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Abstract: A new method for voltage dips monitoring in power networks is presented in 

this paper. This method is based on the space vector representation, which is a time-

dependent complex-valued quantity equivalent to the original three-phase voltages. In the 

case of non-faulted system voltages, the space vector follows a circle in the complex 

plane with a radius equal to the nominal voltage. This shape becomes an ellipse in the 

case of voltage dip, with parameters depending on the phase(s) in drop, dip magnitude 

and phase angle shift. The parameters of the space vector shape are determined by 

classical signal processing tools and are used to determine the dip time period, classify 

and finally characterize the measured power quality disturbance. Algorithms are detailed 

for each step of this automatic method and are validated on real measurement data.  

 

Keywords: power networks, power quality monitoring, voltage dips, three-phase 

transforms, signal processing. 

 

 

 

1. INTRODUCTION 
 
The power networks area undergoes constant 

technical and economical modifications due to the 

power market deregulation. Because of these new 

considerations power quality monitoring has become 

of major concern. Voltage dips are the most common 

types of power quality disturbances. Moreover, they 

lead to important economical losses and/or distorted 

quality of industrial products. Indeed, equipments 

have become more sensitive to such phenomena as a 

result of technology improvement and increased use 

of power electronics devices (Anderson and Nilson, 

2002; McGranaghan et al., 1993). Thus, voltage dips 

monitoring has become an essential requirement for 

power quality monitoring. 

The final objective of this work is to elaborate a 

method able to automatically detect and characterize 

measured voltage dips, and localize the original fault 

inside the monitored power network. However, this 

paper only deals with the first two points (dip 

detection and characterization), and can be viewed as 

the first step of this global project. 

Three-phase voltage dips being the most frequent 

power quality disturbance, main research interests are 

focused on their analysis. The time duration where 

the dip occurs is determined by segmentation 

algorithms applied to the three-phase voltages 

independently (Styvaktakis, 2002). The dip signature 

can be identified from voltage waveforms (Bollen and 

Zhang, 2003), from the comparison between RMS 

values of phase voltages and phase-to-phase voltages 

(Bollen and Styvaktakis, 2000), or well from 

symmetrical components (Bollen and Zhang, 2006). 

However, each of these techniques see the three-

phase measurement as three different dimensional 

quantities, and process each phase voltage 

independently, which is far from being optimal. 

In this paper, a new method for voltage dips analysis 

is developed. It is based on the space vector transform 

which merges the original three-phase measurements 

into an equivalent mono-dimensional complex-valued 

quantity called the space vector. This quantity can 

then be further analyzed by using signal processing 

tools in order to automatically detect and characterize 

measured voltage dips. 

This paper is organized as follows: Section II deals 

with voltage dips signatures as a function of fault type 

and location, system grounding and monitor’s 

connection; Section III describes the space vector 

transformation and its representation in the complex 

plane in case of voltage dips. Algorithms for dips 

segmentation, classification and characterization are 

presented in section IV, and illustrated with 

measurement data in section V. 
 

 

2. VOLTAGE DIPS 
 

In power networks, voltage dips are defined as short-

duration reductions in voltage magnitude at the 

fundamental frequency. They are generated by phase 

to ground or phase to phase faults that occur at one 

point of the network. Voltage dips propagate through 

the network, and can be observed at different 

locations thanks to voltage sensors. An observed 

voltage dip is characterized by its duration, magnitude 

and phase angle shift on each phase of the network. 

The last two parameters completely determine the dip 

type, also called “dip signature”. Obviously, a dip 

signature depends on power network parameters 

(system grounding, presence of transformers in the 

propagation path, connections of monitor, …), on the 



 

     

measurement location, and on fault characteristics 

(fault type and location in the power network). Fig. 1 

represents the most usual voltage dips signatures 

based on the so-called ABC classification (Bollen, 

1999). In this figure, each signature (from A to G) is 

represented by the complex voltages of each phase a, 

b, and c at the fundamental frequency of the network. 
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Fig. 1. Most usual voltage dip signatures. 
 

Type B, D and F voltage dips are characterized with a 

major drop in one of the phases, and are called single 

phase voltage dips. Type C, E and G are characterized 

with major drops in two of the phases and are called 

double phase dips. The dip type A is called three 

phase dip. It has been shown (Zhang, 1999) that 

power network transformers usually remove the zero-

sequence voltage, defined as the sum of the three line 

voltages. Hence, only type A, C, D, F and G, which 

have a null zero-sequence voltage, will be considered 

in the following. 

The aim of the next sections is to describe a new 

simple and powerful method able to detect, classify 

and characterize potential voltage dips signatures at 

one point of a monitored network. This method 

should be considered as the first step of a power 

network monitoring system. But first, the three-phase 

voltage measurement has to be simplified by cleverly 

using a classical three-phase transformation. 
 

 

3. SPACE VECTOR AND VOLTAGE DIPS 
 

In this work, the measured quantities are three line 

voltages at one location of the monitored power 

network. Under mild conditions, this time-dependent 

real-valued three-phase quantity can be transformed 

into the complex-valued mono-dimensional space 

vector. This section theoretically defines this last 

quantity, and shows that the parameters of its shape in 

the complex plane depend on the dip signature. 
 

3.1 Space vector origin and definition. 
 

Symmetrical components have been first introduced 

by Fortescue in 1918 in order to analyse a sinusoidal 

three-phase quantity. Later, Lyon generalized this 

concept by applying it to time-dependant real- or 

complex-valued three-phase quantities, independently 

of their waveform. This general transformation, 

applied to a three-phase system ( )
a
x t , ( )

b
x t  and 

( )
c
x t , can be expressed under the following matrix 

form: 
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where 
2

3
j

a e
π

= . 

By analogy with Fortescue’s symmetrical 

components, the transformed components ( )d
x t , 

( )i
x t  and ( )0

x t  are called the direct-, indirect- and 

zero-sequence component, respectively. Together, 

they form the instantaneous symmetrical components. 

In our case, the nature of the measurements induces 

several simplifications. First, the analyzed three-

phase system is constituted by real-valued line 

voltages noted ( )
a
v t , ( )

b
v t  and ( )

c
v t . The 

corresponding direct- and indirect-sequence 

components ( )d
v t  and ( )i

v t  are then complex 

conjugated, and are completely equivalent. Second, 

the zero-sequence voltage 
0
( )v t  is supposed to be 

removed by one or several transformers present in the 

monitored power network. Under these assumptions, 

all the information contained in the original three-

phase system ( )
a
v t , ( )

b
v t  and ( )

c
v t  is contained in 

the direct-sequence component ( )d
v t . For sake of 

simplicity, this quantity is noted ( )v t  in the 

following, and is calculated thanks to Eq. (2): 

 ( ) ( ) ( ) ( )22

3
a b cv t v t av t a v t = + +  . (2) 

Finally, it can be noted that under the previous 

assumptions, Eq. (2)  transforms a three dimensional 

real quantity ( ( )
a
v t , ( )

b
v t , ( )

c
v t ) into a mono 

dimensional complex-valued one ( ( )v t ). This 

equivalent quantity, also called “space vector” in the 

literature, can be easily analysed thanks to classical 

signal processing tools as shown in the next sections. 
 

3.2 First harmonic approximation. 
 

In terms of first harmonic, line voltages can be 

viewed as sinusoidal quantities before, during and 

after the fault. Then, they can be represented by using 

Euler’s formula as the sum of two contra rotating 

complex components, with angular frequency 
0

2 fπ±  

rad/s (
0
f  is the power network fundamental 

frequency). For example, the line voltage of phase a 

can be written as: 
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0( ) cos(2 )
2

a aj f t j f ta
a a a

V
v t V f t e e

π ϕ π ϕπ ϕ + − += + = + . 

The space vector, derived from the previous 

expression reported in Eq. (2), becomes a sum of one 

positive and one negative angular frequency 

component: 

 ( ) 0 02 2j f t j f t

p n
v t V e V e

π π−= + , (3) 

where pj V

p pV V e
∠=  and nj V

n n
V V e

∠=  are complex 

numbers depending on line voltages magnitude and 

phase. 

From Eq. (3), it follows that the space vector 

represented in the complex plane rotates around the 

origin at the angular frequency 
0

2 fπ± , and follows 

an ellipse shape as shown in Fig. 2. Major axis 
maj
r , 

minor axis minr  and inclination angle ϕ  of this 

ellipse depend on 
p

V  and 
n

V  (Bachschmid et al., 

2004): 
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p n
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Fig. 2. First harmonic space vector approximation in 

the complex plane. 
 

In order to easily characterize the shape followed by 

the space vector in the complex plane, a shape index 

SI is introduced as follows: 

 min

maj

p n

p n

V Vr
SI

r V V

−
= =

+
. (5) 

Its value ranges from 0 to 1, and can be interpreted as 

the correlation coefficient between the space vector 

shape and a perfect circle: 

− if 1=SI , ( )v t  follows a circle shape, 

− if 10 << SI , ( )v t  follows an ellipse shape, 

− if 0=SI , ( )v t  follows a straight line. 

 

3.3 Space vector in case of voltage dips. 
 

Voltage dips lead to changes in the form followed by 

the space vector in the complex plane. The form 

parameters (SI, minr , majr  and ϕ ) are determined in 

this paragraph as a function of the dip type. 

 

Flawless case. In a balanced sinusoidal three phase 

system, the three line voltages have the same 

magnitude and their relative phase angle shift is 
3

2π
. 

Then, the space vector is only composed of a positive 

angular frequency component, and follows a circle in 

the complex plane, with radius equal to the nominal 

voltage V. In that case, its analytic expression is  

given by ( ) ( )0 02j f t
v t Ve

π ϕ+= . 

 

Single phase voltage dips. Single phase dip types 

considered here are type D and F. It has been shown 

in (Ignatova et al., 2005) that their space vector is 

composed of positive and negative angular frequency 

components and follows an ellipse shape in the 

complex plane. The characteristics of this ellipse are 

given in Table 1, where d  corresponds to the dip 

depth defined in Fig. 1, and 1, 2, 3n =  denotes the 

phase affected by the fault. 
 

Table 1 Single phase voltage dips. 
 

Space vector shape characteristics 
Dip 

type SI  ϕ  
minr  majr  

D 1 d−  ( )1
2 3

n
π π+ −  ( )Vd−1  V  

F 

( )
d

d

−

−

3

13

 

( )1
2 3

n
π π+ −  ( )Vd−1  V

d








−

3
1  

 

It can be noted that 
min
r  is directly linked to the dip 

depth d  and can be used to detect such dips. Once 

detected, the differentiation between these two single 

phase dips can be done thanks to majr , which is 

different in these two cases. Finally, the inclination 

angle ϕ  is used to determine which phase is subject 

to major drop: 
2

πϕ =  for phase a, 
6

πϕ =  for phase b 

and 
6

πϕ = −  for phase c. This last point is illustrated 

in Fig. 3. 
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Fig. 3. Space vector shape for a single phase dip type 

D on phase a, b and c respectively. 

 

Double phase voltage dips. In the same way, the 

shape followed by the space vector in the complex 

plane can be used to analyze double phase voltage 

dips. Table 2 gives the shape parameters in case of 

dip types C and G, where d still denotes the dip depth, 

but n  is now the phase not affected by the fault.  

Once again, the ellipse minor axis 
rmin
r  allows to 

detect these dips, its major axis 
rmaj
r  allows to 

determine the dip type (C or G), and its inclination 

Re

Im

v(t)

majr

minr

ϕ



 

     

angle ϕ  gives the phases affected by the dip: phase a 

if 0ϕ = , b if 
3

πϕ = −  and c if 
3

πϕ = .  

 

Table 2 Double phase voltage dips. 
 

Space vector shape characteristics 
Dip 

type SI  ϕ  
minr  majr  
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Three phase voltage dips. In this case, the space 

vector is only composed of one positive frequency 

component as in the non-faulted case, but with a 

smaller magnitude: 0 0(2 )
( ) (1 )

j f t
v t d Ve

π ϕ+= − . It 

follows a circle shape ( 1=SI ), with a radius 

depending on the dip severity (
min maj

(1 )r r d V= = − ). 

This dip characteristics are presented in Table 3. 
 

Table 3 Three phase voltage dips. 
 

Space vector shape characteristics 
Dip 

type SI  ϕ  
minr  majr  

A 1  - ( )Vd−1  ( )Vd−1  

 

This section shows that in terms of first harmonic, the 

space vector follows an ellipse shape which 

parameters (SI, minr , majr  and ϕ ) depend on the type 

of voltage dips at the measurement point. All these 

parameters have been determined with respect to the 

dip type, and are given in Tables 1, 2 and 3.  These 

results are used in the following in order to analyze 

(detect, identify and characterize) potential voltage 

dips. 
 

 

4. VOLTAGE DIPS ANALYSIS METHOD 
 

The previous results are used in this section in order 

to develop a voltage dips analysis method. Its general 

structure depicted in Fig. 4, is detailed in the 

following. 

 

Fig. 4. Steps for dips analysis method 
 

4.1 Space vector transform. 
 

This instantaneous transformation is defined by 

Eq. (2). Under the previous assumptions, the output 

of this first step is the space vector ( )v t , a mono-

dimensional complex-valued quantity completely 

equivalent to the original three-phase (three-

dimensional) voltage system. In this case the general 

expression of ( )v t , given by Eq. (3), is a sum of two 

complex exponentials with frequency 
0
f±  and 

complex amplitude 
p

V  and 
n

V . 

 

4.2 Features extraction. 
 

The aim of this second step to extract the main 

characteristics of the shape followed by the space 

vector ( )v t  in the complex plane. Section 3 shows 

that this shape is an ellipse, completely defined by its 

major and minor axes 
maj
r  and minr , its shape index SI 

and its inclination angle ϕ  (see Fig. 2). Moreover, 

Eq. (4) and (5) show that these characteristics only 

depend on complex amplitudes 
p

V  and 
n

V . 

Therefore, the aim becomes to correctly estimate 
p

V  

and 
n

V  from  the space vector ( )v t  given by Eq. (3). 

This is exactly the role of the Fourier transform, 

which analyzes complex waveforms by means of 

complex exponentials. Finally, the so-called Short-

Time Fourier Transform (STFT) will be used in order 

to follow the time evolution of 
p

V  and 
n

V , and hence 

of 
maj
r , minr , SI and ϕ . The length of the STFT time 

window corresponds to one fundamental period of the 

power network (20 ms) in order to correctly describe 

the space vector shape while precisely following its 

time evolution. 

A simple example is given in Fig. 5 through a 

measured dip voltage. Fig. 5a represents a three-phase 

voltage measured at one point of a power network, 

which undergoes a strong voltage dip after 0.04 

seconds. During this dip, the space vector follows an 

ellipse shape, represented in the complex plane in 

Fig. 5b during one fundamental period. The 

corresponding amplitude spectrum is represented in 

Fig. 5c, where two strong components at ±50 Hz are 

easily localized. These components correspond to the 

complex exponentials defined in Eq. (3). Therefore, 

the complex amplitudes 
p

V  and 
n

V  can be easily 

determined from this Fourier Transform, and hence 

the different shape parameters 
maj
r , minr , SI  and ϕ . 

It should be noted that measured voltages are often 

disturbed by noise or harmonics, and the 

corresponding space vector shape is not always a 

perfect ellipse (see for example Fig. 5). However, the 

use of the Fourier Transform minimizes the negative 

impact of such disturbances since it is perfectly 

adapted to the estimation of complex exponential 

parameters. 
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dip time 

dip type 
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a)  

b)  c)  

Fig. 5. Measured voltage dip (a),  corresponding 

space vector shape in the complex plane (b), and 

space vector spectrum (c). 
 

4.3 Segmentation. 
 

The segmentation process refers to the decomposition 

of a given signal into stationary or weakly non 

stationary segments. In the case of three-phase 

voltage dips, one segmentation algorithm is usually 

applied to each of the three phases, because the 

phases in change are not known a priori. Afterwards, 

the results obtained on each phase have to be merged 

in order to take a global segmentation decision on the 

recorded waveforms (Bollen, 1999). 

In our case, Tables 1, 2 and 3 show that when a dip 

occurs, the dip depth d increases and the ellipse minor 

axis minr  becomes smaller than the nominal voltage 

V. Hence, a unique segmentation algorithm can be 

applied on minr  to determine the dip time period by 

detecting changes in its mean value. In this work, the 

segmentation algorithm is a change in the mean 

Cusum (Cumulative Sum) algorithm, chosen for its 

good performance, great simplicity and optimal 

properties (Basseville and Nikiforov, 1993). This 

algorithm automatically determines different 

segments during which minr  can be considered has a 

constant. The mean value of minr  is estimated by 

averaging on each segment, and compared to a 

threshold of 0.9V in order to determine the segments 

where voltage dips occur. 
 

4.4 Classification. 
 

The previous step automatically determines the 

different time segments where voltage dips occur. 

The present one has to establish which type of dip 

occurs during each of these segments. Therefore, we 

suppose in this paragraph that a dip has been detected 

during the current segment. 

Tables 1, 2 and 3 indicates that the ellipse shape 

index SI, inclination angle ϕ , and major axis 
maj
r  can 

be used to discriminate different voltage dip types. SI 

is first used in order to differentiate unbalanced dips 

(single or double phase dips) from balanced ones 

(three-phase dips). The limit value of SI is calculated 

for a dip depth equal to 10% of the nominal voltage 

and is set to 0.93 (see Table 1 and 2 with 0.1d = ). 

Then, if SI is greater than 0.93, the dip is 

automatically classified to type A (three-phase 

voltage dip). On the contrary if SI is lower than 0.93, 

the dip can be single or double phase. Then, ϕ  

determines whether the dip is single or double phase, 

and indicates the phase(s) with major drop (see 

Tables 1 and 2 again). This result is illustrated in 

Fig. 6, where single phase dips are denoted with S, 

double phase dips with D, and phase(s) in drop are in 

lower case letters. 
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Fig. 6. Unbalanced dip classification thanks to the 

ellipse inclination angle. 

 

Finally, 
maj
r  contribute to the complete dip 

classification by differentiating dip types with the 

same ellipse inclination (discrimination between D 

and F, and between C and G). 
 

4.5 Characterization. 
 

Once the dip type determined, it can be useful to 

evaluate its severity, represented by the dip depth d, 

previously defined in Fig. 1. Tables 1, 2 and 3 shows 

that if the dip type is known, the ellipse minor axis 

value minr  allows to determine the dip depth d. 

In the next section, the performance of this method is 

evaluated by applying it to three-phase voltages 

measured at one point of a power network. 
 

 

5. APPLICATIONS 
 

The previous method has been implemented with 

Matlab. Its performance is illustrated in this section 

through results obtained with data measured on a 

medium voltage network. Only dips with duration 

over one cycle are analyzed. Phase voltages and space 

vector characteristics are given in p.u. with respect to 

the nominal voltage V. 

The proposed method is applied to the recorded 

voltage waveforms presented in Fig. 7a. The space 

vector is first calculated from the voltage 

measurements, and the STFT over one cycle is 

applied to this complex quantity. From these short 

time spectra, the time evolution of 
maj
r , minr , SI and 

ϕ  are determined and represented in Fig. 7 (
maj
r  and 

minr  in Fig. 7b, ϕ  in Fig. 7c). These results are the 

output of the features extraction step of the proposed 

method. 



 

     

Next, the segmentation algorithm detects a voltage 

dip between 0.04 and 0.15 seconds by analysing the 

evolution of minr , which is below the threshold of 

0.9 p.u. (see Fig. 7b). All curves of Fig. 7 are bold 

during this period. 

During the dip, the shape index SI decreases until 0.6 

and the corresponding dip is classified as unbalanced. 

Moreover, the ellipse inclination angle ϕ  stays near 

180° (red bold markers in Fig. 7c), which indicates a 

double phase voltage dip (type C or G), with phases b 

and c in drop (see Fig. 6). The ellipse major axis 

majr = 0.85 is clearly lower than 1, and finalizes the 

classification step with a dip type set to G (see 

Table 2). 

Finally, the ellipse minor axis being 
minr = 0.5 p.u., 

the characterization step evaluates the dip depth at 

approximately d = 0.41 p.u.. 

This result seems to be coherent with voltage 

waveforms of Fig. 7, where it can be seen that two 

phases are mainly in drop (double phase dip), and 

their drop is around 0.4 p.u.. 
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Fig. 7. Double phase voltage dip (a), corresponding 

ellipse axes (b), and inclination angle ϕ  (c). 

 

6. CONCLUSION AND FUTURE WORKS 
 

In this paper, a new method for voltage dips analysis 

is developed. It is based on the analysis of the space 

vector, a mono-dimensional complex-valued quantity 

containing the same information as the original three-

phase voltage system under mild assumptions. The 

shape characteristics of this quantity, extracted thanks 

to signal processing tools, allows to detect, classify 

and characterize potential three-phase voltage dips. 

The different examples shows that this method 

reaches good performance, even in the presence of 

wide band noise and/or harmonic distortion. 

Furthermore, the proposed method could be easily 

real-time implemented in view of on-line power 

quality monitoring, since it relies on very simple 

algorithms (instantaneous space vector transform, 

STFT, change in the mean Cusum-type  algorithm). 

Two main directions can be further explored in future 

works. First, this method has to be generalized in 

order to classify all the dip types presented in 

section II. In such a general method, the zero-

sequence voltage may be different from zero and has 

to be taken into account. In that case, a complex 

quantity such as the space vector is not sufficient to 

completely characterize the voltage dips, but a 

quaternionic quantity could do the job. It should also 

be noted that in that case, the signal processing tools 

used to analyze this quantity must be adapted. 

The second direction concerns the localization of the 

fault which generated the measured voltage dip. Such 

information may be determined thanks to the joint 

analysis of the three-phase voltages and currents. 
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