeoffs outlined in Section 3. After describing the methodology and workloads that were used, we will comment the results obtained.

Methodology and Workloads

Methodology. The purpose of our evaluation is to compare the various compression techniques described earlier in order to better understand the tradeoffs that must be made. We measured the storage efficiency and computational cost of each method, both of which are critical criteria for resource-constrained devices. The measures were performed on a 500 MHz G4 Macintosh running GNU/Linux (running them on, say, an ARMbased mobile device would have resulted in lower throughputs; however, since we are interested in comparing throughputs, this would not make any significant difference). We chose several workloads and compared the results obtained using different configurations. These file sets, shown in Figure 3, qualify as semi-synthetic workloads because they are actual workloads, although they were not taken from a real mobile device. The motivation for this choice was to purposefully target specific file classes. The idea is that the results should remain valid for any file of these classes.

File sets. In Figure 3, the first file set contains 10 successive versions of the source code of the Lout document formatting system, i.e., low-density, textual input (C and Lout code), spread across a number of small files. Of course, this type of data is not typical of mobile devices like PDAs and cell phones. Nevertheless, the results obtained with this workload should be similar to those obtained with widely-used textual data format such as XML. The second file set shown in Figure 3 consists of 17 Ogg Vorbis files, a high-density binary format (Ogg Vorbis is a lossy audio compression format), typical of the kind of data that may be found on devices equipped with sampling peripherals. The third file set consists of a single, large file: a mailbox in the Unix mbox format which is an append-only textual format. Such data are likely to be found in a similar form on communicating devices.

Configurations. Figure 4 shows the storage configurations we have used in our experiments. For each configuration, it indicates whether single-instance storage was provided, which chopping algorithm was used and what the expected block size was, as well as whether the input stream or output blocks were compressed using a lossless stream compression algorithm (zlib in our case). Our intent is not to evaluate the outcome of each algorithm independently, but rather that of whole configurations. Thus, instead of experimenting with every possible combination, we chose to retain only those that (i) made sense from an algorithmic viewpoint and (ii) were helpful in understanding the tradeoffs at hand.

Configurations A 1 and A 2 serve as baselines for the overall compression ratio and computational cost. Comparing them is also helpful in determining the computational cost due to single-instance storage alone. Subsequent configurations all chop input streams into small blocks whose size fits our requirements (MTU); they all implement single-instance storage of the blocks produced.

Common octet sequences are unlikely to be found within a zlib-compressed stream, by definition. Hence, zipping the input precludes advantages to be gained by block-level single-instance storage afterwards. Thus, we did not include a configuration where a zipped input stream would then be passed to a chopper implementing Manber's algorithm.

The B configurations favor sub-file single-instance storage by not compressing the input before chopping it. B 2 improves over B 1 by adding the benefits of zlib compression at the block-level. Conversely, configuration C favors traditional lossless compression over sub-file single-instance storage since it applies lossless compression to the input stream.

Our implementation of Manber's algorithm uses a sliding window of 48 B which was reported to provide good results [START_REF] Muthitacharoen | A Low-Bandwidth Network File System[END_REF]. All configurations but A 1 use single-instance storage, realized using the libchop "hash" block indexer that uses SHA-1 hashes as unique block identifiers. For A 1 , a block indexer that systematically provides unique IDs (per RFC 4122) was chosen.

The chosen configurations and file sets are quite similar to those described in [START_REF] Kulkarni | Redundancy Elimination Within Large Collections of Files[END_REF][START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF], except that, as as explained in Section 3.1, we do not evaluate the storage efficiency of the delta encoding technique proposed therein.

Results

Figure 5 shows the compression ratios obtained for each configuration and each file set. The bars show the ratio of the size of the resulting blocks, including meta-data (sequences of SHA-1 hashes), to the size of the input data, for each configuration and each data set. The lines represent the corresponding throughputs.

Impact of the data type. Not suprisingly, the set of Vorbis files defeats all the compression techniques. Most configurations incur a slight storage overhead due to the amount of meta-data generated. Impact of single-instance storage. Comparing the results obtained for A 1 and A 2 shows benefits only in the case of the successive source code distributions, where it halves the amount of data stored (13 % vs. 26 %). This is due to the fact that successive versions of the software have a lot of files in common. Furthermore, it shows that single-instance storage implemented using cryptographic hashes does not degrade throughput, which is the reason why we chose to use it in all configurations.

As expected, single-instance storage applied at the block-level is mainly beneficial for the Lout file set where it achieves noticeable inter-version compression, comparable with that produced with zlib in A 1 . The best compression ratio overall is obtained with B 2 where individual blocks are zlib-compressed. However, the compression ratios obtained with B 2 are comparable to those obtained with C, and only slightly better in the Lout case (11% vs. 13 %). Thus, we conclude that there is little storage efficiency improvement to be gained from the combination of single-instance storage and Manber's chopping algorithm compared to traditional lossless compression, especially when applied to the input stream.

The results in [START_REF] You | Deep Store: An Archival Storage System Architecture[END_REF] are slightly more optimistic regarding the storage efficiency of a configuration similar to B 2 , which may be due to the use a smaller block (512 B) and a larger file set.

Computational cost. Comparing the computational costs of the B configurations with that of C provides an important indication as to which kind of configuration suits our needs best. Indeed, input zipping and fixed-size chopping in C yield a processing throughput three times higher than that of B 2 (except for the set of Vorbis files). Thus, C is the configuration that offers the best tradeoff between computational cost and storage efficiency for low-entropy data.

Additional conclusions can be drawn with respect to throughput. First, the cost of zlib-based compression appears to be reasonable, particularly when performed on the input stream rather than on individual blocks, as evidenced, e.g., by B 3 and C. Second, the input data type has a noticeable impact on the computational cost. In particular, applying lossless compression is more costly for the Vorbis files than for low-entropy data. Therefore, it would be worthwhile to disable zlib compression for compressed data types.

Conclusion and Future Work

In this paper, we have considered the viability of collaboration between peer mobile devices to implement a cooperative backup service. We have identified six essential requirements for the storage layer of such a service, namely: (i) storage efficiency; (ii) small data blocks; (iii) backup atomicity; (iv) error detection; (v) encryption; (vi) backup redundancy. The various design options for meeting these requirements have been reviewed and a preliminary evaluation carried out using a prototype implementation of the storage layer.

Our evaluation has allowed us to assess different storage techniques, both in terms of storage efficiency and computational cost. We conclude that the most suitable combination for our purposes combines the use of lossless input compression with fixed-size chopping and single-instance storage. Other techniques were rejected for providing little storage efficiency improvement compared to their CPU cost.

Future work on the optimization of the storage layer concerns several aspects. First, the energy costs of the various design options need to be assessed, especially those related to the wireless transmission of backup data between nodes. Second, the performance and dependability impacts of various replica scheduling and dissemination strategies need to be evaluated as a function, for example, of the expected frequencies of data updates, cooperative backup opportunities and infrastructure connections. Third, it seems likely that no single configuration of the backup service will be appropriate for all situations, so dynamic adaptation of the service to suit different contexts needs to be investigated.

Finally, the issues relating to trust management, resource accounting and cooperation incentives need to be addressed, especially insomuch as the envisaged mode of mostly-disconnected operation imposes additional constraints. Current research in this direction, in collaboration with our partners in the MoSAIC project, is directed at evaluating mechanisms such as microeconomic and reputation-based incentives.

Figure 1 .

 1 Figure 1. A tree structure for stream metadata. Leaves represent data blocks while higher blocks are meta-data blocks.

Figure 2 .

 2 Figure 2. Data flow in the libchop backup creation pipeline.

Figure 3 .

 3 Figure 3. File sets.

Figure 4 .

 4 Figure 4. Description of the configurations experimented.

Figure 5 .

 5 Figure 5. Storage efficiency and computational cost of several configurations.

 1 KiB, which should yield packets slightly smaller than IEEE 802.11's

	Config.	Single Instance?	Chopping Algo.	Expected Block Size	Input Zipped?	Blocks Zipped?
	A 1	no	-	-	yes	-
	A 2	yes	-	-	yes	-
	B 1	yes	Manber's	1024 B	no	no
	B 2	yes	Manber's	1024 B	no	yes
	B 3	yes	fixed-size	1024 B	no	yes
	C	yes	fixed-size	1024 B	yes	no

† This work was partially supported by the MoSAIC project (ACI S&I, French national program for Security and Informatics; see http://www.laas.fr/mosaic/) and the Hidenets project (EU-IST-FP6-26979).

In the sequel we use the terms "block ID", "name", and "key" interchangeably.

The recent attacks found on SHA-1 by Wang et al.[START_REF] Wang | Finding Collisions in the Full SHA-1[END_REF] do not affect the preimage-resistance of this function.