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Φ 
Abstract-- In this paper, we propose to perform early fault 

diagnosis using high-resolution spectral analysis of the stator 
current to detect bearing faults in electrical induction machine. 
While most research works focus on mechanical vibration 
analysis, the originality of our work relies on the use of high-
resolution methods to detect modulations in the stator current. 
We present the results obtained for real data to detect inner and 
outer raceway bearing defects made articially as well as bearing 
defects obtained through on-site ageing. The obtained results 
show that the proposed method yields better detection than 
classical spectum analysis. 
 

Index Terms -- induction machine, bearing fault, signal 
processing, current, voltage, phase modulation, high-resolution 
algorithm. 

 
 

I. INTRODUCTION 
 owadays,  induction motors are widely used in different 
industry applications due to their simple construction, 
high reliability and the availability of power converters 

based on efficient control strategies. In order to sustain and 
increase the productivity, reliability and safety of industrial 
installations, a permanent condition monitoring of critical 
motors is necessary. This is the main reason why research on 
condition monitoring of electric motors has been widely 
studied for decades. These researches and developments 
conducted in universities and in industries has yielded means 
for predictive condition monitoring and fault detection 
algorithms. Many different devices and systems are being 
developed and are used in many kinds of applications such as 
transportation, power generation and so on. A general review 
of monitoring and fault diagnosis techniques can be found in 
[1],[2]. Moreover, according to an IEEE motor reliability 
study [3], bearing faults have been shown to be the most 
frequent faults in induction machines (41%) followed by stator 
(37%) and rotor faults (10%).  
 
The aim of this research work is the early detection of bearing 
faults in electrical induction machines using signal processing 
tools. Our approach is mainly based on processing electrical 
quantities, i.e. currents and voltages, instead of analysing 
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vibration signals, acoustic noise, magnetic flux or temperature 
which necessitate additional sensors on the motor.  
 
Firstly, a short overview of bearing fault types is given in 
section II, followed by the characteristic vibration frequencies 
and the existing fault model developed by R. R. Schoen [4]. In 
the sections III, the theoretical background for a new fault 
model is presented and new expressions for the frequency 
content of the stator current in case of bearing faults are 
obtained. The general algorithm applied to stator current in 
order to early detect bearing faults is developed and exposed 
in section IV. Finally, experimental results with different fault 
types are given in section V, validating different aspects of the 
theoretical approach. In section VI, we give some conclusions. 

II. BEARING FAULT TYPES AND CHARACTERISTIC 
FREQUENCIES 

A.     Bearing Fault Types 
 
The different faults occurring in a rolling-element bearing can 
be classified according to the damaged element as : 
1- outer raceway defect 
2- inner raceway defect 
3- ball defect 
The fault is assumed to be modelled as a small hole created 
from a missing piece of material on the corresponding 
element. 
The definition of these fault types is somehow artificial 
regarding real bearing damages. Nevertheless, this is useful 
for distinguishing the different bearing fault effects on the 
machine. In a realistic case, one can imagine that a 
combination of these three effects is more likely to be found. 

              
                     (a)                                                     (b) 
Fig. 1.  Artificial bearing defects; (a): outer race defect, (b):  inner race defect 
 
In the following analysis, we will only focus on the outer and 
inner raceway defects which were artificialy produced (see 
Fig. 1). We will also present some results based on real defects 
obtained by in-situ bearing ageing.  
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B.     Characteristic Frequencies of bearing faults 

A characteristic frequency cf can be associated with each 
type of bearing fault. This frequency correspond to the 
periodicity of occurence of the abnormal physical 
phenomenon  related to the existence of the fault. For exemple 
if one considers a hole on the outer raceway, then, as the 
rolling elements move over the defect, they are regularly in 
contact with the hole which produces an effect on the machine 
at a given frequency. 
The characteristic frequencies are functions of the bearing 
geometry and the mechanical rotor frequency rf . A detailed 
calculation of these frequencies can be found in [5]. The 
frequencies of  the two fault types considered here, are given 
by  
 
Outer raceway  : 
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Where bN  is the number of balls, bD , cD   are the inner and 

outer raceway diameters, and β  is the slip angle as shown in 
Fig. 2. 

 
 

Fig. 2. Geometrical characteristics of the rolling-element bearings 
 

III. THEORETICAL STUDY I : STATOR CURRENT SIGNAL 
MODELLING 

In this section, we establish a model for the stator current in 
the case of bearing faults in the induction machine as it has 
been derived in [6]. This enables to identify the frequencies of 
the spectral components and their amplitudes. 
 
Here, we suppose that the faults provoke small variations in 
the mechanical torque as well as small eccentricities in the 
rotor. 
In order to establish the mathematical model of the faults, we 
first suppose that all magnetic and electrical quantities are 
purely sinusoidal.  
 
In the presence of mechanical torque variations only, one can 
write the stator current phasor as follows: 
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where  

SI  is the amplitude of the stator current at the fundamental 
frequency, 

RI Φ  is the amplitude of the stator current induced by the rotor  
magnetic field, 

( )uεΓ  is the torque variations, 

sυ  is the fundamental frequency,  

0Γ     is the constant load torque, 
J      is the total inertia of the mechanical system. 

 
Depending on the machine condition, the torque variations 

( )tεΓ  can have different expressions : 

( ) ( )cos 2 (4)rot rot rott tε ε πυ ϕΓ Γ Γ Γ= +
Equation (4) corresponds to torque variations due to a simple 
mechanical defect such as mechanical unbalance or a 
mechanical coupling problem.  
  

( ) ( ) ( )cos 2 cos 2 (5)rot rot rot roul roul roult t tε ε πυ ϕ ε πυ ϕΓ Γ Γ Γ Γ Γ Γ= + + +  
Equation (5) corresponds to torque variations due to a simple 
mechanical defect and a localized bearing fault. 
  

( ) ( ) ( )cos 2 cos 2 ( ) (6)rot rot rot roul roul roul roult t t b tε ε πυ ϕ ε πυ ϕΓ Γ Γ Γ Γ Γ Γ Γ= + + + +  
Equation (6) corresponds torque variations due to a simple 
mechanical defect plus localized and distributed bearing 
faults. Indeed, ( )roulb tΓ  is a gaussian noise which modelizes 
torque variations induced by a distributed bearing fault. 
Hence, torque variations due to bearing fault induce phase and 
therefore frequency modulations in the stator current as 
descibed by equation (3). The goal of this work is to detect 
these modulations in order to check the existance of a fault. 
These different models have been used to generate current 
signals in order to validate the proposed approach described 
below.  

IV. THEORETICAL STUDY II : SUBSPACE ESTIMATION 
TECHNIQUE  

The goal of the proposed approach is to detect frequency 
modulations induced by the bearing fault. Because of the well 
known limitations of the Fourier analysis, we consider here a 
different approach based on subspace techniques which are 
known to be very powerful techniques [7]. The method 
utilized is called the Root-MUSIC estimator. 
The fault detection scheme is mainly based on three steps :  
- signal filtering using a lowpass FIR digital filter in order 

to eliminate the different harmonics and to verify the 
purely sinusoidal assumption, 

- a sliding window Root-MUSIC algorithm in order to 
precisely estimate the instantaneous frequency of the 
stator current, 
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- computation of the power spectral density (PSD) of the 
previously estimated instantaneous frequency. 

This method is illustrated by Fig. 3 : 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.  Defect detection scheme 

 
The sliding window Root-MUSIC algorithm :  

Because the bearing defect induces frequency modulations in 
the stator current, our objective is to determine the existance 
of these modulations and their characteristics compared to the 
carateristics of the healthy machine signal. The main idea of 
the proposed estimation approach is to apply a sliding window 
to the stator signal and compute for each block of data the 
frequency content using a high-resolution algorithm known as 
the Root-MUSIC algorithm. Hence, as the window moves, we 
obtain a temporal evolution of the frequency on which we 
apply the fourier transform as illustrated in Fig. 4. 

The application of the algorithm to each block considers that 
the signal is made of a sum of p sinusoidal components. This 
can be written as follows : 

1
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M is the number of samples in one window, and n  is the 
noise which is supposed white Gaussian with variance nσ . 
The MUSIC algorithm involves the projection of the signal 
vector onto the entire noise subspace. 
The signal correlation matrix is obtained as : 
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Fig. 4.  The sliding window root-MUSIC algorithm 
 
The eigenvectors and eigenvalues of the correlation matrix are 
then computed. It can be observed that the pM −  smallest 
eigenvalues of the correlation matrix (matrix of dimension 

1+> pM ) correspond to the noise subspace and the p 

largest (all greater than nσ ) correspond to the signal 
subspace. The algorithm performs eigenspace analysis of the 
signal correlation matrix in order to estimate the signal 
frequency content. The correlation matrix can be written as : 

(9)H H
x s s s n n nE E E E= Γ + ΓR

 
where H(.)  is the transpose conjugate, and the set of 
eigenvectors can be divided into signal and noise matrices: 
 

[ ]ps eeeE ...21=  is the collection of 

eigenvectors for the signal space, 
[ ]

Mppn eeeE ...21 ++=  is the collection of 

eigenvectors for the noise space. 
 
The MUSIC method uses only the noise subspace to estimate 
frequencies of sinusoidal components. The MUSIC 
pseudospectrum is given by : 
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The root-MUSIC algorithm converts the pseudo-power 
spectrum of the MUSIC algorithm into a polynomial with 
roots that contain information about the estimated frequencies.  
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This polynomial has p double roots lying on the unit circle. 
These roots correspond also to the frequencies of the signal 
components. That is, if kz  is a root of P(z)=0, the frequency 

component kf  associated with this root is directly proportional 

to its phase kφ , i.e : 

(12)kj
kz e φ=  

and 
2 / (13)k k sf fφ π=  

This method of finding the frequencies from the root of the is 
therefore called Root-MUSIC. 
On the other hand, the power of each estimated frequency 
component can be itself estimated from the eigenvalues and 
eigenvectors of the correlation matrix, using the following 
relation: 

(14)H
i x i ie R e λ=  

where iλ  is the eigenvalue associated with the eigenvector 

ie . 

By substituting,  the resulting equations can be solved for iP    
( power of the component) using the following expression : 
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In the estimation process, a window is passed through the 
analyzed signal and then each frequency and power values are  
computed for this sliding window [8]. Since the estimation of 
the correlation matrix is important, performance study has 
been conducted for different lengths of windows and  SNR, 
where the noise is assumed white Gaussian. 
In order to chose the right correlation matrix estimator, we 
have computed the bias and variance of the frequency 
estimator based on different methods, the results are shown in 
Table I. 

TABLE I :  ESTIMATION METHOD OF xR VERSUS THE SNR 

SNR 

5 dB 25 dB 5 dB 25 dB 

 
Estimation  
Method of  xR  

Bias Variance 
Autocorrelation -9 .103 -1.3573 6 .104 0.034 
Covariance -9 .103 -1.4326 1.8 .104 0.011 
Modified 
Covariance  

-9 .103 -1.300 3.103 0.0016 

By  setting the SNR =25 dB, we obtain the following results in 
Table II for different lengths of the sliding window Nr in 
function of  the signal length Ns. 
 

TABLE  II : BIAS AND VARIANCE VERSUS WINDOW LENGTH 
 

Length of 
window Nr 

Bias Variance 

Ns/2 0 0 
Ns/4 0 0 

Ns/10 0 0 
Ns/50 0.0200 0.4490 
Ns/100 -0.1700 1.2860 
Ns/500 0.0280 23.1215 

Ns/1000 0.4790 90.9625 
 
According to the above tables, we conclude that the value of 
the sliding window is very important for the frequency 
modulation estimation. In our case we showed that its length 
must not be below Ns/50 which corresponds to almost one 
fundamental period of the signal.The performance of the 
tested estimators showed that the SNR must be greater than 
15dB using the modified covariance technique for the 
estimation of the correlation matrix. 

V.   EXPERIMENTAL RESULTS 
In this section, we present experimental results obtained from 
the analysis of electrical current of a test machine equipped 
with faulty bearing carrying artificial inner and outer raceway 
defects. We also conducted tests with industrially used 
bearings called “real defect” in the following which were 
replaced due to an unknown fault type problem. In that case, 
the vibration signal analysis showed a small peak at 33 Hz 
compared to the healthy machine vibration signal. In our 
experiemental analysis, we consider both 50Hz and 33Hz 
power supplies in order to asses the performance of our 
method for different power supply frequencies. The stator 
current is filtered using a lowpass FIR digital filter of order 30 
with passband frequency passf =160Hz and stopband 

frequency stopf =210Hz. This filter is obtained by least-
squares design method in Matlab, the sampling frequency is 

sf =16026Hz and the sliding window length is rN =20. In the 
following, we present the obtained results using the Root-
MUSIC technique. Fig. 5 compares the power spectral 
densities of the filtered stator current of healthy machine and 
of a machine with an outer raceway defect. One can observe 
that the detection of defect from these spectra is very difficult. 
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Fig. 5.  Stator current power spectral density 

 

A.   Power supply of  fundamental frequency 50=sf Hz  

Using the stator current measured with the artificial defect, we 
expect to find the defect component at a frequency around 33 
Hz and its multiple frequencies. The defect-related peaks are 
easily observed in Fig. 6, which was obtained by computing 
the spectrum of the frequencies estimated with the Root-
MUSIC algorithm :   

 
 
Fig. 6. Spectrum of the instantaneous frequency estimated by the Root-
MUSIC algorithm on a sliding window, for a healthy motor and a motor with 
outer raceway bearing defect. 
 

 
Fig. 7. :  Spectrum of the instantaneous frequency  estimated by the Root-
MUSIC algorithm on a sliding window, for a healthy motor and a motor with 
inner raceway bearing defect. 
 
 
We observe in Fig. 7 that the detection of the inner raceway 
defect is still possible using the spectrum of the instantaneous 
frequency, even though the peak is very small.  

 

 
Fig. 8.   Spectrum of instantaneous frequency estimated by the Root-MUSIC 
algorithm on a sliding window, for a healthy motor and a motor with a real 
bearing defect. 
 
In Fig. 8, we can observe again that the real defect appears 
clearly in the spectrum of the estimated frequency. Moreover, 
according to the frequency value which is very close to the 
one observe in Fig. 6, one may suppose that this real defect is 
an outer raceway defect.  

B.   Power supply of fundamental frequency 33=sf Hz  

In order to assess the performance of the proposed approach, 
we considered a different power supply fundamental 
frequency. When the latter is at 33 Hz, the frequency of the 
real defect wich was at 33Hz with a fundamental frquency of 
50Hz is moved to a new value which is equal to 332/50=20 
Hz. Fig. 9 shows the is the spectrum of the stator current 
which does not exhibit clearly the defect. 
 

 
 

Fig. 9. Spectrum of stator current. 
 

 

 
Fig. 10.  Spectrum of the instantaneous frequency estimated by the Root-
MUSIC algorithm on a gliding window, for a healthy motor and a motor with 
a real bearing defect. 
In Fig. 10, we observe a very small peak in around 23 Hz,  
which approaches the theoretical value computed above. 
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VI.   CONCLUSION 
In this paper, we have investigated the detection of rolling-
element bearing faults in induction motors by monitoring the 
stator current. An experimental study has been conducted on a 
test rig with several types of faulty bearings, by measuring 
electrical quantities such as stator current which exhibits 
frequency modulation due to torque oscillations induced by 
the defect. Indeed, the Fourier analysis showed that the 
spectrum of the stator current does not always yield to 
detectable defect frequencies because of their small 
magnitudes. The proposed approach takes advantage of 
poweful signal processing tool known as high-resolution 
techniques. The proposed algorithm relies on the estimation of 
the instantaneous frequency content based on sliding window 
high-resolution Root-MUSIC algorithm. The application of 
this approach lead to an effective method to detect artificially 
as well as real outer raceway and inner raceway defects. The 
detection of inner raceway defect was still possible even 
though much more difficult. This can be explained by the fact 
that inner raceway defects do not contribute energically 
enough in the phase modulation of the stator current. 
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