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Abstract: The paper proposes a novel calibration approach for the Orthoglide-type 
mechanisms based on observations of the manipulator leg parallelism during mo-
tions between the prespecified test postures. It employs a low-cost measuring system 
composed of standard comparator indicators attached to the universal magnetic 
stands. They are sequentially used for measuring the deviation of the relevant leg 
location while the manipulator moves the TCP along the Cartesian axes. Using the 
measured differences, the developed algorithm estimates the joint offsets that are 
treated as the most essential parameters to be adjusted. The sensitivity of the meas-
urement methods and the calibration accuracy are also studied. Experimental re-
sults are presented that demonstrate validity of the proposed calibration technique. 
 
Keywords: parallel robots, kinematic calibration, model identification, joint offsets, 
and error compensation. 
 
 
 

 
1. INTRODUCTION 

 
Parallel kinematic machines (PKM) are commonly 
claimed to offer several advantages over serial ma-
nipulators, like high structural rigidity, better pay-
load-to-weight ratio, high dynamic capacities and 
high accuracy (Merlet, 2000; Tlusty, et al., 1999). As 
stated by a number of authors (Tsai, 1999; Wenger, 
et al., 1999), the conventional serial kinematic struc-
tures have already achieved their performance limits, 
which are bounded by high component stiffness re-
quired to support sequential joints, links and actua-
tors. Thus, the PKM are prudently considered as 
promising alternatives to their serial counterparts that 
offer faster, more flexible, more accurate and less 
costly solutions. 
However, while the PKM usually demonstrate a 
much better repeatability compared to serial mecha-
nisms, they may not necessarily posses a better accu-
racy, which is limited by manufacturing/assembling 
errors in numerous links and passive joints (Wang, 
and Masory, 1993). Besides, for the non-Cartesian 
parallel architectures, some kinematic parameters 
(such as the encoder offsets) cannot be determined 

by direct measurement. These motivate intensive 
research on PKM calibration. 
 
Similar to the serial manipulators, the PKM calibra-
tion procedures are based on the minimisation of a 
parameter-dependent error function, which incorpo-
rates residuals of the kinematic equations. For the 
parallel manipulators, the inverse kinematic equa-
tions are considered computationally more efficient, 
since the most of the PKM admits a closed-form so-
lution of the inverse kinematics (Innocenti, 1995; 
Iurascu, and Park, 2003; Huang, et al., 2005). But the 
main difficulty with the inverse-kinematics-based 
calibration is the full-pose measurement requirement, 
which is very hard to implement accurately (Jeong, et 
al., 2004.  
 
Recently, several hybrid calibration methods were 
proposed that utilize intrinsic properties of a particu-
lar parallel machine allowing to extract the full set of 
the model parameters (or the most essential of them) 
from a minimum set of the pose error measurements. 
An innovative approach for the I4 parallel mecha-
nism has been developed by Renaud et al (2004, 
2006) who applied vision to perform measurement 



     

on manipulator legs, which connect the end-effector 
to the base-mounted linear actuators. 
 
This paper focuses on the Orthoglide-type mecha-
nisms, which kinematic architecture admits parallel 
leg motions (along the longitudinal axis). From ob-
servations the leg parallelism at prespecified pos-
tures, the proposed calibration algorithm estimates 
the joint offsets that are treated as the most essential 
parameters to be adjusted. The main advantage of 
this approach is the simplicity and low cost of the 
measuring system composed of standard comparator 
indicators attached to the universal magnetic stands. 
They are sequentially used for measuring the devia-
tion of the relevant leg location while the manipula-
tor moves the TCP along the Cartesian axes. 
 
The remainder of the paper is organised as follows. 
Section 2 describes the manipulator geometry, its 
inverse and direct kinematics, and also contains the 
sensitivity analysis of the leg parallelism at the ex-
amined postures with respect to the joint offsets. Sec-
tion 3 focuses on the measurements and parameter 
identification. Section 4 contains experimental re-
sults and their discussion, while Section 5 summa-
rises the main results. 
 

 
 

Fig. 1. The Orthoglide mechanism 
 

2. KINEMATIC MODEL 
 
2.1 Manipulator geometry 
 
The Orthoglide is a three degree-of-freedom mecha-
nism actuated by three linear drives with mutually 
orthogonal axes (Chablat and Wenger, 2003). Its 
kinematic architecture is presented in Fig. 1 and in-
cludes three identical parallel chains that are for-
mally described as PRPaR, where P, R and Pa de-
note the prismatic, revolute, and parallelogram joints. 
 
The mechanism input is made up by three actuated 
orthogonal prismatic joints. The output machinery 
(with a tool mounting flange) is connected to the 
prismatic joints through a set of three kinematic 
chains that further referred as manipulator “legs”. 
The legs are made with articulated parallelograms 
that are oriented in a manner that the output body is 
restricted to the translational movements only. 
 

A specific feature of the Orthoglide mechanism, 
which will be further used for the calibration, is dis-
played during the end-effector motions along the 
Cartesian axes. For example, for the x-axis motion in 
the Cartesian space, the sides of the x-leg parallelo-
gram must also retain strictly parallel to the x-axis. 
Hence, the observed deviation of the mentioned par-
allelism may be used as the data source for calibra-
tion algorithms. 
 
 
2.2 Modelling assumptions 
 
Following previous studies on the parallel mecha-
nism accuracy  (Wang, and Massory, 1995, Renaud, 
et al., 2004; Caro, et al., 2006), the influence of the 
joint/link defects is assumed negligible compared to 
the joint positioning errors mainly caused by the en-
coder offsets. This validates the following modelling 
assumptions:  

(i) the manipulator parts are supposed to be rigid-
bodies connected by perfect joints; 

(ii) the articulated parallelograms are assumed to be 
identical and perfect, which insure that their 
sides stay parallel in pares for any motions; 

(iii) the manipulator legs (composed of one pris-
matic joint, one parallelogram, and three revo-
lute joints) are identical and generate a five-
DOF motion each; 

(iv) the linear actuator axes are considered mutually 
orthogonal and intersected in a single point to 
insure a translational three-DOF movement of 
the end-effector. 

 
The actuator encoders are assumed to be perfect but 
their location (zero position) is defined with some 
errors that are treated as the offsets to be estimated. 
Using these assumptions, there will be developed a 
convenient calibration methodology based on the 
observation of the parallel gel motions. 
 
2.3 Basic equations 
 
Under the above assumptions, the Orthoglide can be 
presented by a simplified model, which consists of 
three rod-links connected by spherical joints to the 
tool centre point (TCP) at one side and to the corre-
sponding prismatic joints at another side. Thus, if the 
origin of a reference frame is located at the intersec-
tion of the prismatic joint axes and the x, y, z-axes are 
directed along them, the manipulator geometry may 
be described by the equations 
 

 [ ] 2222)( Lppp zyxx =++ρΔ+ρ−   

 [ ] 2222 )( Lppp zyyyx =+ρΔ+ρ−+  (1) 

 [ ] 2222 )( Lppp zzzyx =ρΔ+ρ−++  
 
where p = (px, py, pz) is the output position vector, 
ρ = (ρx, ρy, ρz) is the input vector of the joints vari-
ables, Δρ = (Δρx, Δρy, Δρz) is the encoder offset vec-



     

tor, and L is the length of the parallelogram principal 
links. Hence, within the adopted model, four parame-
ters (Δρx, Δρy, Δρz, L) define the manipulator geome-
try, but because of the rather tough manufacturing 
tolerances, the leg length is assumed to be known 
and only the joint offsets (Δρx, Δρy, Δρz) are in the 
focus of the proposed calibration technique. 
 
It should be noted that for the nominal ‘‘mechanical-
zero’’ posture corresponding to the joints variables 
ρ0 = (L, L, L), the x-, y- and z-legs are oriented 
strictly parallel to the relevant Cartesian axes. But 
the joint offsets cause the deviation of the “zero” 
location and corresponding deviation of the leg par-
allelism with respect to the manipulator base surface. 
The latter may be (i) measured and (ii) computed 
applying the direct kinematic algorithm for the joint 
variables ρ = (L+Δρx, L+Δρy, L+Δρz). However, the 
capability of this simple technique is limited by 
evaluating the offset of the z-axis encoder only, since 
the Orthoglide mechanical design does not allow 
making similar measurements for the remaining pairs 
of the legs, with respect to the xz- and yz-planes. 
 
 
2.4 Inverse and direct kinematics 
 
To derive calibration equations, first let us expand 
some previous results on the Orthoglide kinematics  
(Pashkevich et al., 2005) taking into account the en-
coder offsets. The inverse kinematic relations are 
derived from the equations (1) in a straightforward 
way and only slightly differ from the “nominal” case 

 xzyxxx ppLsp ρΔ−−−+=ρ 222   

 yzxyyy ppLsp ρΔ−−−+=ρ 222  (2) 

 zyxzzz ppLsp ρΔ−−−+=ρ 222   

where sx, sy, sz ∈ { ±1} are the configuration indices 
defined for the “nominal” manipulator as signs of 
(ρx – px) , (ρy – py), and (ρz – pz) respectively. It is ob-
vious that expressions (2) define eight different solu-
tions to the inverse kinematics, however the Or-
thoglide assembling and joint limits reduce this set 
for a single case corresponding to the sx= sy= sz= 1. 
 
For the direct kinematics, the equations (1) can be 
subtracted pair-to-pair that gives the following ex-
pression for the unknowns px, py, pz  
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where t is an auxiliary scalar variable. This reduces 
the direct kinematics to the solution of a quadratic 
equation 02 =++ cbtat  with the coefficients  
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From two possible solutions that give the quadratic 
formula, the Orthoglide prototype (see Fig. 1) admits 
only one expressing as 2( 4 ) / 2t b m b ac a= − + − . 
 
 
2.5 Sensitivity analysis  
 
To evaluate the encoder offset influence on the legs 
parallelism with respect to the Cartesian planes XY, 
YZ, and YZ, let us derive the differential relations for 
the TCP deviation for three types of the Orthoglide 
postures: mechanical zero” posture and “maxi-
mum/minimum displacement” postures for the direc-
tions x, y, z. These postures are of particular interest 
for the calibration since in the “nominal” case (no 
encoder offsets) at least one leg is parallel to the cor-
responding pair of the Cartesian planes.  
 
The desired differential relations may be derived 
from the Orthoglide Jacobian, the inverse of which is 
obtained from (1) as 
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For the “mechanical zero” posture, the differential 
relations are derived in the neighbourhood of the 
point p0 = (0, 0, 0) and ρ0 = (L, L, L), which gives the 
identity Jacobian matrix 0 0 3 3( , ) ×=J p ρ I . Hence, in 
this case the TCP displacement is related to the joint 
offsets by trivial equations ;iip ρΔ=Δ  },,{ zyxi ∈ . 
Taking into the account the Orthoglide geometry, this 
deviation may be estimated by evaluating parallelism 
of the legs with respect to the Cartesian planes. How-
ever, as mentioned in sub-section 2.3, this technique 
is feasible for z-direction only and may produce es-
timation of Δρz merely. 
 
For the “maximum displacement” posture in the x-
direction, the differential relations are derived in the 
neighbourhood of the point )0,0,sin( α= Lp  and 

),,( ααα+= LCLCLSLρ , where, α is the angle be-
tween the y-, z-legs and corresponding Cartesian 
axes, and α=α= αα cos;sin CS . This gives the in-
verse Jacobian as a lower triangle matrix  
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where α=α tanT . Hence, the differential equations 
for the TCP displacement may be written as 



     

 
;
;

;

zxz

yxy

xx

Tp
Tp

p

ρΔ+ρΔ=Δ
ρΔ+ρΔ=Δ

ρΔ=Δ

α

α
 (6) 

and the joint offset influences on the TCP deviation 
is estimated by factors 1.0 and Tα. It is also worth 
mentioning that measurement of the x-leg parallelism 
with respect to the XY-plane gives an equation for 
estimating the offset Δρx (provided that the offset Δρz 
has been obtained from the “mechanical zero”). 
 
Similar results are valid for the “maximum displace-
ment” postures in the y- and z-directions (differing by 
the indices only), and also for the “minimum dis-
placement” postures. In the latter case, the angle α 
should be computed as )(asin min Lρ=α . Hence, the 
leg parallelism is rather sensitive to the joint offsets 
and relevant deviations Δpx, Δpy, Δpz, and may be 
used for the offset identification. 
 

3. CALIBRATION METHODOLOGY 
 
3.1 Measurement technique 
 
To identify the model parameters, we propose a sin-
gle-sensor measurement techniques for the 
leg/surface parallelism (Fig. 2). It is based on fixed 
location of the measuring device for two distinct leg 
postures corresponding to the minimum/maximum of 
the joint coordinates. Relevant calibration experi-
ment consists of the following steps: 
Step 1. Move the manipulator to the “mechanical 

zero”; locate two gauges in the middle of the X-leg 
(parallel to the axes Y and Z); get their readings. 

Step 2. Move the manipulator to the  “X-maximum” 
and “X-minimum” postures, get the gauge readings, 
and compute differences −−++ ΔΔΔΔ xxxx zyzy ,,, . 

Step 3+. Repeat steps 1, 2 for the Y- and Z-legs and 
compute corresponding differences. 

 

Manipulator legs 

d1 

Δ = d2 - d1 

Manipulator legs

d2 

Base plane 

Base plane 

Posture #1 

Posture #2 

 
Fig. 2. Measuring the leg/surface parallelism 
 
 
3.2 Calibration equations 
 
The calibration equations can be derived using ex-
pressions from sub-section 2.5. First, it is required to 

define the gauge initial location. For the X-leg, it is 
the midpoint of the line segment bounded by the TCP 
(Δρx, Δρy, Δρz) and the centre of the X- joint 
(L+Δρx, 0, 0). This yields the following expression 
for the X-leg midpoint: ( 2 ; 2; 2)x y zL ρ ρ ρ+ Δ Δ Δ . 
For the “X-maximum” posture, the X-leg location is 
also defined by same two points, but their coordi-
nates are );;( zxyxx TTLS ρΔ+ρΔρΔ+ρΔρΔ+ ααα  and 

)0;0;( xLSL ρΔ++ α  respectively. Then, it may be 
written the equations of a straight-line passing along 
the X-leg and computed the point corresponding to 

xLx ρΔ+= 2 . Hence, finally, the deviations of the 
X-leg measurements may be expressed as 
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;)5.0(  (7) 

Similar approach may be applied to the “X-
minimum” posture, as well as to the equivalent post-
ures for the Y- and Z-legs. This gives the system of 
twelve linear equations in three unknowns 
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where sini ib α= ; (0.5 sin ) tani i ic α α= +  and the 
angles α1, α2 are computed for the maximum and 
minimum postures respectively. The reduced version 
of this system may be obtained if to assess the 
leg/plane parallelism by the difference between the 
“maximum” and “minimum” postures. The latter 
leads to the system of six linear equations in three 
unknowns.  
 

4. EXPERIMENTAL RESULTS 
 
3.1 Experimental setup 
 
The measuring system is composed of standard com-
parator indicators attached to the universal magnetic 
stands allowing fixing them on the manipulator 
bases. The indicators have resolution of 10 μm and 
are sequentially used for measuring the X-, Y-, and 
Z-leg parallelism while the manipulator moves be-
tween the Max, Min and Zero postures. For each 
measurement, the indicators are located on the me-
chanism base in such manner that a corresponding 



     

leg is admissible for the gauge contact for all inter-
mediate posters (Fig. 3).  
 
For each leg, the measurements were repeated three 
times for the following sequence of motions: Ze-
ro → Max → Min → Zero→ …. Then, the results 
were averaged and used for the parameter identifica-
tion. It should be noted that measurements demon-
strated very high repeatability (about 0.02 mm). 
 
4.2 Calibration results 
 
The first calibration experiment produced rather high 
parallelism deviation, up to 2.37 mm, which in the 
frames of the adopted kinematic model was expected 
to be reduced down to 1.07 mm only (Table 1). The 
corresponding residual norm was also rather high 
and yielded unrealistic estimate of the measurement 
noise parameter σ ≈ 1.0 mm. It impels to conclude 
that the mechanism mechanics requires more careful 
tuning. Consequently, the location of the joint axes 
was adjusted mechanically to ensure the leg paral-
lelism for the Zero posture.  

 

Fig. 3. Experimental Setup 
 
The second calibration experiment (after mechanical 
tuning) yielded lower parallelism deviations, less 
than 0.70 mm. For these data, the developed calibra-
tion algorithm yielded the joint offsets that are ex-
pected to reduce the deviation down to 0.28 mm. 
Besides, the estimated value of σ ≈ 0.28 mm is rather 
realistic taking into account both the measurement 
accuracy and the manufacturing/assembling toler-
ances. Accordingly, the identified vales of the joint 
offsets were input into the control software. 
 
The third experiment (validation of the identified 
parameters) demonstrated good agreement with the 
expected results. In particular, the maximum paral-
lelism deviation reduced down to 0.34 mm (expected 
0.28 mm), while its root-mean-square decreased 
down to 0.21 mm (expected 0.20 mm). On the other 
hand, further adjusting of the kinematic model to the 
new experimental data gives both negligible im-
provement of the r.m.s. and rather small alteration of 
the model parameters. It is evident that further reduc-
tion of the parallelism deviation is bounded by the 
manufacturing and assembling errors.  
 
Hence, the calibration results confirm validity of the 
proposed identification technique and its ability to 
tune the joint offsets from observations of the leg 
parallelism.  
 

Table 1. Experimental data and expected improvements of accuracy (model-based) 

Data Source Δxy Δxz Δyx Δyz Δzx Δzy  r.m.s. 
mm mm mm mm mm mm  mm 

 Initial settings (before mechanical tuning and calibration) 
Experiment #1 +0.52 +1.58 +2.37 -0.25 -0.57 -0.04  1.19 

Expected improvement -0.94 +0.63 +1.07 -0.84 -0.27 +0.35  0.74 
 After mechanical tuning (before calibration) 

Experiment #2 -0.43 -0.37 +0.42 -0.18 -1.14 -0.70  0.62 
Expected improvement -0.28 +0.25 +0.21 -0.14 -0.13 +0.09  0.20 

 After calibration 
Experiment #3 -0.23 +0.27 +0.34 -0.10 -0.09 +0.11  0.21 

Expected improvement -0.29 +0.23 +0.25 -0.17 -0.10 +0.08  0.20 



     

5. CONCLUSIONS 
 
This paper proposes a novel calibration approach for 
the parallel manipulators, which is based on observa-
tions of manipulator leg parallelism with respect to 
some predefined planes. Presented for the Orthog-
lide-type mechanisms, this approach may be also 
applied to other manipulator architectures that admit 
parallel leg motions along the longitudinal axis. 
 
The proposed calibration technique employs a simple 
and low-cost measuring system composed of stan-
dard comparator indicators attached to the universal 
magnetic stands. They are sequentially used for mea-
suring the deviation of the relevant leg location while 
the manipulator moves the TCP along the Cartesian 
axes. From the measured differences, the calibration 
algorithm estimates the joint offsets that are treated 
as the most essential parameters to be tuned. The 
validity of the proposed approach and efficiency of 
the developed numerical algorithm were confirmed 
by the calibration experiments with the Orthoglide 
prototype, which allowed reducing the residual r.m.s. 
by three times. 
 
To increase the calibration precision, future work 
will focus on the development of the specific assem-
bling fixture ensuring proper location of the linear 
actuators and also on the essential theoretical issues 
such as calibration experiment planning, expanding 
the set of the identified model parameters and their 
identifiably analysis, and compensation of the non-
geometric errors non detected within the frames of 
the adopted kinematic model. 
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