
HAL Id: hal-00186756
https://hal.science/hal-00186756v1

Submitted on 12 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Mobile Computing Architecture for Numerical
Simulation

Cyril Dumont, Fabrice Mourlin

To cite this version:
Cyril Dumont, Fabrice Mourlin. A Mobile Computing Architecture for Numerical Simulation. Inter-
national Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Nov 2007,
Papeete, French Polynesia. pp.68-74, �10.1109/UBICOMM.2007.2�. �hal-00186756�

https://hal.science/hal-00186756v1
https://hal.archives-ouvertes.fr

A Mobile Computing Architecture for Numerical Simulation

Cyril Dumont
Paris 12 University

LACL
Créteil, France

dumont_cyril@yahoo.fr

Fabrice Mourlin
Paris 12 University

LACL
Créteil, France

fabrice.mourlin@wanadoo.fr

Abstract

The domain of numerical simulation is a place
where the parallelization of numerical code is
common. The definition of a numerical context means
the configuration of resources such as memory,
processor load and communication graph, with an
evolving feature: the resources availability. A feature
is often missing: the adaptability. It is not predictable
and the adaptable aspect is essential. Without calling
into question these implementations of these codes, we
create an adaptive use of these implementations.
Because the execution has to be driven by the
availability of main resources, the components of a
numeric computation have to react when their context
changes. This paper offers a new architecture, a
mobile computing architecture, based on mobile
agents and JavaSpace. At the end of this paper, we
apply our architecture to several case studies and
obtain our first results.

1. Introduction

The domain of numerical application is a place
where technical frameworks are frequently used. There
are useful to solve many practical problems, such as
equation solvers, data distribution, and load observer.
But the numerical simulations highlight software
engineering problems, such as code parallelization,
termination control, memory management, etc. Then,
the simulation programmer has to change and rewrite
numerical code for each experiment even if input data
or computing resources are slightly changed. It seems
obvious that this programming approach is expensive
and it introduces new bugs and new cost.

A feature is clearly missing: adaptability. An
adaptive computation tries to fulfill a set of goals in a
complex, dynamic environment by sensing and acting
upon its environment. In numerical simulation, the
current constraints do not allow the realization of such
computation. In this paper we present a new

architecture dedicated to numerical adaptative
computing.

For numerical application, the increased
computational power of parallel hardware offers a
promising way of exceeding limitation of resources.
However, the parallelization of numerical code is
usually an expensive task, especially when this task is
performed from an existing code. For instance,
numerical techniques such as Finite Difference Time
Domain (FDTD) computer programs are used to
analyze the electromagnetic environment in a lot of
contexts. Implementations of this technique already
exist such as GORFF-VE [1]. The development of a
new parallel adaptive version is unbelievable but an
adaptative use of this implementation is achievable.
This kind of use allows two main features; the first one
is a better use of the computing resources of the
existing material architecture (large network or grid of
processors). The second one is to allow the replay of
experiment from a specific point, where a watch point
is placed or where an error occurs.

In this paper, we present an architecture where
mobility is the key concept to adapt all the data of a
numerical experiment. These are the input data, the
computing task and the material resources. The next
section explains our technical choices and also how the
mobility is exploited. The following part describes our
software architecture and its evolution during a
computing experiment. Next, we discuss advantages
and limits of our approach, draw up its benchmark are
built and finally we depict future directions of our
activity.

2. Introduction to a dynamic network
architecture

Traditional network architecture is static by nature.
Network designers know in advance which computer
hardware and software will participate in a specific
computing and the network infrastructure is built in
accordance with this concept. For example, in the

International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

0-7695-2993-3/07 $25.00 © 2007 IEEE
DOI

68

International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

0-7695-2993-3/07 $25.00 © 2007 IEEE
DOI 10.1109/UBICOMM.2007.40

68

Client/Server network architecture, specific server
resources are designated to be served to clients on
request, while other software units are indigenous on
the clients.

In dynamic network architecture we do not decide
in advance the specific hardware and software that will
participate in the solution. Because of the multiplicity
of software and hardware available on the network that
could participate in the solution, it is advantageous to
defer the decision until the software or hardware is
actually required. The idea is to have the solution itself
seek and recover on the network the components and
resources it requires. Should the selected components
and resources degrade or fail during execution, the
solution can replace them or/and continue to operate.

2.1. A Mobile Agent Framework

Some programs can be made to run faster by

dividing them up into smaller pieces and running these
pieces on multiple processors.

For instance, an electromagnetic simulation about
an electric circuit device to be analyzed (cable pigtail
portion) starts with an input data set. This one
describes an electric circuit device having a metal
cabinet, all data input is described in terms familiar to
professionals in the field but the size of this description
is so large that it is not possible to read the whole set
and to compute the field components on a single
computer. A concrete experiment can use a 14 Go data
set for a 1.4 GHz case study. Also the data set is
partitioned with respect to the symmetries of the data.
It means that the cut strategy depends on the
symmetries which are express in the data set [2]. These
properties can come from the underlying mesh if it is
structured or from the future task, if that one is
isotropic.

 Several implementations already exist but few of
them hide technical features from their environment.
Data exchange is also a strong constraint in agent
community; data type has to be preserved from the
sender to the receivers. These main constraints helped
us select a mobile agent framework.

2.2. The Jini Framework

2.2.1. Jini introduction. Our framework is based on
Java language and Jini technology. The Jini
networking system is a distributed infrastructure built
around the Java programming language and
environment. Jini is the name for a distributed
infrastructure computing environment that can offer
“network plug and play”. A device or software service
like an agent can be connected to a network and

announce its presence, and clients that wish to use such
a service can then locate it and call it to perform tasks
[3].

The basic communication model is based on the
semantic model of the Java Remote Method Invocation
system, in which objects in one Java virtual machine
communicate with objects in another one by receiving
a proxy object that implements the same interface as
the remote object. This communication model is the
core feature for moving agents. The proxy object deals
with all communication details between the two
processes. The proxy object can introduce new code
into the process to which it is moved. This is possible
because Java byte codes are portable, and it is safe
because of the Java environment’s built-in verification
and security.

2.2.2. Jini Services. The Jini technology includes
several services. Both of them interest us particularly:
JavaSpaces and Transaction Service.

Building distributed applications with conventional
network tools usually entails passing messages
between processes or invoking methods on remote
objects. In JavaSpaces applications, in contrast,
processes don't communicate directly, but instead
coordinate their activities by exchanging objects
through a space, or shared memory. A process can
write new objects into a space, take objects from a
space, or read (make a local copy of) objects in a
space. When taking or reading objects, processes use
simple matching, based on the values of fields, to find
the objects that matter to them. If a matching object
isn't found immediately, then a process can wait until
one arrives. To modify an object, a process must
explicitly remove it, update it, and reinsert it into the
space. Spaces are object stores with several important
properties that contribute to making JavaSpaces a
powerful, expressive tool. Spaces are shared,
persistent, transactionally secure [4].

Outrigger is the name of the contributed
JavaSpaces(TM) service from Sun Microsystems.
Transactions are a necessary part of many distributed
operations. A series of operations, either within a
single service or spanning multiple services, can be
wrapped in a transaction. Mahalo is the transaction
manager supplied by Sun as part of the Jini
distribution. To make use of transactions, first it is
necessary to create a transaction manager that can
create and maintain a transaction for each client. This
concept allows the user to ask for a set of requests
which are closely related. It insures that the whole
transaction is satisfied or cancelled. To locate a
manager, you use Jini's lookup and discovery. Like all
Jini services, the lookup service returns a proxy object
to a transaction manager. The Jini transaction

6969

interfaces supply a service protocol needed to
coordinate a two-phase commit.

3. Mobile computing architecture

A working space has to be organized, if we want to
achieve a specific mission quickly. A JavaSpace
follows this idea. In the Replicated-Worker pattern on
JavaSpaces [5], also known as the Master-Worker
pattern, a master process creates a collection of tasks
that need to be run. Workers take tasks from the
collection and run them, then hand over the computed
result to the master. A space is a natural channel for
passing messages between master and workers, due to
the decoupled programming style it encourages.

Typically, there are many workers, and they are
identical; hence the term replicated. This pattern neatly
provides load balancing, whereby each worker
contributes whatever resources it can afford. The
worker on a faster machine will execute more tasks
than the worker on a slower or otherwise heavily
loaded machine; and as long as the granularity of the
tasks is sufficiently fine, no worker will hold up the
computation.

Figure 1. The Replicated-Worker pattern on
JavaSpaces

The open source Java framework ComputeFarm [6]
grew out of an implementation in JavaSpaces of this
pattern. But our approach of this pattern differs from
ComputeFarm because the tasks do not contain the
required computation. The computation is on a mobile
agent apart from the space. In the space, there are the
parts of the file and the scheduler, which is the main
component of the computation.

Based on the Replicated-Worker pattern, our mobile
computing architecture goes further than the
ComputeFarm framework. The adaptability and the

replay of a computation case is the heart of our
architecture.

In fact, our mobile computing architecture consists
of four main components. All the components are on
various nodes of a network. The link between all the
components is the Space. Each computer containing a
component must reach the computer containing the
Space.

 The ComputingMaster initializes the computation
case and finishes it. It creates the parts of the source
file and collects the files generated by the
ComputingWorker.

 The ComputingAgent is the mobile agent that
contains the code of the computation case.

 An essential part of the computation is the
Scheduler, which schedules tasks for
ComputingWorker to facilitate multitasking. When a
component takes the Scheduler, the Scheduler is not
available anymore. The component must rewrite it to
make it available again. That will avoid conflicts and
two executions of the same task. The strategy of
choices of tasks takes part in the semantic of the
Scheduler. The Scheduler we will use from now on
attributes the tasks to the ComputingWorker in order of
task arrival. Another implementation of the Scheduler
is completely possible: priorities into the tasks for
instance.

 Finally the ComputingWorker take tasks from the
Scheduler and with the ComputingAgent they can work
with the parts of the file on the Space. Moreover, the
result of a same task is identical whatever the
ComputingWorker. The following part describes in
detail the components in four steps.

3.1. Initialization step

Like the TransactionManager and the JavaSpace,
the ComputingAgent is registered with the Jini lookup
service: The lookup service, which is a Jini service,
keeps track of the Jini services and provides proxies to
communicate with the services.

This mobile agent is started up separately from the
other components of the mobile computing
architecture. It can be used by another computing case
with another source file. Before starting the
computation, it must be configured. A configuration
file allows to define the following parts of the
computation:

- The way to cut the source file and the number of
parts.

- The number of ComputingWorker used for the
beginning of the computation (this number can
evolve with the passing of the computation).

7070

- The address of the ComputingAgent. This
address is used by the ComputingWorker to get
the mobile agent.

With our configuration on hand, we can begin the
computation. First of all, the set up of the Scheduler in
the Space is essential. On the beginning it contains no
task but it is the central point of the architecture. We
said that the ComputingMaster ends the computation.
For that it must listen to the Scheduler. When a task
has been executed, the ComputingMaster wants to be
informed. This component is the ResultListener.

Now we are ready to cut the source file. This part of
the computation depends on the computation case (we
have seen it in the configuration step). The several
parts created are copied in a temporary directory.
Execution of this part is completely asynchronous with
the rest of the computation process. Fig. 2 describes the
two steps of this initialization.

Figure 2. Initialization step for a computation
case

The ComputingMaster creates other sub-
components such as FileEntryGenerator, of which we
will see the description in the following section.

3.2. Deployment step

In this section, we explain how a computing context
can be initially deployed.

The first part of the deployment is to warn the
ComputingWorker about the new computation. For that
a mobile agent has its own road map, given by the
ComputingMaster with the configuration file, and
contains the address of the ComputingAgent. This
mobile agent migrates on each computer of his
roadmap and starts a ComputingWorker with the good
configuration. Then, the ComputingMaster writes a
ConfigurationEntry on the Space and each new
ComputingWorker will be able to read the
configuration.

We finished the previous section by the creation of
the files and the fact that it is asynchronous. The
FileEntryGenerator is created and can now wait for
new file in the temporary directory. This allows, upon
receipt of a file in this directory, to start the process of
the generation of FileEntry and new ComputingTask.

A FileEntry is identified by an UUID (Universally
Unique Identifier) used to identify the same entry in
different contexts. A UUID is essentially a 16-byte
(128-bit) number. In its canonical hexadecimal form a
UUID may look like this: 550e8400-e29b-41d4-a716-
446655440000. The number of theoretically possible
UUIDs is therefore 2128 = 25616 or about 3.4 × 1038.
This means that 1 trillion UUIDs have to be created
every nanosecond for 10 billion years to exhaust the
number of UUIDs. With random UUIDs, the chance of
two having the same value is poor.

It also contains data of part of the source file. Data
are encoded Base64 to serialize data (mobile on the
Space). Before writing the entry on the Space, the
TranscationManager creates a new transaction “A”
that follows this part of the computing case during its
various steps. This manager allows to check if the
transaction is open.

With this transaction “A”, the FileEntry is written
on the Space and a ComputingTask is added on the
Scheduler. The new task contains the transaction “A”
and is in its first state: WAIT_FOR_COMPUTING.
(Fig. 3)

Figure 3. Lifecycle of a ComputingTask

3.3. Execution step

From now on the first FileEntry is written on the
Space, the work of the ComputingWorker can begin.

7171

Let us return to creation of the ComputingWorker,
outlines quickly on the previous step. During its
creation, the worker locates the ComputingAgent and
calls it. Like all Jini services, the lookup service returns
a proxy object to the agent. And this mobile agent
(with its proxy) becomes the intelligence of the
ComputingWorker.

To be informed on new ComputingTask, it must
listen to the Scheduler. However a new task does not
imply that it will be realized by this ComputingWorker.
The lifecycle of a ComputingWorker is structured into
two states (Fig. 4). The control of the activity of the
ComputingWorker is essential; all resources of the
ComputingWorker must be for the progress task and
leave the others tasks for the ComputingWorker with
unused resources. It can also accept task only if it is in
WAIT_FOR_COMPUTING state.

Figure 4. Lifecycle of a ComputingWorker

Now let us consider it is in this state and is
informed that the Scheduler has a new ComputingTask
in WAIT_FOR_COMPUTING state. The worker takes
the Scheduler (1 on Fig. 5), the new ComputingTask
(2 on Fig. 5) and analyses this task. Now it has a
Transaction tnx1 to read a FileEntry on the Space (2
on Fig. 5). With this entry, it decodes (Base64) data in
a local directory (3 on Fig. 5) and starts the
computation on the local file with the proxy of the
ComputingAgent (4 on Fig. 5).

We put the Scheduler back on the Space so that
other components of our architecture can listen to it.
The state of the task is ON_COMPUTING (Fig. 3).

Then the file generated by the agent is transformed
on a ResultEntry that has the same properties as
FileEntry: a generated Uuid, data encoded in Base64
(5 on Fig. 5). This result is written on the Space with
the transaction tnx1 (6 on Fig. 5). The
ComputingTask is now in COMPUTED state (7 on
Fig. 5).

This section explained the role of a unique
ComputingWorker, but the principle of this architecture
is the multiplicity of this kind of workers. The
fundamental point is the possibility to add and/or
remove any workers at any moment. This makes
adaptability the main feature of our architecture. A new
ComputingWorker can read the Scheduler, and if it
does not have a configuration for this computation

case, it can read the ConfigurationEntry on the Space.
Now it can take a ComputingTask and executes it with
the ComputingAgent (thanks to the new configuration).

3.4. Final step

A new ResultEntry was thus written on the Space.
Now the ResultListener, which was created at the
initialization step, will be useful. Like the
ComputingWorker, the ResultListener must listen to
the Scheduler. When a ComputingTask is in
COMPUTED state (Fig. 3), the ResultListener is
informed and can begin to create the result file. The
ResultListener can begin to take the first results when
the ComputingMaster is still cutting the source file.

A computation case is over when the number of the
result files is equal to the number of the part of the
source file. It is necessary to warn the
ComputingWorker on this computation case. To do so,
the ComputingMaster writes a new entry on the Space.
This entry is a StopEntry and all ComputingWorker
listen to the appearance of this kind of entry. When a
ComputingWorker is informed, it stops its activity and
is ready for a new computation case.

Figure 5. The computing process

The combination of two elements (transactions and
the state of a ComputingTask) allows to start again a
computation case. If a transaction is aborted, the task
can start again from its last state and the

7272

ComputingMaster, with the TransactionManager,
creates a new transaction for this task.

4. Synthesis on our approach

4.1. Observation on case study

We applied our architecture to several case studies.
Of course, we used it for elementary numerical
computation.

4.1.1. The computation of the n'th decimal digit of
various transcendental numbers. For instance, we
implement the formula for pi, discovered by David
Bailey, Peter Borwein, and Simon Plouffe [7].

The reason this pi formula is so interesting is
because it can be used to calculate the N-th digit of Pi
(in base 16) without having to calculate all of the
previous digits. Also, the computing task concept is
clearly identified and the data set is light. A computing
task is the computation of a particular component of
the formula.

The cut file strategy is easy to implement. It
depends on the number of decimal digits, which is
useful to have by the end of the experiment.

Moreover, one can even do the calculation in a time
that is essentially linear in N, with memory
requirements only logarithmic in N. This is far better
than previous algorithms for finding the N-th digit of
Pi, which required keeping track of all the previous
digits.

4.1.2. A matrix computation. A case study for
computing the Cholesky decomposition of a positive
definite matrix into a product of a lower and an upper
triagonal matrix having a dimension of L (10 in our
case) in a multi-channel procedure. In that case study,
the data set is more important than before. All the
matrixes are defined in an input file and the cut
strategy isolates each subset of matrix [8].

The computation is performed in our parallel
adaptive architecture comprising P processor modules
(10 in our case); each processor module computes a
new Cholesky decomposition from the entry file. This
decomposition is divided into several computing tasks
and because the computing tasks are not independent,
the scheduling task which belongs to the Javaspace
plays the role of "chief manager".

For each matrix, the scheduling consists in the
computation of a set of rows of the lower triagonal
matrix with R=L/P, whereby a given row j is assigned
to a specific computing task of the Javaspace. The
entries of the lower triagonal matrix are obtained by
another computing task which contains an iteration

process over the columns i, with i=1,...,L, whereby in
each iteration step each processor module computes the
entries of column i for its assigned rows R in a distinct
computing task; with beginning an iteration step for
computing the entries of column i with i≤L, the
processor module to which the computation of row
number i is assigned to stores its values of row i for
access by the other processor modules.

This computing case brings more features about the
context where our approach is more suitable. The
definition of each kind of computing tasks is essential
and especially the relation between all the computing
tasks. This computing task development involves the
cut file strategy. This allows more adaptive executions
regarding the available processors.

4.2. Advantages and limits

In order to build our architecture, the Jini
framework makes it easy to create dynamically
networked components, applications, and services. Jini
also allows an environment in which it is easy to create
collaboration through the Jini Community. Jini moves
the input data set as executable task entity of a
JavaSpace executables. It means of a Java object over a
network. The language is also known for its design
flexibility. One of Jini's unique qualities is that it
enables network self-healing and self-configuration,
improving fault tolerance. Using Jini, networks easily
adjust to changes in the computing environment.

Our experience highlights the importance of two
main features: the definition of ComputingAgent and
the decomposition of the input data. Both features
involve adaptability of our system. In a more concrete
context, ComputingAgent and input data already exist
or are given by academic specialists. During an
execution, the ComputingWorker receives
ComputingAgent as a mobile agent which comes to
realize its activity over an input data. Our architecture
allows to provide a decomposition of the whole input
data set as FileEntry (Fig. 5). This decomposition is a
key feature to adapt the flow of activities to the
available resource (ComputingWorker in Fig. 5).

4.3. Future direction

Our first results validate our approach and the
adaptive architecture we presented earlier in this
document. The four step experiment starts with
initialization step which decides a lot of the constraints
over all the execution. We work on possibilities of
enlarging the choices such as the number of computing
workers. Because new workers can be added into an
experiment context, these new resources can be used.

7373

Another direction is about comparison between our
approach and existing parallel algorithms. We want to
use Execution Time Measurement framework such as
JETM [9]. Our objective is to create benchmark
between MPI implementation of parallel algorithm and
same implementation over our architecture.

5. Conclusion

This paper is about a new technique of resolution of

linear systems in Java. Java, with Jini, can be use to
develop distributed infrastructure with JavaSpace and
transactions. That why we use this couple to make our
architecture.

We stress the role of mobile agents for the
ComputingAgent and also the role of the data
decomposition which is closely related to the
computing resource.

 Our first results validate our design and they drive
us to a more mobile approach where the decomposition
will occur more than once. Also, this computing
architecture allows to use existing numerical code as
external ComputingAgent.

In our examples, only on ComputingAgent, with a
numerical code, is used. In the case of a sequential
computation, we must be able to make many
computations one after the other. That why, the next
evolution of our architecture is the complexity increase
of our Scheduler: with a new definition of a
ComputingTask. A ComputingTask will contain name
of the ComputingAgent to call.

6. References

[1] Title: A theoretical analysis of the electromagnetic
environment of the AS330 super Puma helicopter external
and internal coupling Authors: Flourens, F.; Morel, T.;
Gauthier, D.; Serafin, D. Affiliation: Centre d'Etudes de
Gramat (France). Publication: In NASA. Kennedy Space
Center, The 1991 International Aerospace and Ground
Conference on Lightning and Static Electricity, Volume 2 12
p (SEE N91-32693 24-47) , 08/1991

[2] Costa et al.: On the computation of electromagnetic field
components from a transmission line: theory and application;
IEEE Symp. on Elect. Compat.; pp. 651-656, Aug. 1990.

[3] J. Newmarch, Foundations of Jini 2 Programming, 2006

[4] E. Freeman and S. Hupfer, “Make room for JavaSpaces”,
JavaWorld.com, 20th November 1999

[5] E. Freeman, S. Hupfer and K. Arnold, “JavaSpaces
Principles, Patterns, and Practice”, November 1999

[6] T. White, “How to Build a ComputeFarm”, Java.net, 21th
April 2005

[7] Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn,
R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics
in Action. Natick, MA: A. K. Peters, pp. 31-33 and 222,
2006.

[8] L. Pan, L.F. Bic, M.B. Dillencourt, J.J. Huseynov, and
M.K. Lai “Distributed Parallel Computing using
Navigational Programming: Orchestrating Computations
Around Data proceeding”, (373) Parallel and Distributed
Computing and Systems, 2002

[9] IntelliJ IDEA, Java Execution Time Measurement
Library, http://sourceforge.net/projects/jetm/

7474

