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Modelling and optimization of a floating triangular platform used for
nano and microforces sensing

A. Cherry, J. Abadie and E. Piat

Abstract— This paper presents the dynamic behaviour mod-
elling of a horizontal triangular platform, used as the sensing
part of a microforce sensor. This sensor is based on a magnetic
and a buoyancy principle. A particular configuration used to
obtain a linear model is presented. This linear model will be
essential for the futur control of the system, in order to achieve
force measurement without displacement of the platform. The
determination of the platform position and orientation in the
horizontal plane is done thanks to three laser range sensors. The
sensors configuration provide a linear transformation between
the three measured ranges and the position and orientation of
the platform. Finally, an open loop result comparison is done
between the linear state model and a more complex 3D non
linear model.

I. I NTRODUCTION

Manipulation with force control is an emerging area that
appears certain to become an important component in mi-
crosystems technology. Pure position control is sometimes
not suitable to ensure successful operation and prevent
damage to the manipulated micro objects. Force control is
often needed in order to achieve better manipulation results
[6]. Moreover, in some specific applications like biological
cells characterization, obtaining force information is a main
objective [7] [8].
This paper presents the 2D modelling of a floating triangular
platform which is the sensing part of a new magnetic nano
and microforce sensor for a large field of aplications (force
identification, stiffness characterization, micro-assembly with
force control,. . . ). The platform on which the object to
be handled or characterized is locked, presents a naturally
stable six degrees of freedom equilibrium position using the
combination of upthrust buoyancy and magnetic forces. The
magnetic stiffness is typically between10 nN/µm and 50
nN/µm.
This paper presents the differential equations which govern
the platform. In order to simplify these equations and to
obtain a 2D linear model, a particular configuration of the
magnetic and sensing parts have been studied. The 2D model
is essential for the control of the system in order to achieve
forces measurement without displacement of the platform. In
this paper a way to calculate the platform position using the
combination of three laser range sensors is also presented.

II. FORCE MEASUREMENT PRINCIPLE

Forces sensing is strongly related to the measurement
of a rigid microstructure displacement or the deformation
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Besançon, UFC, ENSMM, CNRS ; 24, rue Alain Savary, 25000 Besançon,
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of an elastic structure [1]. The applied force is directly
calculated using the structure stiffness which is established
after calibration. Generally, calibration is a problem for micro
and nano force sensors because of the lack of standard at
this scale. Thus, calibration must be performed using indirect
approaches.

The dry friction is the major problem for this measurement
approach. Generally, micro and nano force sensors use
elastic micro structures like micro beam to avoid dry
friction [6]. Another way to avoid friction problem, is
the use of levitation methods. In this case the absence
of friction associated with a low stiffness makes the
sensor highly sensitive. The only problem is that passive
levitation is unstable. This result was shown theoretically for
electrostatic case by Earnshaw in 1841 [5]. Attractive forces
like magnetic forces coupled with repulsive forces like
diamagnetic forces are needed to achieve passive levitation.
A passive micro and nano force sensor using magnetic and
diamagnetic forces was presented in [3].

In the new sensor presented here a special attention
has also been devoted to the magnetic levitation approach.
We decided also to use a floating principle rather than
diamagnetic forces in order to stabilize the passive magnetic
levitation. This principle allows to suppress the weight
limitation of the levitating part (see figure 1).

Fig. 1. (a) Floating-magnetic principle (b) Top view

With such a configuration, magnetic forces of the external
magnetsp provide stability in the plane (xOy) of the floating
part inside which a small magnetM is fixed. The upthrust
buoyancy acting against the gravity provides stability along
~z axis. In the plane (xOy) the upthrust buoyancy has no
action. Thus, the external forces in the plane (xOy) applied
to the floating part can be deduced according to the floating
part magnetic stiffness and the displacement measured by a



laser beam.

This principle of force measurement related to the sensing
part displacement of the microforce sensor can generate
drawbacks in the case of high precision tasks such as
biological cells micromanipulation or micro-assembling,
where the manipulated object should not move. Thus,
the key idea here is to developp a device wich allows
force measurements without any (or only very small)
displacements of the sensitive part, thanks to an active
control. The design used to make possible the feedback
control loop is composed of two coils placed on both sides,
above and below the floating magnet (see figure 2).

Fig. 2. Floating mechanism equipped with two coils

In case of an external force applied to the sensing element
which tends to move it, the activation of coils will produce
an opposed electromagnetic force~F elec that will maintain
the sensing element on its initial position. In this case, the
currentI in the coils is the new physical value related to the
external force. The complete study of this force measurement
principle and experimental validation are presented in [4].

III. STABILITY IN THE PLANE (xOy)

In this section, the study will be focused on the stability in
the plane (xOy). The configuration considered is described
in figure 2. We are not going to demonstrate mathematically
this stability, but we will illustrate it with a simulation. The
figure 3 shows the force~F vectors applied on the float,
which is the sum of the magnetic force~Fmag generated
by the two fixed cubic magnetsp (represented by a square)
and the electromagnetic force~F elec generated by the two
coils b (represented by a dotted circle). We can see clearly,
when no current is applied in the coils(i = 0), the stable
equilibrium positionS of the moving cylindrical magnetM
at x = 0.0115, y = 0 andz = 0. At this point, the magnetic
force generated byp is null. A currenti different from zero
doesn’t disturb the stability in the plane but changes the
position ofS (see figure 3).Si is the new stable equilibrium
position for a non null currenti.

Fig. 3. Force~F vectors in the plane (xOy) for i = 0.4A, i = 0A and
i = −0.4A

It remains to note that in case of small displacements
around the point of equilibriumS, the magnetic force ~Fmag

is quasi linear [2] and we can write :

~Fmag/R
= Kmag · ~M/R =

[
Kx
m 0
0 Ky

m

]
· ~M/R (1)

whereR is the reference frame of (S,~x,~y) shown in figure 1
andMT = [xM ,yM ] the position of the moving cylindrical
magnetM in the plane (xOy).

Around S, the electromagnetic force is proportionnal to
the currentI in the coils [4] and we can write :

~F elec/R
= Kelec · i =

[
Ke

0

]
· i (2)

IV. 2D PLATFORM

In the following, the floating-magnetic principle described
in section (II) will be used in order to construct a force



measurement device which will have, as a sensing element,
a floating platform on which the object to be manipulated is
locked (see figure 4). The platform mass is suspended against
gravity by the combined upthrust buoyancy of three floats
placed at the corners of the platform. Thus, the platform
weight is not an issue for this sensor. Each degree of freedom
in the plane (xOy) can constitute a direction of force or
couple measurement.

Fig. 4. Platform

A. Analytical expression of~F

The figure 5 represents the elementar configuration of the
platform, including only one couple of magnetp and coils
b oriented with an angleα and generating a force~F on the
cylindrical magnetM placed at the corner of the moving
platform.R1 is the reference frame of (S1, ~x1,~y1), with S the
stable equilibrium position ofM . The platform is moving
freely according to a fixed reference frameR0(O, ~x0, ~y0).
We also define a reference frameRp(G, ~xp, ~yp) related to
the platform with :

G =
[
X
Y

]
/R0

et ( ~x0, ~xp) = ψ

X andY are the coordinates ofG in the reference frame
R0.
When the platform is on its initial position, both reference

platform

M

(Rp)

~xp

G

~yp

ψ

(R0)
~x0

O

~y0

(R1)
~x1

S

~y1 α ~F

p b

Fig. 5. Platform simple configuration (top view)

framesR0 and Rp are superimposed.M and S are also
superimposed.

B. Change of reference frame

The reference frame change for a pointM belonging to
the platform, in the general case, is done by the following
transformation :

M/R1
= P10[(P0p ·M/Rp) +Rp −R1] (3)

P01 et P0p are the crossing matrices fromR1 to R0 and
from Rp to R0 and they have the following expressions:

P10 = [P01]−1 =

�
cosα sinα
−sinα cosα

�
, P0p =

�
cosψ sinψ
−sinψ cosψ

�

in which α is the angle formed by the two reference axes
~x1 and ~x0 andψ is the angle formed by the two reference
axes ~xp and ~x0.

The reference frame change for a force vector~F , under
the same conditions, is done by the following transformation:

~F/R0
= P01 · ~F/R1

(4)

C. Force ~F applied onM

In this section, we give the expression of the force
~F applied onM in R0. This force is the sum of the
magnetic force ~Fmag due top and the electromagnetic force
~F elec due to the coilb applied to the moving cylindrical

magnetM placed at the corner of the platform. For small
displacements aroundS1, we have:

1) Magnetic force: According to equations (1), (3) and
(4):

~Fmag/R0
= P01 ·Kmag · P10[(P0p ·M/Rp) +Rp −R1] (5)

thus:

Fmag
x /R0 = (sinα ·Kx

m · cosα · xM + sin2α ·Ky
m · yM − cos2α ·Kx

m

· yM + cosα ·Ky
m · sinα · xM )sinψ + (−sin2α ·Ky

m · xM + cos2α·
Kx

m · xM + cosα ·Kx
m · sinα · yM + sinα ·Ky

m · cosα · yM )cosψ+

(sinα ·Kx
m · cosα+ cosα ·Ky

m · sinα)Y + (−sin2α ·Ky
m + cos2α

·Kx
m)X + sin2α ·Ky

m · xM − sinα ·Ky
m · cosα · yM − cos2α ·Kx

m

· xM − cosα ·Kx
m · sinα · yM

Fmag
y /R0 = (−sin2α ·Kx

m · xM + sinα ·Ky
m · cosα · yM + cosα ·Kx

m

· sinα · yM + cos2α ·Ky
m · xM )sinψ + (−cosα ·Ky

m · sinα · xM−
sinα ·Kx

m · cosα · xM − sin2α ·Kx
m · yM + cos2α ·Ky

m · yM )cosψ+

(−sinα2 ·Kx
m + cosα2 ·Ky

m)Y + (−cosα ·Ky
m · sinα− sinα ·Kx

m·
cosα)X + cosα ·Ky

m · sinα · xM − cos2α ·Ky
m · yM + sinα ·Kx

m·
cosα · xM + sin2α ·Kx

m · yM

with:

S/R0
= M/Rp

=
[
xM
yM

]
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Fig. 6. Platform particular configuration

2) Electromagnetic force:According to equations (2), (3)
and (4):

~F elec/R0
= P01 ·Kelec · i1 (6)

We can see easily that the expression of~F is not linear. So
the idea was to use a particular configuration of the platform
in order to simplify the differential equations which govern
its movement.

D. Platform particular configuration

The figure 6 represents the selected configuration for the
platform with 3 pairs of coils bi, 2 pairs of fixed cubic
magnetspi (5x5mm) and2 cylindrical moving magnetsM1

and M2 placed at the corners of the triangular platform,
inside a float. An empty float is placed at the third corner in
order to ensure the stability of the triangular platform along
~z axis.

This configuration was retained in order to simplify to
the maximum the differential equations which govern the
movement of the platform and to limitate the coupling
between the various directions of measurement (see section
V). To each coilbi a reference frameRbi is associated. To
each pair of fixed cubic magnet a reference frameRpi is
associated. The stable equilibrium positionS1 of p1 is the
origin of the reference frameRp1 and the stable equilibrium
positionS2 of p2 is the origin of the reference frameRp2 ,
with:

S1/R0
= M1/Rp

=

�
δ
0

�
and S2/R0

= M2/Rp
=

�
−δ
0

�

V. PLATFORM POSITION

The determination of the external forceF ext in the plane
(xOy) is conditioned by the determination of the magnetic
forces ~Fmagp1 and ~Fmagp2 applied onM1 andM2 ( ~F elecb1

, ~F elecb2

and ~F elecb3
are known thanks to the currentsi1, i2 and i3 in

the coilsb1, b2 andb3). The determination of these magnetic
forces is possible knowing the position of the platform.
In this section we present the way to calculate the platform
position (X,Y ,ψ) using three laser range sensors. An ele-
mentary configuration with only one laser sensor, used to
measure the distance of a deflector fixed on the platform (on

platform
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~xp

~yp

R0 ~x0

~y0

M

~n
P

~d

deflector
I

ψ

Fig. 7. Elementary configuration of laser sensor (top view)

M ), is first presented (see figure 7). The distance measured
by the laser is given by the following expression:

l =
~n/R0

· ~PM/R0

~n/R0
· ~d/R0

with : ~PI = l · ~d

with: 
P : origin of measurement
~d : laser direction
I : laser beam target on the deflector
~n : normal to the deflector surface
l : distance betweenP andI

thus:

l =
(P01 · ~n) · (P01 ·M +Rp − P )

(P01 · ~n) · ~d
(7)

where:

P01 =

�
cosψ − sinψ
sinψ cosψ

�
, Rp =

�
X
Y

�
/R0

, ~d =

�
xd

yd

�
/R0

P =

�
xP

yP

�
/R0

, ~n =

�
xn

yn

�
/Rp

, A =

�
xA

yA

�
/Rp

The developement of the equation (7) allows us to write:

l = (xn cosψ−yn sinψ)X+(xn sinψ+yn cosψ)Y
(yd xn−xd yn) sinψ+(xd xn+yd yn) cosψ

+ det[~P ,~n] sinψ−(~n·~P ) cosψ+~n· ~A
(yd xn−xd yn) sinψ+(xd xn+yd yn) cosψ

(8)

with det[~P , ~n] = (yn xP − xn yP ).

With 3 laser sensors, the determination of the platform
position (X, Y , ψ) is possible only if the 3 corresponding
equations (8) are inversible.
Because (8) is not linear, an idea to determine (X, Y , ψ) is
to use a particular configuration which makes (8) linear.

A. Particular configuration

The selected configuration is as follows (see figure 8):
~d and ~n are colinear with a norm equal to one and~n is
perpendicular to~P and ~A, Thus:
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Fig. 8. Particular configuration of laser sensors (top view)

l = (xn − yn tanψ)X + (xn tanψ + yn)Y
+ (yn xP − xn yP ) tanψ

The laser range sensors are placed onP1, P2 andP3 with:

P1 =

�
δ
0

�
/R0

, P2 =

�
−δ
0

�
/R0

and P3 =

�
0
δ

�
/R0

The system to be solved is:
8<
:

l1 = −X tanψ + Y + δ tanψ
l2 = − tanψX + Y − δ tanψ
l3 = X + Y tanψ − δ tanψ

and the solution is:
tan θ =

l1 − l2

2δ
(9)

X =
δ
�
2 δ l1 − 2 δ l2 + 4 δ l3 − l1

2 + l2
2
�

4 δ2 + l12 − 2 l1 l2 + l22
(10)

Y =
δ
�
l1

2 − 2 l1 l2 + 2 l1 l3 + l2
2 − 2 l2 l3 + 2 δ l1 + 2 δ l2

�
4 δ2 + l12 − 2 l1 l2 + l22

(11)

VI. DYNAMIC MODEL OF THE PLATFORM

The global aim or our study is to calculate a feedback
control which allows force measurement without displace-
ment of the platform (consign =0). The figure 9 describes
the nature of the problem to be solved. The input vectors
are the currents in the coils (i1,i2,i3) and the external efforts
(F ext,ξext) applied to the platform (in the planexOy) and
considered as perturbations. The output vector is the platform
position (X,Y ,ψ).
The state model is going to be established from the differ-
ential equations given by the platform dynamic behaviour in
the plane (xOy):

~F1 + ~F2 + ~F v/R0
+ ~F ext/R0

= m~̈G/R0 (12)

Fig. 9. Feedback control

in which ~F ext is the external force applied on the floating
platform and ~F v is the viscous friction force between the
float and water. In case of small displacement we can write:

~F v = Kv · ~̇G =
[
Kx
v 0

0 Ky
v

]
· ~̇G (13)

The dynamic behaviour in case of circular movement is
given by the following equation:

∑
M/G = JΩ̇

⇒ ~F1 ∧ ~RpM1 + ~F2 ∧ ~RpM2 + ζv + ζext = JΩ̇
(14)

with: Ω the instantaneous rotation vector.

A. Evaluation of~F1

The force ~F1 applied on the moving magnetM1 is given
by the following expression:

~F1 = ~Fmagp1 + ~F elecb3
(15)

where ~Fmagp1 is the magnetic force applied byp1 onM1 and
~F elecb3

is the electromagnetic force applied byb3 on M1.

B. Evaluation of~F2

The force ~F2 applied on the moving magnetM2 is given
by the following expression:

~F2 = ~Fmagp2 + ~F elecb1
+ ~F elecb2

(16)

where ~Fmagp2 is the magnetic force applied byp2 on M2,
~F elecb1

is the electromagnetic force applied byb1 onM2 and
~F elecb2

is the electromagnetic force applied byb2 on M2.

The development of the equations (12) allows us to write:

m

�
Ẍ

Ÿ

�
=

�
−2Kxm 0

0 −2Kym

� �
X
Y

�
+
�

−Kxv 0
0 −Kyv

� �
Ẋ

Ẏ

�

+
�

−Ke 0 0
0 Ke Ke

� 24 i1
i2
i3

3
5 +

"
Fextx
Fexty

#

(17)

with m the total platform mass.



In case of circular movement projected on the~z axis, we
can write from the dynamic behaviour (14):

Jψψ̈ =−Ke · δ(i1 · sinψ + i2 · cosψ − i3 · cosψ) + 2((Kx
m

−Ky
m)cosψ −Kx

m) · sinψ · δ2 −Krot
v ψ̇ + ζext

For very smallψ we can writesinψ = ψ, cosψ = 1 and
i1 · sinψ ≈ 0, thus we have:

Jψψ̈ = −Ke · δ(i2 − i3)− 2Ky
mψδ

2 −Krot
v ψ̇ + ζext (18)

(17) and (18) give the linear state model suitable for small
displacements:

2
4 Ẍ

Ÿ

ψ̈

3
5 =

2
666664

−
2Kxm
m

0 0

0 − 2Kym
m

0

0 0 − 2δ2·Kym
Jψ

3
777775
2
4 X
Y
ψ

3
5

+

2
666664

−
Kxv
m

0 0

0 −K
y
v
m

0

0 0 −
Krotv
Jψ

3
777775
2
4 Ẋ

Ẏ

ψ̇

3
5

+

2
6664

−Ke
m

0 0

0 Ke
m

Ke
m

0 − δ·Ke
Jψ

δ·Ke
Jψ

3
7775
2
4 i1
i2
i3

3
5

+

2
664

1
m

0 0

0 1
m

0

0 0 1
Jψ

3
775
2
64 Fextx
Fexty
ζext

3
75

(19)

and the state variable representation is:
2
6666664

Ẋ

Ẏ

ψ̇

Ẍ

Ÿ

ψ̈

3
7777775

=

2
666666666664

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
2Kxm
m

0 0 −
Kxv
m

0 0

0 − 2Kym
m

0 0 −K
y
v
m

0

0 0 − 2δ2·Kym
Jψ

0 0 −
Krotv
Jψ

3
777777777775

2
6666664

X
Y
ψ

Ẋ

Ẏ

ψ̇

3
7777775

+

2
6666666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1
m

0 0 −Ke
m

0 0

0 1
m

0 0 Ke
m

Ke
m

0 0 1
Jψ

0 − δ·Ke
Jψ

δ·Ke
Jψ

3
7777777775

2
6666664

Fextx
Fexty
ζext
i1
i2
i3

3
7777775

2
4 X
Y
ψ

3
5 =

2
4 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

3
5
2
6666664

X
Y
ψ

Ẋ

Ẏ

ψ̇

3
7777775

(20)

VII. M ODEL VALIDATION

Thanks to the dynamic equations, we have build a 2D
analytical model programmed in C++ and embedded in
Matlab/Simulink. This model allows us to simulate the open
loop response of the platform to an external applied force.
The figure 10 shows the step responses, for a positive
current i1 = 0.4 A, of the linear 2D analytical model and
the complete 3D analytical model. Instead of using linear
equations (1) and (2), the 3D non linear model is based on
the calculus of the magnetic inductions generated by thepi
magnets and thebi coils and applied on theMi magnets.
This allows the determination of the magnetic forces~Fmagpi

and the electromagnetic forces~F elecbi
applied to the platform.

The complete 3D behavior of the platform is performed by
integrating equations (12) and (14) with simulink.

Fig. 10. Responses along~x and ~ψ of the two 2D and 3D analytical models
for a step currenti1 = 0.4

By comparison of the two models resulting curves, the
linear 2D analytical approach only makes small changes in
the temporal behaviour of the system. Therefore, the linear
state model (19) is sufficient to calculate a controler if
currents in coils are below0.4 A.

VIII. C ONCLUSION

In this paper we have presented a 2D modelling of a six
degrees of freedom platform used as the sensing part of a
micro and nanoforce sensor based on a floating-magnetic
principle. The particular configuration used in order to sim-
plify the differential equations which govern the movement
of the platform allowed us to build a 2D linear model of
this micro and nanoforce sensor. This linear model and the
state variable representation presented in this paper will be
essential for the control of our multivariable system in order
to achieve force measurement without deplacement of the
sensing part. In this paper we have also presented the way
to calculate the platform position with the use of three laser
range sensors mounted in a particular configuration.
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