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Abstract

Set functions appear as a useful tool in many areas of decision making and operations
research, and several linear invertible transformations have been introduced for set
functions, such as the Möbius transform and the interaction transform. The present
paper establish similar transforms and their relationships for bi-set functions, i.e.
functions of two disjoint subsets. Bi-set functions have been recently introduced in
decision making (bi-capacities) and game theory (bi-cooperative games), and appear
to open new areas in these fields.
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1 Introduction

In the field of decision theory and operations research, set functions vanishing
on the empty set are an important mathematical tool. In cooperative game
theory, they are called games in characteristic form (see e.g. Owen [18]), while
in operations research they correspond to pseudo-Boolean functions [16]. If in
addition we require monotonicity with respect to inclusion, we get capacities
as defined by Choquet [4], or fuzzy measures (Sugeno [23]), which happened
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to be very useful in decision under risk and uncertainty [20], and multicrite-
ria decision making [10]. Well-known particular cases of capacities are belief
functions (Shafer [21]), possibility measures (Dubois and Prade [8]), etc.

In the case where the underlying set is finite, there exist close connections
with combinatorics. The first one, known since Rota [19], is the Möbius trans-
form, which has been widely used in the field of belief functions (under the
name probabilistic mass assignment), capacities [3], and game theory since the
Möbius transform of a game v is the coordinates of v in the basis of unanimity
games [22]. The second one, which has been developed in [7] by Denneberg and
Grabisch, is the interaction transform. It can be viewed as a generalization of
the Shapley value [22], and brings very useful tools to multicriteria decision
making [11].

Recently, set functions with two arguments have begun to play an important
rôle in decision theory, leading to the concepts of bi-cooperative games [1],
ternary voting games [9], and bi-capacities [13,14]. Let us describe first the
motivation behind bi-capacities, as given in [14] in the framework of multicri-
teria decision making. We consider a set X of alternatives in a multicriteria
decision problem, where each alternative is described by a set of n real-valued
scores (a1, . . . , an). Suppose one wants to compute a global score of this al-
ternative by the Choquet integral w.r.t. a capacity µ, namely Cµ(a1, . . . , an).
Then it is well known that the correspondence between the capacity and the
Choquet integral is µ(A) = Cµ(1A, 0Ac), ∀A ⊆ N , where (1A, 0Ac) is an alterna-
tive having 1 as score on all criteria in A, and 0 otherwise. Such an alternative
is called binary alternative, and the above result says that the capacity repre-
sents the overall score of all binary alternatives.

However, in many practical situations, it is suitable to score alternatives on a
bipolar scale, i.e., with a central value 0 having the meaning of a borderline
between positive scores, considered as good, and negative scores, considered
as bad. It has been observed that most often human decision makers have a
different behaviour when faced with alternatives having positive or negative
scores, which means that a decision model based solely on the classical Cho-
quet integral, hence on binary alternatives, is no more sufficient. One should,
in the general case, consider all ternary alternatives, i.e., alternatives of the
form (1A,−1B, 0(A∪B)c). Clearly, we need two arguments to denote the overall
score of ternary alternatives, namely v(A,B), with A,B ⊆ N being disjoint.
This defines bi-capacities, by analogy with capacities.

Motivations in game theory are similar. In classical voting games, v(A) repre-
sents the result of a vote concerning some bill, if all voters in A vote in favor
of the bill, the remaining voters being against. In ternary voting games, each
voter has three alternatives: voting in favor, against, or abstain. Then v(A,B)
depicts the result of the vote when voters in A vote in favor, voters in B vote

2



against, and the other ones abstain.

Hence, such “bi-set” functions enable a richer modelling of situations in deci-
sion making. The question is then to recover the usual tools associated with
set functions, namely the Möbius and interaction transforms. The aim of this
paper is precisely to fill this gap. We provide a construction of these two trans-
forms, in the same spirit as the one done by Denneberg and Grabisch in [7],
so that the present paper can be seen as a natural continuation of the former.
For this reason, we will remain at a general level and deal with bi-set fuc-
ntions, instead of more specific cases, as bi-capacities, bi-cooperative games,
etc. We will see that analogous results are obtained, despite the fact the the
underlying structure is very different.

The organization of the paper is as follows. Section 2 provides necessary back-
ground on set functions and bi-set functions, Section 3 recalls the construction
of the interaction transform for set functions as done in [7], Section 4 intro-
duces operators on Q × Q, where Q is the set of pairs of disjoint subsets of
N , while Sections 5 and 6 introduce particular cases of such operators, called
level operators and cardinality operators. Section 7 gives the expression of the
inverse interaction transform, which enables to have a commutative diagram
between bi-set functions and their Möbius and interaction transform.

To simplify notations, cardinality of sets S, T, . . . will be denoted by the cor-
responding lower case letter s, t, . . ..

2 Set functions and bi-set functions

We introduce necessary concepts for the sequel. We consider a finite set N :=
{1, . . . , n} which can be thought as the set of criteria, states of nature, voters,
etc., depending on the application. We set P := P(N). We know that (P,⊆)
is the Boolean lattice 2n, and any A ∈ P can be written as a binary tuple
x = (x1, . . . , xn) ∈ {0, 1}n, where xi = 1 iff i ∈ A.

A set function v on N is a real-valued mapping on P. Several particular cases
are of interest. A set function vanishing on the empty set is called a game,
while a game satisfying monotonicity, i.e. v(A) 6 v(B) whenever A ⊆ B, is
called a capacity [4], or non-additive measure [6], or fuzzy measure [23]. Note
that when subsets are considered as binary tuples, set functions are called
pseudo-Boolean functions [16].
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For any C ⊆ N , the unanimity game uC is defined as:

uC(A) :=







1, if A ⊇ C

0, otherwise
, A ⊆ N.

Remark that u∅ is not a game since u∅(∅) = 1.

The Möbius transform mv : P −→ N [19] of a set function v is the unique
solution of the equation

v(A) =
∑

B⊆A

mv(B), ∀A ⊆ N, (1)

and is given by

mv(A) :=
∑

C⊆A

(−1)a−c v(C), ∀A ⊆ N. (2)

Eq. (1) can be rewritten as, using unanimity games:

v(A) =
∑

C∈P

mv(C) uC(A), A ⊆ N. (3)

Hence, the set of unanimity games forms a 2n-dimensional basis of set func-
tions, and the Möbius transform represents the coordinates of v in that basis.

For any S belonging to P \ {∅}, the derivative of v with respect to S at point
K ∈ P(N \ S) is given by [15]:

∆Sv(K) :=
∑

S′⊆S

(−1)s−s
′

v(K ∪ S ′).

We set ∆∅v(K) := v(K), for any K ⊆ N .

The interaction index has been proposed by Grabisch [12] and expresses the
interaction among a coalition (group) S ⊆ N of elements:

Iv(S) :=
∑

K⊆N\S

(n− k − s)!k!

(n− s+ 1)!
∆Sv(K). (4)

This definition extends in fact the Shapley value [22] φv and the interac-
tion index Iij for a pair of elements i, j in N , introduced by Murofushi and
Soneda [17]. In particular, the Shapley value is defined by

φvi :=
∑

K⊆N\i

(n− k − 1)!k!

n!
∆iv(K), i ∈ N.

We have Iv({i}) = φvi . As it will be explained in the next section, Iv can be
seen as a transform of v, like the Möbius transform.
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Let us denote by Q(N) or simply Q if there is no fear of ambiguity the set of
all pairs of disjoint subsets:

Q := {(A,B) ∈ P × P | A ∩ B = ∅} .

We endow Q with the following partial order:

(A,B) v (C,D) ⇔ A ⊆ C and B ⊇ D.

It is easy to see that (Q,v) is the lattice 3n, noting that any element (A,B)
of Q can be written as a ternary tuple x = (x1, . . . , xn) ∈ {−1, 0, 1}n, where
xi = 1 iff i ∈ A and xi = −1 iff i ∈ B) [14] 1 . Supremum and infimum are
respectively

(A,B) t (C,D) = (A ∪ C,B ∩D),

(A,B) u (C,D) = (A ∩ C,B ∪D), (A,B), (C,D) ∈ Q.

Top and bottom of Q are respectively denoted by > := (N, ∅) and ⊥ := (∅, N).
We give as an illustration (Q,v) for n = 3 in Fig. 1.
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Fig. 1. The lattice Q for n = 3

A bi-set function v on N is a real-valued mapping on Q. As explained in
the introduction, particular cases of interest are bi-cooperative games, where

1 Equivalently, one could have chosen a different coding, as 0, 1 and 2 instead of
−1, 0 and 1. Our choice, which is unimportant in this paper, is just suited to the
original motivation in decision making explained in the introduction.
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it is required that v(∅, ∅) = 0, and bi-capacities which require in addition
monotonicity, i.e. (A,B) v (C,D) implies v(A,B) ≤ v(C,D).

The lattice (Q,v) being distributive, by Birkhoff’s theorem [2], any element
of the lattice can be written as a unique irredundant supremum over a set of
join-irreducible elements (elements having only one predecessor). In the case
of (Q,v) the set of all join-irreducible elements (which are represented by
black circles in Fig. 1) is

J (Q) = {(∅, ic), (i, ic), i ∈ N} ,

and the unique irredundant decomposition writes [14]:

(A,B) =
⊔

i∈A

(i, ic) t
⊔

j∈N\(A∪B)

(∅, jc).

This permits to define layers in Q as follows: for k in N0 := {0, . . . , n},
layer k contains all elements (A,B) whose decomposition has exactly k join-
irreducible elements, which is equivalent to say that |B| = n − k. We denote
by ‖ · ‖ the function which maps to every element of Q the layer to which it
belongs.

It is convenient for the sequel to define the following linear order ≤ on Q. Re-
calling that any element of Q can be written as a ternary tuple x ∈ {−1, 0, 1}n

or equivalently in {0, 1, 2}n, we can assign to each element (A,B) of Q an
integer n(A,B) whose coding in basis {0, 1, 2} is precisely the ternary tuple x
associated to (A,B). For example, taking n = 4 and the element ({1}, {3}),
the corresponding tuple is (2, 1, 0, 1), which gives the number 2×30 +1×31 +
0 × 32 + 1 × 33 = 32. Obviously, the correspondence between integers and el-
ements of Q is unique. Hence, we say that (A,B) ≤ (C,D) iff n(A,B) ≤ n(C,D).
This leads to the following order:

· · · (2, 3) (12, 3)
[

(∅, 12) (∅, 2) (1, 2)
[

(∅, 1)
[

(∅, ∅)
]

(1, ∅)
]

(2, 1) (2, ∅) (12, ∅)
]

(3, 12) (3, 2) · · ·

(5)
The brackets are there to enhance the fact that this order is in some sense
“recursive”, since it can be built by an initial pattern (which is (∅, ∅)) and
a systematic way of augmenting the current pattern, which is to add a new
element of N either to the left part or to the right part of any element of the
current pattern.

The Möbius transform mv of v is the unique solution of the equation

v(A,B) =
∑

(C,D)v(A,B)

mv(C,D), (A,B) ∈ Q, (6)
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and is given by [14]:

mv(A,B) :=
∑

(C,D)v(A,B)
D∩A=∅

(−1)a−c+d−b v(C,D), (A,B) ∈ Q. (7)

We extend the notion of derivative of a set function to bi-set functions. As bi-
set functions are defined on Q, so should be the variables used in the derivation.
For any i ∈ N , the derivatives with respect to any join-irreducible elements
(i, ic) and (∅, ic) of v at point (K,L) are given by [14]:

∀(K,L) ∈ Q(N \ i), ∆(i,ic)v(K,L) := v(K ∪ i, L) − v(K,L), and

∀(K,L) ∈ Q with i ∈ L, ∆(∅,ic)v(K,L) := v(K,L \ i) − v(K,L).

These derivatives are non negative whenever v is monotonic. Higher order
derivatives can be defined recursively for any (S, T ) ∈ Q \ {(∅, N)} by:

∆(S,T )v(K,L) := ∆(i,ic)(∆(S\i,T∪i)v(K,L))

if (i, ic) belongs to the irredundant decomposition of (S, T ), or

∆(S,T )v(K,L) := ∆(∅,ic)(∆(S,T∪i)v(K,L)),

if (∅, ic) belongs to the irredundant decomposition of (S, T ).
We set ∆(∅,N)v(K,L) = v(K,L), for any (K,L) ∈ Q.

In [14], the following definition of the interaction index for bi-set functions has
been given, as a natural generalization of the definition for set functions:

Iv(S, T ) :=
∑

K⊆T

(t− k)!k!

(t+ 1)!
∆(S,T )v(K, (K ∪ S)c), ∀(S, T ) ∈ Q. (8)

3 Interaction transform for set functions

We recall in this section main results given in [7], where a new invertible
transform of set functions is introduced, called the interaction transform. The
authors lay down a general framework of transformations of set functions by
introducing an algebraic structure on set functions and operators (set functions
of two variables), which enable the writing of the formulae given in the previous
section under a simplified algebraic form.

In the first place, we recall main definitions. We call operator on P a real-
valued function on P×P, and introduce a multiplication ? between operators,
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and between operators and set functions as follows. Let v be a set function
and Φ,Ψ some operators; for A1, A2 belonging to P, we have:

(Φ ?Ψ)(A1, A2) :=
∑

C∈P

Φ(A1, C) Ψ(C,A2),

(Φ ? v)(A1) :=
∑

C∈P

Φ(A1, C) v(C),

(v ? Φ)(A2) :=
∑

C∈P

v(C) Φ(C,A2).

Let us now consider a subset GP of these operators 2 , defined by the operators
Φ which have the property

Φ(A1, A2) =







1, if A1 = A2

0, if A1 6⊆ A2,

for any A1, A2 ∈ P. The family GP endowed with the operation ? is a group.
Into, we found the so-called operators Zeta (ZP) and Möbius (Z−1

P
) defined

by:

ZP(A1, A2) :=







1, if A1 ⊆ A2

0, otherwise
, A1, A2 ∈ P,

Z−1
P

(A1, A2) =







(−1)a2−a1 , if A1 ⊆ A2

0, otherwise
, A1, A2 ∈ P.

Then, Equations (3) and (2) can be written as:

v = mv ? ZP and mv = v ? Z−1
P
,

A central role is played by the operator ΓP ∈ GP,

ΓP(A1, A2) :=







1

a2 − a1 + 1
, if A1 ⊆ A2

0, else
, (9)

which is called the inverse Bernoulli operator. This name will be justified in
Section 7. Actually, we have the relation

Iv = ΓP ? m
v.

2 The sets and functions denoted with the suffix P are sets and functions defined
on P refering to [7].
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We call level operator an operator Φ satisfying

Φ(A1, A2) =







Φ(∅, A2 \ A1), if A1 ⊆ A2

0, otherwise
,

and the set of all level operators is denoted by G′
P. Endowed with ?, G′

P is a
subgroup of GP. Let us introduce

gP := {ϕ : P → R | ϕ(∅) = 1} ,

and associate with any level operator Φ the function ϕΦ of gP defined by
ϕΦ(·) := Φ(∅, ·). Indeed, it is easy to see that ϕΦ determines Φ uniquely: let
ϕ be in gP; if we define

Φϕ(A1, A2) :=







ϕ(A2 \ A1), for A1 ⊆ A2,

0, else
, A1, A2 ∈ P,

we have Φϕ = Φ iff ϕ := ϕΦ. Now, if we define the operation ? between two
elements ϕ, ψ of gP by

ϕ ? ψ(A) := Φϕ ? Φψ(∅, A), A ∈ P,

then (G′
P, ?) and (gP, ?) are isomorphic. ϕ ? ψ is the convolution of ϕ, ψ ∈ gP,

ϕ ? ψ(A) =
∑

C⊆A

ϕ(C)ψ(A \ C), A ∈ P.

Since the inverse Bernoulli operator is a level operator, its corresponding func-
tion γP := ϕΓP

is:

γP(A) =
1

a+ 1
, A ∈ P.

A cardinality function on P is an element of gP that only depends on the
cardinality of the variable. The above inverse Benoulli function is an example
of cardinality function. We denote by cP the set of all cardinality functions,
and endowed with ?, cP is subgroup of gP. To each cardinality function ϕ we
associate its cardinal representation fϕ in the set

r := {f : N0 → R | f(0) = 1}

in a bijective way; for any A ∈ P

fϕ(|A|) = ϕ(A).

Conversely, for f ∈ r, we put

ϕf,P(A) = f(a), A ∈ P.
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Once more, r is an Abelian group with fδ := 1{0} as neutral element, and
where the convolution operation is, for any f, g ∈ r, A ∈ P

f ? g(|A|) := ϕf,P ? ϕg,P(A),

that is to say, for any m ∈ N0:

f ? g(m) =
m∑

k=0

(

m

k

)

f(k) g(m− k). (10)

Hence, (r, ?) is isomorphic to (cP, ?). We will denote f ?−1 the inverse of an
element f of r.

4 Operators on Q × Q

We will proceed in the same way for bi-set functions, the basis working set
being Q. We consider real-valued functions on Q in one and two variables,
the latter ones being called operators, and we introduce a multiplication ?
between operators, and between a bi-set function and an operator. Let v be
a bi-set function and Φ,Ψ some operators; for (A1, B1), (A2, B2) belonging to
Q, we define:

(Φ ?Ψ)((A1, B1), (A2, B2)) :=
∑

(C,D)∈Q

Φ((A1, B1), (C,D)) Ψ((C,D), (A2, B2)),

(Φ ? v)(A1, B1) :=
∑

(C,D)∈Q

Φ((A1, B1), (C,D)) v(C,D),

(v ?Ψ)(A2, B2) :=
∑

(C,D)∈Q

v(C,D) Φ((C,D), (A2, B2)).

Endowed with ?, the set of these operators contains the neutral element ∆
defined by

∆((A1, B1), (A2, B2)) :=







1, if (A1, B1) = (A2, B2)

0, else
, (A1, B1), (A2, B2) ∈ Q,

and satisfies associativity. When it exists, we will denote Φ−1 the inverse of
an operator Φ, that is to say the operator verifying Φ ? Φ−1 = Φ−1 ? Φ = ∆.

The following proposition deals with a subset of the set of operators which is
important for our study.
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Proposition 1 The family G of operators defined by:

Φ ∈ G ⇐⇒ Φ((A1, B1), (A2, B2)) =







1, if (A1, B1) = (A2, B2)

0, if (A1, B1) 6v (A2, B2)
,

(A1, B1), (A2, B2) ∈ Q,

endowed with the operation ? is a group. The inverse Φ−1 of Φ in G computes
recursively through

Φ−1((A1, B1), (A1, B1)) = 1,

Φ−1((A1, B1), (A2, B2)) = −
∑

(C,D)∈
[(A1,B1),(A2,B2)[

Φ−1((A1, B1), (C,D)) Φ((C,D), (A2, B2)).

PROOF. (G, ?) is a group if:

• G is stable under ?.
• ? is an associative operation.
• ∆ is the neutral element.
• If Φ ∈ G, there is an inverse Φ−1 in G: Φ ? Φ−1 = Φ−1 ? Φ = ∆.

If we fix a linear order on Q (see for instance the linear order ≤ p.6), we can
identify Q with {1, 2, . . . , 3n} and the operation ? becomes ordinary multipli-
cation of square matrices or of a vector with a matrix. This shows that the
operation ? is distributive with respect to the usual sum of functions. ? is also
associative. Furthermore, operator ∆ defined above is clearly the unique left
and right neutral element since it corresponds to the identity matrix.

Concerning the fourth property, it is sufficient to show that there is an element
Φ−1 belonging to G verifying Φ−1 ? Φ = ∆; under this condition, Φ ? Φ−1 =
Φ ?∆ ? Φ−1 = Φ ? Φ−1 ? Φ ? Φ−1 = ∆ ?∆ = ∆. Let us construct Φ−1. If Φ−1

exists (and belongs to G):

Φ−1?Φ((A1, B1), (A2, B2)) =
∑

(C,D)∈
[(A1,B1),(A2,B2)]

Φ−1((A1, B1), (C,D)) Φ((C,D), (A2, B2)).

If (A1, B1) v (A2, B2) with (A1, B1) 6= (A2, B2), then:

Φ−1((A1, B1), (A2, B2)) Φ((A2, B2), (A2, B2))+
∑

(C,D)∈
[(A1,B1),(A2,B2)[

Φ−1((A1, B1), (C,D)) Φ((C,D), (A2, B2)) =

∆((A1, B1), (A2, B2)) = 0.
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That is to say:

Φ−1((A1, B1), (A2, B2)) = −
∑

(C,D)∈
[(A1,B1),(A2,B2)[

Φ−1((A1, B1), (C,D)) Φ((C,D), (A2, B2)).

Conversely, the operator given above, taking value 1 for every ((A,B), (A,B))
of Q × Q and 0 for every (A1, B1), (A2, B2) such that (A1, B1) 6v (A2, B2),
satisfies Φ−1 ? Φ = ∆. 2

We can find inside the set G the Zeta operator Z, defined by:

Z((A1, B1), (A2, B2)) :=







1, if (A1, B1) v (A2, B2)

0, otherwise
, (A1, B1), (A2, B2) ∈ Q,

which allows us to rewrite Equation (6) as:

v = mv ? Z.

Similarly, the Möbius operator, defined as the inverse of Z, permits to rewrite
Equation (7)) as:

mv = v ? Z−1,

and Proposition 1 gives, for any (A1, B1), (A2, B2) ∈ Q

Z−1((A1, B1), (A2, B2)) =







(−1)a2−a1+b1−b2, if







(A1, B1) v (A2, B2)

B1 ∩ A2 = ∅

0, otherwise

,

as expected (see (7)).

In the previous section, the interaction index of a set function was expressed
through the GP operator ΓP (see (9)), which facilitated the inversion of (4).
We shall undertake to do the same thing for bi-set functions. From formula (8)
and according to an expression of the derivatives based on Möbius transform
[14], we have for every (S, T ) ∈ Q:

Iv(S, T ) =
∑

(S′,T ′)∈
[(S,T ),(S∪T,∅)]

1

t− t′ + 1
mv(S ′, T ′). (11)
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As a result, if we set down:

Γ((A1, B1), (A2, B2)) :=







1

b1 − b2 + 1
, if (A1, B1) v (A2, B2) v (A1 ∪ B1, ∅)

0, otherwise
,

(12)
we can write from (11) the relation:

Iv = Γ ? mv. (13)

Let us notice that Γ is an operator in G. As ΓP, we call it the inverse Bernoulli
operator.

Γ has a similar expression to that of ΓP (see (9)):

ΓP(A1, A2) :=







1

a2 − a1
, if A1 ⊆ A2

0, otherwise
, A1, A2 ∈ P,

with however a rather unexpected inequality (A2, B2) v (A1 ∪ B1, ∅) which
will complicate the continuation of the work. Nevertheless, at this point, we
can set the following fundamental result, already known in the case of set
functions (see Fig. 2)

Theorem 2 For any bi-set function v, the triangular diagram where appear
the functions v,mv, Iv and the operators of transition Z,Γ is commutative.

PROOF. Commutativity between v and mv is clear according to Equation
(6). The one between mv and Iv is known due to (13). By transitivity, the
result follows. 2

v Iv

mv

Γ ? (• ? Z−1)

(Γ−1 ? •) ? Z

• ? Z−1

• ? Z Γ−1 ? •

Γ ? •

Fig. 2. Three ways of representing bi-set functions

5 Level operators

Our aim being now the inversion of Γ, a few results about lattice theory need
to be brought in. First, the double inequality in (12) suggests us to introduce
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a new binary relation on Q, denoted by E:

(A1, B1) E (A2, B2) if and only if






(A1, B1) v (A2, B2)

A2 ⊆ A1 ∪ B1

or equivalently







A1 ⊆ A2 ⊆ A1 ∪ B1

B1 ⊇ B2.

It is easy to see that E is an ordered relation included in v.

Moreover, as we use the notation [(A1, B1), (A2, B2)] to denote the closed in-
terval of (Q,v) delimited by (A1, B1) and (A2, B2), we will use the notation
b(A1, B1), (A2, B2)e for the same of (Q,E) — by replacing, if needed, b by c
or e by d if we deprive the interval of the associated bound. We also note

Q(A,B) := b⊥, (A,B)e.

We have the following proposition which is useful for the sequel:

Proposition 3 For any (A,B) of Q, the ordered subset (Q(A,B),E) of (Q,E)
is a Boolean lattice isomorphic to (P(Bc),⊆) by the mapping:

q(A,B) :Q(A,B) → P(Bc)

(C,D) 7→ Dc. (14)

In particular, (Q>,E) is a Boolean lattice isomorphic to (P,⊆).

PROOF. We know that (P(Bc),⊆) is a Boolean lattice. To show that (Q(A,B),E
) is a lattice isomorphic to (P(Bc),⊆), it suffices to show that q(A,B) as defined
above is an order-isomorphism, i.e., that q(A,B) is a bijection from (Q(A,B),E)
to (P(Bc),⊆), and that for any pair of elements (C,D), (C ′, D′) of (Q(A,B),E)
we have (C,D) E (C ′, D′) iff q(A,B)(C,D) ⊆ q(A,B)(C

′, D′) [5].

First, observe the following equivalences:

(C,D) ∈ Q(A,B) iff







C ⊆ A ⊆ C ∪D

B ⊆ D

C ∩D = ∅

iff







A ⊆ C ∪D

B ⊆ D

Ac ⊆ Cc

C ∩D = ∅

iff







A = C ∪ (A ∩D)

B ⊆ D

C ∩D = ∅

.

Let us show that q(A,B) is a bijection. Obviously q(A,B) is onto (P(Bc),⊆).
Moreover, Dc ⊆ Bc has a unique antecedent by q(A,B), which is (C,D), with
C := A \ (A ∩D), by the above equivalence.
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Secondly, consider (C,D) E (C ′, D′). ThenD ⊇ D′ which means that q(A,B)(C,D) =
Dc ⊆ D′c = q(A,B)(C

′, D′). Conversely, if Dc ⊆ D′c, the inverse images are
(A\(A∩D), D) and (A\(A∩D′), D′). Since A\(A∩D) ⊆ A\(A∩D′) ⊆ A∪D,
q−1
(A,B)(D) E q−1

(A,B)(D
′), and q(A,B) is order-isomorphic. 2

Endowed with this new order relation, we can define the following operation
in Q:

Definition 4 The strict difference operation in Q is defined for every
((A1, B1), (A2, B2)) ∈ Q × Q such that (A1, B1) E (A2, B2) by:

(A2, B2) \\(A1, B1) := (A2 \ A1, (B1 \B2)
c).

Note that [(A2, B2) \\(A1, B1)] t (A1, B1) = (A2, B2).

One can give a graphic interpretation of the E order and the \\ operation:
we call vertices of Q any element (A,B) such that A ∪ B = N , since they
coincide with the vertices of [−1, 1]n. In the same way, we define the vertices
of any sub-lattice of Q. So, for any (A,B) ∈ Q, Q(A,B) is the set of vertices of
the sub-lattice [⊥, (A,B)]. Moreover, two elements (C1, D1), (C2, D2) of Q are
said complementary w.r.t. an element (A,B) of Q if (C1, D1), (C2, D2) ∈ Q(A,B)

and:

(A,B) \\(C1, D1) = (C2, D2), which is equivalent to

(A,B) \\(C2, D2) = (C1, D1).

In particular, the pairs of elements which are complementary w.r.t. > are the
pairs {(A,Ac), (Ac, A)}, for every A ⊆ N . As a consequence, for (A,B) ∈ Q,
complementarity w.r.t. an element of Q(A,B) entails the same property than
complementarity w.r.t. an element of P: if (C,D) belongs to Q(A,B), (C,D) and
its complement w.r.t. (A,B) are opposite vertices in the sub-lattice Q(A,B).

Like the set difference in P (cf. [7]), the strict difference operation in Q will
allow us to transform some G operators into operators of a single variable. In
addition, the ? operation will be transformed into a convolution operation.

Now, let us derive results for Q × Q operators.

Definition 5 A level operator Φ is an operator in G satisfying for any
(A1, B1), (A2, B2) belonging to Q:

Φ((A1, B1), (A2, B2)) =







Φ(⊥, (A2, B2) \\(A1, B1)), if (A1, B1) E (A2, B2)

0, otherwise
.

We will denote G′ the set of level operators.
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We can notice that Γ is a level operator, contrary to Z and Z−1, even if in the
case of set functions, we can find in the G′

P
set the ΓP operator but also the

Zeta and Möbius P × P operators.

Let us introduce g := {ϕ : Q → R | ϕ(⊥) = 1}, and the mapping Λ : G′ −→ g,
which associates to any level operator Φ the function Λ(Φ), also denoted ϕΦ

for convenience:

ϕΦ(A,B) := Φ(⊥, (A,B)), (A,B) ∈ Q.

Then ϕ determines Φ uniquely: let ϕ ∈ g, if we define

Φϕ((A1, B1), (A2, B2)) =







ϕ((A2, B2) \\(A1, B1), for (A1, B1) E (A2, B2)

0, otherwise
,

we have Φϕ = Φ iff ϕ := ϕΦ. Hence, Λ is a bijection.

We define the operation ? on g by

ϕ ? ψ(A,B) := Φϕ ? Φψ(⊥, (A,B)), (A,B) ∈ Q.

We have

ϕ ? ψ(A,B) =
∑

(C,D)v(A,B)

Φϕ(⊥, (C,D)) Φψ((C,D), (A,B))

=
∑

(C,D)E(A,B)

Φϕ(⊥, (C,D)) Φψ((C,D), (A,B))

=
∑

(C,D)E(A,B)

ϕ(C,D)ψ((A,B) \\(C,D)).

ϕ ? ψ is the convolution of ϕ, ψ ∈ g.

Proposition 6 (G′, ?) is an Abelian group isomorphic to (g, ?) through the
group isomorphism Λ.

PROOF.

• Let us show that G′ is subgroup of G. ∆ ∈ G′ is obvious. G′ is stable for the
operation ?: let (A1, B1), (A2, B2) be Q such that (A1, B1) E (A2, B2) and
Φ,Ψ ∈ G′:

Φ ?Ψ((A1, B1), (A2, B2))

=
∑

(C,D)∈
b(A1 ,B1),(A2,B2)e

Φ((A1, B1), (C,D)) Ψ((C,D), (A2, B2))

=
∑

(C,D)∈
b(A1 ,B1),(A2,B2)e

Φ(⊥, ((C,D) \\(A1, B1))) Ψ(⊥, [(A2, B2) \\(C,D)]).
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Let (C ′, D′) := (C,D) \\(A1, B1), we have

Φ ?Ψ((A1, B1), (A2, B2))

=
∑

(C′,D′)∈
b⊥,(A2,B2)\\(A1 ,B1)e

Φ(⊥, (C ′, D′)) Ψ(⊥, (A2, B2) \\[(C
′, D′) t (A1, B1)])

=
∑

(C′,D′)∈
b⊥,(A2,B2)\\(A1 ,B1)e

Φ(⊥, (C ′, D′)) Ψ(⊥, [(A2, B2) \\(A1, B1)] \\(C
′, D′))

=
∑

(C′,D′)∈
b⊥,(A2,B2)\\(A1 ,B1)e

Φ(⊥, (C ′, D′)) Ψ((C ′, D′), (A2, B2) \\(A1, B1))

= Φ ?Ψ(⊥, (A2, B2) \\(A1, B1)).

We now show that the inverse of an element of G′ lies in G′. By Prop. 1,
we know that the inverse of any Φ ∈ G is such that Φ((A,B), (A,B)) = 1,
and defined recursively as

Φ−1((A1, B1), (A2, B2)) =

−
∑

(C,D)∈[(A1,B1),(A2,B2)[

Φ−1((A1, B1), (C,D))Φ((C,D), (A2, B2)),

for (A1, B1) @ (A2, B2), and 0 otherwise. We suppose now that Φ ∈ G′.
Then Φ−1((A,B), (A,B)) = 1 = Φ−1(⊥,⊥), hence Φ−1 has the property of
level operators for the pair ((A,B), (A,B)). Using the above formula and
the definition of level operators, we obtain:

Φ−1((A1, B1), (A2, B2)) =

−
∑

(C,D)∈b(A1,B1),(A2,B2)d

Φ−1((A1, B1), (C,D))Φ(⊥, (A2, B2) \\(C,D)),

for (A1, B1) � (A2, B2), and 0 otherwise. It remains to show that
Φ−1((A1, B1), (A2, B2)) = Φ−1(⊥, (A2, B2)\\(A1, B1)), and we do it by recur-
rence on (A2, B2). We know it is already true for (A2, B2) = (A1, B1), and let
us suppose it is true for any (C,D) such that (A1, B1) E (C,D) � (A2, B2).
Then the above formula writes:

Φ−1((A1, B1), (A2, B2))

= −
∑

(C,D)∈b(A1,B1),(A2,B2)d

Φ−1(⊥, (C,D) \\(A1, B1))Φ(⊥, (A2, B2) \\(C,D))

=
∑

(C′,D′)∈b⊥,(A2,B2)\\(A1,B1)d

Φ−1(⊥, (C ′, D′))Φ((C ′, D′), (A2, B2) \\(A1, B1))

= Φ−1(⊥, (A2, B2) \\(A1, B1)),

where we have put as above (C ′, D′) := (C,D) \\(A1, B1).
• We show that Λ is a group isomorphism. We already know that Λ is bijective,

it remains to show that Λ(Φ ? Ψ) = Λ(Φ) ? Λ(Ψ), with Φ,Ψ ∈ G′. Using
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previous notations we have:

ϕΦ ? ϕΨ(A,B) =
∑

(C,D)E(A,B)

ϕΦ(C,D)ϕΨ((A,B) \\(C,D))

=
∑

(C,D)E(A,B)

Φ(⊥, (C,D)) Ψ(⊥, (A,B) \\(C,D))

=
∑

(C,D)E(A,B)

Φ(⊥, (C,D)) Ψ((C,D), (A,B))

= Φ ?Ψ(⊥, (A,B))

= ϕΦ?ψ(A,B).

The neutral element ∆ of G becomes the neutral element δ of g,

δ(A,B) := ϕ∆(A,B) =







1 if (A,B) = ⊥,

0 otherwise.

• The convolution being a commutative operation, (g, ?) is an Abelian group
and so is (G′, ?): let ϕ, ψ be in g and (A,B) in Q:

ψ ? ϕ(A,B) =
∑

(C,D)E(A,B)

ψ(C,D)ϕ((A,B) \\(C,D))

=
∑

(C′,D′)E(A,B)

ψ((A,B) \\(C ′, D′))ϕ(C ′, D′),

where (C ′, D′) := (A,B) \\(C,D), thus

ψ ? ϕ(A,B) = ϕ ? ψ(A,B).

2
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The inverse of ϕ ∈ g will be denoted ϕ?−1 as it is common for convolutions.

As a consequence, we can express the inverse Bernoulli function γ := ϕΓ.
Thanks to what we have seen before, we can directly write

γ(A,B) =
1

n− b + 1
, (A,B) ∈ Q. (15)

γ?−1 is called the Bernoulli function.

6 Cardinality operators

A real-valued function on Q is called a cardinality function if it only depends
on the layer of the variable, and is equal to 1 at ⊥. We denote by c the set of
these functions. We recall that r := {f : N0 −→ R | f(0) = 1}, and introduce
the mapping λ : c −→ r, which associates to each cardinality function ϕ its
cardinal representation λ(ϕ), also denoted by fϕ for convenience, defined by:

fϕ(‖(A,B)‖) = ϕ(A,B), (A,B) ∈ Q.

Conversely, for any f ∈ r we define ϕf((A,B)) := f(‖(A,B)‖), (A,B) ∈ Q.
Thus, λ is bijective.

Furthermore, we call cardinality operator of Q × Q (resp. P × P) any level
operator Φ whose associated function ϕΦ of g (resp. gP) belongs to c (resp.
cP). We denote by G′′ (resp. G′′

P
) the set of cardinality operators. As shown by

the following Lemma, (c, ?) is a subgroup of (g, ?).

Lemma 7 (fundamental) (c, ?) is an Abelian group isomorphic to r through
the group isomorphism λ, and the triangular diagram representing cP, c and
r is commutative.

PROOF.

• We already know that cP is isomorphic to r (cf. section 3).
• Let us show that λ : c → r is a group isomorphism. λ being bijective,

it remains to show that λ(ϕ ? ψ) = λ(ϕ) ? λ(ψ), for any ϕ, ψ in c. Using
previous notations, for m in N0, by (10), we have

fϕ ? fψ(m) =
m∑

k=0

(

m

k

)

fϕ(k) fψ(m− k).
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On the other hand, for (A,B) ∈ Q such that ‖(A,B)‖ = m (i.e., b = n−m):

fϕ?ψ(m) = ϕ ? ψ(A,B)

=
∑

(C,D)E(A,B)

ϕ(C,D)ψ((A,B) \\(C,D)
︸ ︷︷ ︸

(A\C,(D\B)c)

)

=
∑

(C,D)E(A,B)

fϕ(n− d) fψ(d− b).

Now, by the isomorphism q(A,B) of Proposition 3, we know that in the lattice
(Q(A,B),E), (C,D) E (A,B) corresponds to Dc ⊆ Bc, which entails:

fϕ?ψ(m) =
∑

Dc⊆Bc

fϕ(n− d) fψ(d− b)

=
∑

d6n
n−d6n−b

(

n− b

d− b

)

fϕ(n− d) fψ(d− b)

=
n∑

d=b

(

n− b

d− b

)

fϕ(n− d) fψ(d− b)

=
n−b∑

k=0

(

n− b

k

)

fϕ(n− b− k) fψ(k)

=
m∑

k=0

(

m

k

)

fϕ(k) fψ(m− k) because (r, ?) is Abelian,

= fϕ ? fψ(m).

c is indeed a group, and thus a subgroup of g.

2

Therefore, by (15) the inverse Bernoulli function for bi-set functions has cardi-
nal representation fγ(m) = 1

m+1
, m ∈ N0. In fact, it appears that fγ = fγP

.
This link with the previous result is fundamental in our work.

As a conclusion to these three sections, we can give the following recapitulative
result, illustrated by Figure 3.

Proposition 8 The diagram successively representing G′′
P

(cardinality opera-
tors for set functions), cP (cardinality functions for set functions), r (functions
defined on N0, equal to 1 in 0), c (cardinality functions for bi-set functions)
and G′′ (cardinality operators for bi-set functions) sets, is commutative.

PROOF. We have shown commutativity of the triangle cP, c, r in Lemma 7
(in particular, cP and c isomorphic through λ−1◦λP). Commutativity between
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G′′
P
, cP and G′′, c are given through isomorphisms ΛP and Λ restricted to G′′

P

and G′′. 2

G′′
P

G′
P

GP

G′′

G′

G

cP

gP

c

g

gP

r

Fig. 3. Summary diagram

• In the foreground, we have the set functions whereas in the background, the
bi-set functions are represented.

• On the left, the operators; on the right, the functions of a single variable.
• At the top, the triangular operators of G and GP; in the middle layer, the level

operators and the level functions; at the bottom, the cardinality operators
and the cardinality functions.

• The horizontal arrows correspond to group isomorphisms whereas the ver-
tical ones stand for subgroups relations.

7 The inverse interaction transform

We will now examine the automorphism inv on r defined by

inv : r → r

f 7→ f ?−1.

Proposition 3.1 of [7] explicitely gives us the expression of f ?−1. In particular,
the inverse of the function fγP

is given by Proposition 3.3:

f ?−1
γP

(0) = 1,

f ?−1
γP

(m) = −
1

m + 1

m−1∑

k=0

(

m + 1

k

)

f ?−1
γP

(k), m ∈ N.

This last formula extended to natural numbers is named the Bernoulli
sequence, which explains our former name inverse Bernoulli function
for γ and γP. The sequence (bm)m∈N of Bernoulli numbers starts with
1,−1/2, 1/6, 0,−1/30, . . . and it is well known that bm = 0 for m > 3 odd.
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Yet, since it is the inversion in G that interests us, we use Proposition 8 which
provides us the required inversion automorphism of G′′. On the other hand,
since fγ = fγP

, it is easy to find step by step, the inverse of Γ:

Γ 7→ γ 7→ fγ = fγP
7→ f ?−1

γ = f ?−1
γP

= (bm)m∈N0 7→ γ?−1 7→ Γ−1

This immediately implies:

Proposition 9 The Bernoulli operator Γ−1 is given by:

Γ((A1, B1), (A2, B2)) =







bb1−b2 if (A1, B1) E (A2, B2)

0 otherwise
,

(A1, B1), (A2, B2) ∈ Q,

where (bm)m∈N is the sequence of Bernoulli numbers.

As a consequence, thanks to the inversion of (13), we can write:

mv(A,B) =
∑

(C,D)D(A,B)

bb−d I
v(C,D)

=
b∑

m=0

bm

∑

(C,D)D(A,B)
b−d=m

Iv(C,D), (A,B) ∈ Q.

Finally, we obtain:

Theorem 10 For any bi-set function v, we have:

v(A,B) =
∑

(C,D)∈Q

b
n−|D|
n−|B∪D∪(Ac∩C)| I

v(C,D), (A,B) ∈ Q,

where

bpm :=
m∑

k=0

(

m

k

)

bp−k

for 0 6 m 6 p, and (bm)m∈N is the sequence of Bernoulli numbers.

PROOF. For all (A,B) ∈ Q, according to (6) and Proposition 9 we have

v(A,B) =
∑

(C,D)v(A,B)

mv(C,D)

=
∑

(C,D)v(A,B)

∑

(E,F )D(C,D)

bd−f I
v(E, F )

=
∑

(E,F )∈Q

(
∑

(C,D)E(E,F )
(C,D)v(A,B)

bd−f

)

Iv(E, F ).
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Let us show that







(C,D) E (E, F )

(C,D) v (A,B)
iff (C,D) E (A ∩ E,B ∪ F ∪ (E ∩ Ac)):

First consider the “if” part. If we assume that







C ⊆ A ∩ E ⊆ C ∪D

B ∪ F ∪ (E ∩ Ac) ⊆ D
, we

have easily C ⊆ E, F ⊆ D, C ⊆ A and B ⊆ D. Moreover, A ∩ E ⊆ C ∪ D
and Ac ∩ E ⊆ D ⊆ C ∪ D thus E ⊆ C ∪ D. For the “only if” part, if






C ⊆ E ⊆ C ∪D

F ⊆ D

C ⊆ A

B ⊆ D

, then C ⊆ A ∩ E and A ∩ E ⊆ C ∪D are obvious. Next,

E ⊆ C ∪D and Ac ⊆ Cc thus E ∩ Ac ⊆ (C ∪D) ∩ Cc = D since C ∩D = ∅.
Finally, B ∪ F ∪ (E ∩ Ac) ⊆ D is verified.
Therefore, we can write thanks to Proposition 3

∑

(C,D)E(E,F )
(C,D)v(A,B)

bd−f =
∑

(C,D)E(A∩E,B∪F∪(E∩Ac))

bd−f

=
∑

Dc⊆(B∪F∪(E∩Ac))c

bd−f

=
n−|B∪F∪(E∩Ac)|

∑

k=0

(

n− |B ∪ F ∪ (E ∩ Ac)|

k

)

bn−f−k

= bn−fn−|B∪F∪(E∩Ac)|.

The result follows. 2

Let us notice that numbers bpm have been introduced in [7] to express a set
function v from its interaction index Iv:

v(A) =
∑

C∈P

b
|C|
|C∩A| I

v(C), A ∈ P.

It is easy to compute them from the sequence of Bernoulli (bp0 = bp for any
p ∈ N), and thanks to the recursion of the “Pascal’s triangle”:

bp+1
m+1 = bp+1

m + bpm, 0 6 m 6 p.

Furthermore, the coefficients bpm show the following symmetry:

bpm = (−1)p bpp−m, 0 6 m 6 p.
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