
HAL Id: hal-00186786
https://hal.science/hal-00186786v1

Submitted on 12 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Scheduling Algorithms with Reservations
Lionel Eyraud-Dubois, Grégory Mounié, Denis Trystram

To cite this version:
Lionel Eyraud-Dubois, Grégory Mounié, Denis Trystram. Analysis of Scheduling Algorithms with
Reservations. IPDPS 2007, Mar 2007, Long Beach, California, United States. pp.1-8. �hal-00186786�

https://hal.science/hal-00186786v1
https://hal.archives-ouvertes.fr

Analysis of Scheduling Algorithms with Reservations

Lionel Eyraud-Dubois2, Grégory Mounié1 and Denis Trystram1

1LIG , Grenoble Universités, 2LIP, ÉNS Lyon,
ENSIMAG-montbonnot, 51 avenue Kuntzmann 46 allée d’Italie,

F-38330 Montbonnot St. Martin, France 69364 Lyon Cedex 07, France
{mounie, trystram}@imag.fr Lionel.Eyraud-Dubois@ens-lyon.fr

Abstract

In this work, we analyze the problem of scheduling a set

of independent jobs on a homogeneous parallel computer.

This problem has been widely studied from both a theo-

retical perspective (complexity analysis, and predictability

of scheduling algorithms) and practical side (schedulers in

production systems). It is common for some processors of a

cluster to become unavailable for a certain period of time

corresponding to reservations. These reservations repre-

sent blocks of time and quantities of resources set asigned

in advance for specific applications.

We propose here to investigate the scheduling problem

where there are restricted resource availabilities. Our main

result is to provide a deep analysis for this problem (com-

plexity, lower bounds and upper bounds) for several vari-

ants of list scheduling algorithms. More precisely, we show

that the problem of scheduling with any reservations can

not be approximated. This leads to the study of restricted

versions of this problem where the amount of reservation is

limited.

Our analysis is based on an old bound of Graham for

resource constraint list scheduling for which we propose a

new simpler proof by considering the continuous version of

this problem.

Keywords. Scheduling, list scheduling, cluster comput-

ing, Parallel Tasks, reservations.

LIG is supported by CNRS, INPG, INRIA, UJF. This work has been par-

tially realized within the ”action de recherche concertée” Otaphe of IN-

RIA. A part of this work has also been conducted under the frame of the

Network of Excellence CoreGrid of the European Community (W.P. 6).

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1. Introduction and Motivation

1.1. Scheduling on new computing plat-
forms.

Today, many high performance applications are imple-

mented in clusters or computational grids. Clusters are

collections of homogeneous standard processors intercon-

nected by a fast communication network [4]. More than 70

percent of parallel and distributed systems of the top-500

are clusters. Although huge progress has been done for im-

plementing specific applications on such systems, most re-

searchers of the field agree that they lack of high level soft-

ware tools for running any application without too much

effort for the programmer. In such tools, scheduling is a

crucial issue. The jobs (corresponding to applications) are

submitted to one particular node of the cluster. The schedul-

ing problem consists in determining the processors that will

perform each job and the time when it will start its exe-

cution. The objective is to minimize the execution time

(makespan).

In this work, we consider the parallel tasks model [5,

7]. In this model, the jobs can be executed on a number

of processors which is fixed for each job. A more detailed

description is given in section 2.

This general scheduling problem has been widely stud-

ied by theoretical approaches, with several variations taking

into account several characteristics of the target platform.

The scheduling algorithms that are used on actual clusters

are usually very simple, based on a First Come First Serve

policy (FCFS in short). It is a very popular technique which

has been implemented in many actual platforms. The prin-

ciple is to put the jobs into queues and execute them in a

FIFO order. Since this policy may be very bad for the small

jobs, it is usually implemented with a back-filling mecha-

nism that allows to put small jobs if it remains enough room.

Such a technique can be more or less aggressive as it is dis-

cussed in section 2.

Another popular policy is the list scheduling. Here, the

principle is to build a list of ready jobs and to allocate them

to the available processors according to some priority rules.

Like FCFS, the list schedulers have a low complexity, but

the makespan can be guaranteed in the worst case. That

make them very good candidates for practical tools. In this

work, we concentrate on list scheduling since it is the only

policy that exhibits performance guarantees.

1.2. Reservations.

The main focus of this paper is the presence of restricted

availability periods that constraints the scheduling algo-

rithm. There is an increasing demand for advanced reser-

vation mechanisms in software tools for batch scheduling:

the users have the possibility to reserve some resources in

advance, and have a guarantee that these resources will be

available at the requested time. This feature is useful in at

least two situations: first, for Grid Computing, when users

want to run their application at several different remote

sites, reservation is a way to make sure that the application

starts at the same time on all sites; secondly, for demon-

stration purposes, when a user wants to show the operation

of an application on a scheduled meeting. To the best of

our knowledge, there has been no study on the impact of

this feature on the performances of the standard scheduling

algorithms in the parallel tasks model.

1.3. Results on related models with reser-
vations.

Several analysis of the impact of restricted availability of

some processors on scheduling algorithms have been con-

ducted under various approaches (probabilistic analysis [3],

average analysis [16], etc..). Most theoretical studies which

consider unavailability constraints are performed in the con-

text of sequential (single processor) tasks. Most well known

negative results on independent task scheduling can triv-

ially be applied to this problem and lead to straightforward

lower bounds for approximation ratios of standard heuris-

tics. A recent survey about scheduling under availability

constraints may be found in [14].

The scheduling under availability constraints has been

studied in the context of the open/flow shop problems, but

also in the case of sequential task scheduling on multipro-

cessor machine. The classification of availability into vari-

ous kinds of constraints [15, 17] is perfectly relevant, but in

our opinion it is not sufficient. We need additional hypoth-

esis as shown in section 4.2 in order to get an approxima-

tion ratio better than the ratio of m proved by [13] for list

scheduling algorithms.

According to our knowledge, most of the existing work,

like [2], considers models where preemption is allowed.

1.4. Contributions.

The first contribution of this paper is to analyze the

scheduling problem in the presence of reservations. We give

a preliminary inapproximability result which states that the

problem of scheduling a set of independent jobs with the

objective of minimizing the makespan by a list policy is ar-

bitrary far from the optimal if no restriction is put on the

reservations. This leads to define a new problem of schedul-

ing with restricted reservation windows where at least some

proportion α of the total amount of resources is available.

This is a more realistic situation, because most software

tools impose a limit on the reservation feature to ensure a

good behavior of the system.

We focus on list algorithms, which are low cost algo-

rithms with relatively good performance. We provide a

lower bound of the problem of scheduling with restricted

reservations by exhibiting instances whose resulting list

schedule is 2
α −1 longer than the optimal. Then, we analyze

the general list algorithm, and derive an approximation ratio

of 2
α , close to the lower bound.

2. Preliminaries about the basic problem with-

out reservations

2.1. Basic scheduling model

In this work, we consider a classical computational

model which has been considered in many related problems

of scheduling parallel applications on clusters. In the fol-

lowing, we will denote it as the RIGIDSCHEDULING prob-

lem.

Let us consider a set of n independent applications (that

will be called jobs in the following) to be processed on a

cluster of m identical processors.

Each job j requires a given number of processors

(denoted by qj); job j can be scheduled on any subset of

processors on the cluster. The execution time of job j is

pj . We recall below the formal definition of this problem

(according to the well-known 3 field notation, it is denoted

as P |pj , sizej |Cmax [10]):

An instance of RIGIDSCHEDULING is represented by an

integer m (the number of machines) and n jobs (character-

ized by a duration pj > 0 and a number of required proces-

sors qj ∈ [1..m], for 1 ≤ j ≤ n).

The question is to determine a feasible schedule which

minimizes the makespan.

A solution of such an instance is a set of n starting times,

(σi)i=1..n, such that the resulting schedule is feasible:

∀t ≥ 0,
∑

i∈It

qi ≤ m

2

where It = {i ∈ [1..n] |σi ≤ t < σi + pi}.

The objective is to minimize the makespan of the sched-

ule, defined as the largest completion time of the tasks:

Cmax = maxi∈[1..n](σi + pi).
This problem is NP-Hard, since the standard problem

of scheduling sequential tasks on two processors is already

weakly NP-Hard (it is exactly the same as PARTITION1).

The RIGIDSCHEDULING problem is NP-Hard in the strong

sense, even when m is fixed to a value greater or equal to 5

[6].

The execution of jobs is usually represented as a packing

in the Gantt chart. But it is interesting to remark that this

model does not consider contiguity. This is a reasonable

assumption because in most recent cluster architectures, all

processors are identical and fully connected, so applications

can be executed on any subset of processors of the cluster.

Another restriction is that it is an off-line model: all jobs

are assumed to be present in the system at the beginning

of the scheduling step. However, in an actual system, jobs

are submitted over time, and the algorithm has to react on-

line to these unpredictable events. Nevertheless, the study

of off-line algorithms is important, because it gives insights

about the intrinsic performance of different strategies. Fur-

thermore, any off-line algorithm may be used in an on-line

fashion, with a doubling factor for the performance ratio on

the makespan criterion [18]. The idea is to schedule jobs in

successive batches so that all new jobs arriving during the

execution of a batch will only be considered after the whole

current batch is finished.

2.2. Classical algorithms

One of the simplest and probably the most popular algo-

rithm is First Come First Served (FCFS). Such an algorithm

considers tasks in the order of their arrival in the system,

and greedily schedules each task until there is not enough

resources available to schedule a task. The algorithm then

waits for enough resources to be freed by the completion

of the previously scheduled tasks. The main reason for its

popularity is that its behavior is perfectly understood by the

users and administrator of the cluster. But its major draw-

back is that it leads to a very poor utilization of the ma-

chine, since a task requiring a large number of processors

may cause a large part of the resource to be left idle.

A common optimization is the use of back-filling tech-

niques, which exist in several variants. For example, conser-

vative back-filling considers all tasks, and greedily sched-

ules each task at the earliest possible date, without delaying

any previously scheduled task. Unlike pure FCFS, it might

happen that a given task x gets to run before another task y
that was submitted before it, but in that case the task y could

not have been scheduled earlier, even if x was not present.

1and thus optimally solvable in pseudo-polynomial time.

This kind of algorithms is common in the batch schedul-

ing literature [1], which contains several more aggressive

variants that allow a task to delay an earlier task if it can

be scheduled right now. Aggressivity improves the utiliza-

tion of the machine, but it may make it possible for a job

to starve, being constantly delayed by other smaller jobs

arriving in a continuous stream.

From a theoretical point of view, FCFS, even with con-

servative backfilling, has no constant performance guar-

antee for the makespan criterion. Indeed, on a machine

with m nodes, it is possible to build an instance with op-

timal makespan 1, and whose resulting FCFS schedule has

makespan m.

The most aggressive variant of back-filling is more fo-

cused on improving the utilization of the resources than re-

specting the order of arrival of the tasks: it allows any task

to delay a previously scheduled task, if this task is able to

start earlier than the delayed task. The resulting algorithm

is exactly the same as the initial definition of List Schedul-

ing as introduced by Garey and Graham [8] in the context

of scheduling with resource constraints. For independent

tasks, this algorithm has a performance guarantee of s + 1,

where s is the number of resources shared among tasks.

In this problem, the only resource is processors, so List

Scheduling has a performance guarantee of 2 (which can

be tightened to 2− 1
m , see a simpler proof in the appendix).

Let us emphasize that this result is quite different from

the well-known 2 − 1
m result about list scheduling with se-

quential tasks [11, 12]. In the sequential model with in-

dependent tasks, FCFS is a list scheduling algorithm. But

with parallel tasks, FCFS does not behave like a list algo-

rithm, since it may keep some resources idle even if there

are tasks ready to be scheduled. To distinguish the classical

list scheduling algorithm from the sequential tasks model,

usually denoted as LS, we will denote the list scheduling

algorithm with resource constraints as LSRC.

2.3. Performance guarantees

We recall briefly below the standard definition of perfor-

mance ratio ρA for an approximation algorithm A.

ρA = inf {r ≥ 1|ρA(I) ≤ r for all problem instances I}

where ρA(I) is the ratio between the criterion value of

the solution produced by A on instance I and the best solu-

tion for I .

3. Modelization

In this section, we present the general problem of

scheduling in the presence of reservations, which we will

denote as RESASCHEDULING, and analyze it.

3

3.1. Formal problem

An instance of the RESASCHEDULING problem can be

formally described by an integer m (the number of ma-

chines), a set of n independent jobs (Ti)i=1..n (charac-

terized by a duration pi > 0 together with a number

of required processors qi ∈ [1..m]) and n′ reservations

(Rj)j=n+1..n+n′ (characterized by a duration pj > 0, a

number of processors qj ∈ [1..m] and a starting time

rj > 0).

The problem is to provide a feasible schedule which min-

imizes the makespan.

We will only consider feasible instances, i.e. those

whose reservations can be scheduled on the m machines:

∀t ≥ 0,
∑

j∈Jt

qj ≤ m

where Jt = {j ∈ [n + 1..n + n′] | rj ≤ t < rj + pj}.

We can thus equivalently consider that the given reser-

vations yield an unavailability function U , defined at every

time by U(t) =
∑

j∈Jt
qj . U(t) is the number of unavail-

able machines at time t; U is piecewise constant, and an

instance is feasible if and only if ∀t, U(t) ≤ m.

Similarly to the previous section, a solution is a set of n
starting times, (σi)i=1..n, such that the resulting schedule

is feasible: ∀t ≥ 0,
∑

i∈It
qi ≤ m − U(t), where It is

defined as in the previous section.

The objective is here to minimize the makespan of the

schedule.

3.2. Analysis

First, it is straightforward to remark that this problem is

NP-hard since it contains the problem of scheduling inde-

pendent parallel rigid jobs [5] (Pm | sizej , pj |Cmax) with-

out reservations (n′ = 0). Finding a schedule with minimal

makespan is a difficult problem, even without reservations.

With the way the RESASCHEDULING problem has been

defined, it is impossible to design a polynomial-time ap-

proximation algorithm to solve it. Informally, this comes

from the fact that it is possible to insert a very large and

very long reservation that starts just at the optimal value of

Cmax. This reservation will not disturb any optimal sched-

ule, but it will lead to an arbitrarily large makespan for any

non optimal schedule.

Theorem 1 If P 6= NP , there is no polynomial algorithm

for the RESASCHEDULING problem with a finite perfor-

mance ratio, even in the restricted case m = 1 (only one

machine) or n′ = 1 (only one reservation).

BBBB
(ρ + 1)k(B + 1)

Figure 1. Transformation from 3PARTITION

Proof: We prove here the theorem in the case m = 1 using

a reduction from 3PARTITION. The n′ = 1 case can be eas-

ily obtained by the same technique, with a reduction from

RIGIDSCHEDULING.

Let us assume, by contradiction, that A is an algorithm

for solving the RESASCHEDULING problem, with a perfor-

mance guarantee of ρ. Let IP be an instance of 3PARTI-

TION (3k integers xi and an integer B such that
∑

xi =
kB) [9]. We build an instance I of the RESASCHEDULING

problem, with one machine, such that the time between two

reservations is exactly B (see figure 1):

• m = 1;

• n = 3k jobs with ∀i, qi = 1 and pi = xi;

• k reservations (Rj)j=n+1..n+k defined by qj =
1, rn+1 = B, and rj = rj−1 + B + 1 for n + 1 <
j ≤ n + k 2. The lengths of the reservations are

pj = 1 for j 6= n + k. The length of the last reser-

vation is pn+k = ρk(B +1)+1 (and thus ends at time

(ρ + 1)k(B + 1)).

If there is a solution to 3PARTITION for the instance IP

(i.e. it is possible to partition [1..n] into k groups Gl of three

elements such that ∀l,
∑

i∈Gl
xi = B), then it is possible

to realize a schedule of makespan C∗
max = k(B + 1) − 1

by scheduling the tasks of group Gl between the (l − 1)th
and the lth reservations3. Since A is a ρ-approximation al-

gorithm, it must yield a schedule with makespan CA
max ≤

ρ(k(B + 1) − 1) < ρk(B + 1). Since A can schedule no

task between times k(B + 1)− 1 and (ρ + 1)k(B + 1), we

must have CA
max = C∗

max. Hence, the schedule of A yields

a solution to the instance IP by assigning the tasks between

two reservations to the same group.

The converse is straightforward. �

4. Restricted problems

We are going to study two restrictions of the general

problem, that will allow us to yield performance bounds for

the LSRC algorithm.

2i.e. rj = (j − n)(B + 1) − 1 for n + 1 ≤ j ≤ n + k
3This schedule is optimal because the machine is used to perform a task

each time it is available

4

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
��������������� pn+1 pn+2

qn+1

qn+2

U1

U2

U3 = 0
t1 t2 t3

Figure 2. An example of non-increasing

reservations and the transformation used in

the proof

4.1. Non-increasing reservations

In this section, we are going to study a subset of all pos-

sible instances for RESASCHEDULING, containing all in-

stances with non-increasing reservations (or equivalently,

non-decreasing availabilities; see figure 2). Though it may

not seem very relevant in our setting, this restriction on

availabilities is quite common in the literature [15], and usu-

ally it allows to derive better algorithms.

This additional constraint adds a new hypothesis on the

unavailability function U , which is now supposed to be non-

increasing. For simplicity, we will note in the following the

available resources at time t as m(t) = m − U(t). The

following proposition shows a performance guarantee for

LSRC for these instances.

Proposition 1 For every instance I with non-increasing

reservations, we have:

CLSRC
max ≤

(

2 −
1

m(C∗
max)

)

C∗
max ≤

(

2 −
1

m

)

C∗
max

Proof: Consider a transformation of the instance I into an

instance I ′ defined as follows: set mI′

= mI(C∗
max), and

mI′

(t) = mI(t) for all t ≤ C∗
max. It is clear that both

instances have the same optimal value C∗
max, and that a fea-

sible solution for I ′ is also a feasible solution for I .

Assume that U I′

takes k different values U1, · · · , Uk =
0, with U I′

(t) = Uj for tj ≤ t < tj+1 (we have thus

t1 = 0 and tk+1 = ∞). Then we can build an instance I ′′ of

RIGIDSCHEDULING by replacing the reservations by k − 1
tasks Tn+1, · · · , Tn+k−1, defined by qn+j = Uj − Uj+1

and pn+j = tj+1 (see figure 2). It is clear that to every

feasible schedule of I ′ corresponds a feasible schedule of

I ′′ (the opposite being not necessarily true).

However, if we place the additional tasks of I ′′ at the

head of the list, the LSRC algorithm will yield the same

schedule for instance I ′′ and for instance I ′. From theo-

rem 2, we have CLSRC
max (I ′′) ≤

(

2 − 1
mI′′

)

C∗
max(I

′′). Since

the optimal schedule for I ′ is feasible for I ′′, we have

C∗
max(I

′′) ≤ C∗
max(I

′).

Considering now that CLSRC
max (I) ≤ CLSRC

max (I ′) =
CLSRC

max (I ′′), and that C∗
max(I) = C∗

max(I
′), we have the

final result :

CLSRC
max (I) ≤

(

2 −
1

mI(C∗
max(I))

)

C∗
max(I)

�

4.2. Restricted reservations

In actual scheduling systems that feature advance reser-

vations, there is a limit imposed on users, in order to avoid

that the cluster be totally blocked by the reservations. For

example, it is common to disallow reservations that require

more than half of the machines of the cluster. In this section,

we extend the model to deal with this kind of constraints,

and derive results about the LSRC algorithm.

Keeping this goal in mind, we define another, more re-

alist constraint to restrict the possible instances to the prob-

lem RESASCHEDULING. Given a parameter α ∈]0; 1], we

define the (sub)problem α-RESASCHEDULING by restrict-

ing all reservations at a given time to require no more than

(1 − α)m machines, and tasks to require no more than αm
machines. More formally:

∀t ≥ 0, U(t) =
∑

j∈Jt

qj ≤ (1 − α)m

∀i ≤ n, qi ≤ αm

These constraints define instances in which always at

least αm machines are available; and since no task can re-

quire more machines, it is always possible to schedule at

least one task. This will rule out the pathological instances

of the previous section, and will allow to derive perfor-

mance guarantees.

Of course, this problem remains strongly NP-Hard, so

we are interested in the performance of list scheduling in

this context.

Lower bound. We are going to give a lower bound for the

performance of LSRC, which shows that it is not possible

to prove a performance guarantee ρ ≤ 2
α − 1 for general

LSRC. To show it, we build an instance for the case α = 2
k ,

where k is an integer, in which the optimal schedule uses

m machines almost all the time, but there is an order of the

list for which LSRC uses only αm machines almost all the

time.

Proposition 2 If 2
α is an integer, the performance guaran-

tee of LSRC is at least 2
α − 1 + α

2 .

Proof: Assume that α = 2/k, with k ∈ N. We define an

instance I with m = k2(k− 1) machines, that contains two

different kinds of tasks (see figure 3):

5

• k tasks, from T1 to Tk, with pi = 1/k and qi = (k −
1)2;

• k − 1 tasks, from Tk+1 to T2k−1, with pi = 1 and

qi = k(k − 1) + 1;

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Cmax = 5 × 6 + 1 = 31

C∗
max = 6

60
31

25

1

150

30

Figure 3. An optimal schedule and the cor-

responding LSRC schedule, for α = 1
3 (m =

180).

Additionally, I contains one reservation that starts at

time 1, and occupies m(1 − α) = m − 2m/k = k(k −
1)(k − 2) processors during 2k time units.

Since (k−1)×(k(k−1)+1)+(k−1)2 = (k−1)(k(k−
1) + k) = (k − 1)k2 = m, it is possible to schedule all

tasks before time 1. The optimal makespan for this instance

is thus C∗
max = 1.

On the other hand, LSRC, when the list ordered by in-

creasing i, schedules all the tasks from the first set to be-

gin at time 0 (this is possible since k × (k − 1)2 ≤ m).

But then, no task from the second set can start its execu-

tion before these tasks have finished (i.e. time 1/k) because

k(k − 1)2 + k(k − 1) + 1 = m + 1. But it is impossible

that two tasks from the second set run concurrently if they

start later than time 0. Indeed, after time 1, only 2m/k =
2k(k − 1) processors are available, and 2 tasks from the

second set occupy 2k(k − 1) + 2 processors. These tasks

must then be scheduled sequentially, and the makespan of

the resulting schedule is Cmax = 1
k + k − 1 = 2

α − 1 + α
2 .

�

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

P
er

fo
rm

an
ce

g
u
ar

an
te

e

α

Upper bound
B1
B2

Figure 4. Upper and lower bounds for the per-

formance of LSRC on the α-RESASCHEDULING

problem, as a function of α.

For a more general α, a similar but more tedious instance

proves that

ρ ≥

⌈

2

α

⌉

− 1 +
1

⌊

1−(α/2)
1−(α/2)(⌈2/α⌉−1)

⌋

+ 1
≡ B1

≥

⌈

2

α

⌉

−
⌈2/α⌉ − 1

2/α
≡ B2

The bound B2 is a bit less precise than B1, but easier

to express. Figure 4 plots these bounds together with the

upper bound proven below, and shows that the upper and

lower bounds can be arbitrarily close to each other for some

values of the parameter α.

Upper bound. As we have stated before, the standard list

scheduling algorithm without reservation in the parallel task

model has a performance guarantee equal to 2− 1
m (see ap-

pendix). If we restrict to αm processors, we can easily ob-

tain a first bound by simply applying any list scheduling on

the available processors. Thus, we will get a performance

guarantee of 2
α . For α = 1

2 , we obtain a bound of 4.

Proposition 3 For the problem α-RESASCHEDULING,

LSRC has a performance guarantee ρ which is at most 2
α .

Proof:

The proof is a direct adaptation of theorem 2 (see ap-

pendix), with t′ set to t + 1
αC∗

max. �

5. Conclusion

In this paper, we have analyzed the problem of schedul-

ing a set of n independent jobs in the presence of reserva-

tions. We focused on list scheduling algorithms because of

their simplicity and solid theoretical foundations. We de-

fined the problem of scheduling with restricted reservations

6

in order to avoid stupid effects that lead to algorithms whose

makespan are arbitrary far from the optimal ones. Then, we

provided a lower bound (2
α − 1 + α

2) and derived a per-

formance guarantee for any list scheduling algorithms (2
α)

which is close to the lower bound.

An immediate but not trivial perspective is to study some

variants of list scheduling that can improve the upper bound

(for instance adding a priority based on sorting the jobs by

decreasing durations).

Another further direction is to investigate different kind

of heuristics like those based on packing (partition on

shelves) algorithms.

References

[1] M. Baker, G. Fox, and H. Yau. Cluster computing

review, 1995.

[2] J. Blazewicz, P. Dell’Olmo, M. Drozdowski, and

P. Maczka. Scheduling multiprocessor tasks on par-

allel processors with limited availability. European

Journal of Operational Research, 149:377–389, 2003.

[3] E.G. Coffman Jr., P. R. Jelenkovic, and B. Poonen.

Reservation probabilities. Advances in Performance

Analysis, 1999.

[4] D. E Culler and J. P. Singh. Parallel Computer Archi-

tecture. Pitman/MIT Press, 1989.

[5] M. Drozdowski. Handbook of Scheduling — Al-

gorithms, Models, and Performance Analysis, chap-

ter 25 - Scheduling parallel tasks — Algorithms and

complexity, pages 25–25. Computer and Information

Science Series. Chapman & Hall/CRC, Boca Raton-

London-New York-Washington, D.C., 2004.

[6] J. Du and J. Y.-T. Leung. Complexity of schedul-

ing parallel task systems. SIAM J. Discrete Math.,

2(4):473–487, 1989.

[7] D. G. Feitelson. Scheduling parallel jobs on clus-

ters. In Rajkumar Buyya, editor, High Performance

Cluster Computing, volume 1, Architectures and Sys-

tems, pages 519–533. Prentice Hall PTR, Upper Sad-

dle River, NJ, 1999. Chap. 21.

[8] Garey and Graham. Bounds for multiprocessor

scheduling with resource constraints. SICOMP: SIAM

Journal on Computing, 4, 1975.

[9] M.R. Garey and D.S. Johnson. Computers and in-

tractability: A guide to the theory of NP-complete

ness. W.H. Freeman, New York, 1979.

[10] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H.

G. Rinnooy Kan. Optimization and approximation in

deterministic sequencing and scheduling: A survey.

Ann. Discrete Mathematics, 5:287–326, 1979.

[11] R.L. Graham. Bounds for certain multiprocessing

anomalies. Bell Systems Technical Journal, 45:1563–

1581, 1966.

[12] Ronald L. Graham. Bounds on multiprocessing tim-

ing anomalies. SIAM Journal of Applied Mathematics,

17(2):416–429, 1969.

[13] Chung-Yee Lee. Machine scheduling with an avail-

ability constraint. Journal of Global Optimization,

9(Issue 3 - 4):395 – 416, Dec 1996.

[14] Chung-Yee Lee. Handbook of Scheduling — Algo-

rithms, Models, and Performance Analysis, chapter

22 - Machine scheduling with availability constraints.

Computer and Information Science Series. Chap-

man & Hall/CRC, Boca Raton-London-New York-

Washington, D.C., 2004.

[15] Zhen Liu and Eric Sanlaville. Preemptive scheduling

with variable profile, precedence constraints and due

dates. Discrete Applied Mathematics, 58(3):253–280,

1995.

[16] Zhen Liu and Eric Sanlaville. Stochastic schedul-

ing with variable profile and precedence constraints.

SIAM Journal on Computing, 26(1):173–187, 1997.

[17] G. Schmidt. Scheduling on semi-identical processors.

J. of Operational Research, A28:153–162, 1984.

[18] D. B. Shmoys, J. Wein, and D. P. Williamson.

Scheduling parallel machines on-line. SIAM J. Com-

put., 24(6):1313–1331, 1995.

7

6. Appendix

6.1. Revisiting Graham’s bound

In this section, we propose a new and simpler proof of

the well-know result of Graham on list scheduling with re-

source constraints [8], in the case of independent jobs and a

single resource (s = 1).

Notations. Let I be an instance of n independent paral-

lel tasks to be sheduled on m machines. Each task i uses

qi machines and must be executed in an exclusive way for

a time pi, without preemption. We will note pmax the

maximum execution time of the tasks max1≤i≤n(pi), and

W (I) the total work of the instance, defined as W (I) =
∑

1≤i≤n piqi.

Given a list scheduling algorithm A, we will note A(I)
the schedule produced by A for the instance I . This sched-

ule is represented by a function σ that gives the starting time

σi of every task Ti. For a given time t, we will note It the

set of tasks running at time t: It = {i ∈ [1..n] |σi ≤ t <
σi +pi}, and r(t) the number of machines used at time t by

A(I): r(t) =
∑

i∈It
qi.

Lemma 1

∀t, t′ ∈ [0, CA(I)
max [, t′ ≥ t + pmax ⇒ r(t) + r(t′) > m

Proof: If t′ ≥ t + pmax, then necessarily It′ ∩ It = ∅. On

the other hand, since t′ ≤ C
A(I)
max , there is at least one task

Ti running at time t′. The algorithm A has chosen not to

start this task at time t. By definition of a list algorithm, this

means that the task Ti cannot be executed together with the

tasks from It. Since this can only be because of a lack of

resources, we have r(t) + qi > m.

The result follows immediately. �

Remark. Since both r(t) and r(t′) are integers, we can

write more precisely: r(t) + r(t′) ≥ m + 1.

We can now establish the main result:

Theorem 2 If A is a list algorithm, then for every instance

I with m machines,

CA
max(I) ≤

(

2 −
1

m

)

C∗
max(I)

Proof: Let us consider an instance I with m processors. We

are going to prove that if there exists a real number x such

that CA
max ≥ (2 − x)C∗

max, then x ≥ 1
m .

Since C∗
max ≥ pmax, we have:

∀t ∈ [0, (1 − x)C∗
max[, r(t) + r(t + C∗

max) ≥ m + 1

After integrating this relation, we obtain:

X ≡

∫ (1−x)C∗

max

0

r(t)+r(t+C∗
max)dt ≥ (m+1)(1−x)C∗

max

With some rearrangement of this integral, we can bound

it by the total work of the instance:

X =

∫ (1−x)C∗

max

0

r(t)dt +

∫ (2−x)C∗

max

C∗
max

r(t)dt

=

∫ (2−x)C∗

max

0

r(t)dt −

∫ C∗

max

(1−x)C∗
max

r(t)dt

and since r(t) ≥ 1 for all t,

≤

∫ CA

max

0

r(t)dt − xC∗
max = W (I) − xC∗

max

Obviously, since mC∗
max is the total area available to the

optimal schedule, we have W (I) ≤ mC∗
max. We deduce:

(m − x)C∗
max ≥ X ≥ (m + 1)(1 − x)C∗

max

We deduce the final result: x ≥ 1
m . �

8

