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Abstract. One learned from Gottesman-Knill theorem that the Clifford model of

quantum computing [11] may be generated from a few quantum gates, the Hadamard,

π/4-Phase and Controlled-Z gates, and efficiently simulated on a classical computer.

We employ the group theoretical package GAP[10] for simulating the two qubit Clifford

group C2. We already found that the symmetric group S(6), aka the automorphism

group of the generalized quadrangle W (2), controls the geometry of the two-qubit

Pauli graph [14]. Sixfold symmetry is also revealed in the inner Clifford group

Inn(C2) = C2/Center(C2). It contains two normal subgroups, one isomorphic to Z×4

2
,

and the second isomorphic to the semi-direct product U6 = Z×4

2
⋊A(6) (of order 5760).

The group U(6) stabilizes an hexad in the Steiner system S(3, 6, 22) attached to the

Mathieu group M(22). Both groups A(6) and U6 have an outer automorphism group

Z2 ×Z2, a feature we associate to two-qubit quantum entanglement.

Keywords: Quantum computing, entanglement, Clifford group, outer automorphism,

Mathieu groups, Steiner systems, GAP4.
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1. Introduction

The Clifford model of quantum computation deals with the unitary time evolution of

Pauli operators going through a selected set of generating quantum gates. One first

notices that the traditional picture of unitary evolution of quantum states under an

Hamiltonian has to be replaced by an evolution of operators under a properly chosen

group action. This is analogous to the Heisenberg representation of quantum mechanics,

where the operators evolve, as opposed to the Schrödinger picture, where the states

evolve [1]. Pauli operators are defined as n-fold tensor products of the identity and the

ordinary Pauli matrices. Various quantum error correcting codes have been developed

for the states arising from the Pauli operators [2]-[5]. One of the challenges has been

to identify the types of quantum computations that can be classically simulated. One

earliest result in this context is Gottesman-Knill theorem [6] which essentially relies

on a stabilizer formalism and describes the unitary dynamics and the measurements.

The generating quantum gates of the stabilizer formalism are the Hadamard operation

H = 1/
√

2[(1, 1), (1,−1)] and the π/4 phase gate P = diag(1, i) acting on a single

qubit, and the controlled-Z gate CZ = diag(1, 1, 1,−1) acting on two qubits. Using

these building gates, tensor products of them and measurements of the Pauli operators,

any quantum computation is, in principle, efficiently simulated on a classical computer.

Another type of quantum computation, using measurements as computational steps, is

being developed [7]-[9], but it will not be the topic of the present paper.

Instead we will propose a detailed group theoretical analysis of the Clifford group

acting on one or two qubits, using the group theoretical package GAP4 [10] as our

classical simulator. A number of recent papers deal with the Clifford group analysis

in relation to quantum computing [11], quantum measurements [12] or local encoding

of classical information [13]. So far the connection to the geometry of Mathieu groups

seems to have remained unoticed.

Let us start with the standard single qubit σx (shift), σz (clock) and σy = iσxσz

Pauli matrices. The corresponding Pauli group P1 may be defined from three generators,

i.e. P1 = 〈σx, σy, σz〉. The Pauli group on n qubits is the n-fold tensor product of P1

and has order |Pn| = 22n+2. All elements of Pn commuting with any other operator are

in the center Z(Pn) = {±1,±iI}.
In our previous papers we extensively studied the commutation relations within

the two-qubit Pauli group [14] and found the finite projective geometry underlying

them. Skipping the elements in the center, the fifteen tensor products of Pauli matrices

σi = (I2, σx, σy, σz), σi ⊗ σj , i, j ∈ {1, 2, 3, 4} and (i, j) 6= (1, 1), can be labeled as

1 = I2 ⊗ σx, 2 = I2 ⊗ σy, 3 = I2 ⊗ σz , a = σx ⊗ I2, 4 = σx ⊗ σx. . . , b = σy ⊗ I2,. . . ,

c = σz ⊗ I2,. . . . The commutation rules between them are displayed in Fig. 1. Each

line of mutually commuting operators contains exactly three points and each point is

on three lines. Any point not on a line (an antiflag) is on a unique line intersecting it.
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This type of geometry is known as a generalized quadrangle and the two-qubit system

provides the smallest example, having fifteen points and, by duality, fifteen lines. The

three operators on a line share (stabilize) a common set of four quantum states known

as a base. One clearly observes in Fig. 1 that a maximum of five non-intersecting lines

can be obtained, which corresponds to a maximal set of five mutually unbiased bases

in this dimension (see [14],[16] for more about mutually unbiased bases). Six of the

(boldfaced) lines form a grid of entangled bases known as a Mermin square in reference

to their ability to prove the Kochen-Specker theorem in dimension four [14, 15].
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Figure 1. The generalized quadrangle W (2) as the underlying geometry of two-qubit

systems. The Pauli operators correspond to the points and maximally commuting

subsets of them to the lines of the quadrangle. Three operators on each line have

a common base of eigenvectors; six out of fifteen such bases are entangled (the

corresponding lines being indicated by boldfacing).

In this representation of the commutation relations it is also apparent that there is

a six-fold symmetry of the two-qubit system [and of the generalized quadrangle W (2)].

Let us now see the quadrangle as a graph. Any point/vertex is connected to six distinct

vertices and the whole graph can be defined as the complement L̂(K6) of the line graph

over the complete graph K6 with six vertices. It is also known that the automorphism

(symmetry) group of the quadrangle W (2) is precisely the symmetric group with six

elements S(6). Finally there are six maximal sets of five disjoint lines (corresponding to

six distinct complete sets of mutually unbiased bases) and any two distinct sets share a

single line, a feature which can be still be represented as a complete graph K6. It will

be shown in Sec 2 that the six-fold symmetry also arises within the two-qubit Clifford

group.

The geometry underlying multiple qubits is a symplectic polar space of order two

[14]. Totally isotropic subspaces, there are (2 + 1)(22 + 1)...(2n + 1) of them within the

polar space, correspond to mutually unbiased bases. See also Refs [2],[17].
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2. The Clifford group

Let us assume a quantum computer in a state |ψ〉, and apply to it an error g belonging

to the Pauli group P so that the new state of the computer is g |ψ〉. One allows unitary

evolutions U so that the new state evolves as Ug |ψ〉 = UgU †U |ψ〉. For stabilizing the

error within the Pauli group P, one requires that UgU † ∈ P. The set of operators which

leaves P invariant under conjugation is the normalizer Cn in the unitary group U(n),

also known as the Clifford group U(2n) [].

One learned from Gottesman-Knill theorem that the Hadamard gate H and the

phase gate P are in the one-qubit Clifford group C1, and that the controlled-Z gate

is in the two-qubit Clifford group C2. Any gate in Cn may be generated from the

application of gates from C1 and C2 [1, 11]. Clifford group Cn on n-qubits has order

|Cn| = 2n2+2n+3
∏n

j=1 4j − 1 [11].

Below we will concentrate on the properties of the Clifford group related to one

and two qubits, using the group theoretical package GAP4 [10]. Generation of the gates

will be ensured by the use of cyclotomic numbers, as described in Sec 18 of the GAP4

reference manual. For example the elements 1, −1, i and 21/2 will be modelled as the

roots of unity E(1), E(2) and E(4) and as ER(2), respectively. Some basic knowledge

about finite group theory and group of automorphisms can be found in Ref [18].

2.1. The Clifford group on a single qubit

The one-qubit Clifford group is defined as C1 = 〈H,P 〉. It has order |C1| = 192 and center

isomorphic to the cyclic group Z8. One defines the inner group G = C1/Center(C1).

Elements n of G which are invariant under a conjugation gng−1 = gng†, ∀g ∈ G, are in

a normal subgroup N of G. One only finds two non trivial normal subgroups of G. The

first one N1 is isomorphic to the Klein group Z2 ×Z2. The second one N2 is isomorphic

to the alternating group A(4), the group of orientation preserving symmetries of the

tetrahedron. Other useful relations are the isomorphisms N2/N1
∼= Z3, G/N1

∼= S(3) so

that G ∼= S(4), the symmetric group with four elements.

2.2. The Clifford group on two qubits

The two-qubit Clifford group may be generated as C2 = 〈H ⊗H,H ⊗ P,CZ〉. It has

order |C2| = 92160 and center isomorphic to Z8. The inner group G = C2/Center(C2) is

of order 11520. As for the single qubit case, one only discovers two non trivial normal

subgroups of G. The first one is N1
∼= Z×4

2 and leads to an expression of the inner

group as the semi-direct product G = Z×4
2 ⋊ S(6) [2]. The second normal subgroup

N2 = U6
∼= Z×4

2 ⋊ A(6) is of order 5760; it is a perfect group. It can be seen as

a parent of the six element alternating group A(6), because its outer automorphism

group Out(U6) is the same, equal to the Klein group Z2 × Z2. Useful expressions are

N2/N1
∼= A(6) and G/N1

∼= S(6).
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The group U6 is an important maximal subgroup of several sporadic groups. The

group of smallest size where it appears is the Mathieu group M(22). Mathieu groups

are sporadic simple groups, so that U6 is not normal in M(22). It appears in relation

to a subgeometry of M(22) known as an hexad. Let us recall the definition of Steiner

systems. A Steiner system S(a, b, c) with parameters a, b, c, is a c-element set together

with a set of b-element subsets of S (called blocks) with the property that each a-element

subset of S is contained in exactly one block. A finite projective plane of order q, with

the lines as blocks, is an S(2, q + 1, q2 + q + 1), since it has q2 + q + 1 points, each line

passes through q+1 points, and each pair of distinct points lies on exactly one line. Any

large Mathieu group can be defined as the automorphism (symmetry) group of a Steiner

system [20]. The group M(22) stabilizes the Steiner system S(3, 6, 22) comprising 22

points and 6 blocks, each set of 3 points being contained exactly in one block‡. Any

block in S(3, 6, 22) is a Mathieu hexad, i.e. it is stabilized by the general alternating

group U6.

3. Discussion

It is well known that among symmetric groups, only S(6) has an outer automorphism,

the group Z2. This also yields another outer automorphism attached to A(6), the Klein

group Z2 × Z2. These exceptional automorphism groups among the symmetric and

alternating groups may now be put in a geometrical perspective by their relationship to

the hexads of the Mathieu group M(22), and in a physical perspective by their relation

ship to the two-qubit Pauli and Clifford groups.

We believe that this research opens new vistas on several subjects and leaves open

several questions. At the mathematical level, we would like to clarify the structure of

higher order Clifford groups. It is not an easy computational task because already for

three qubits the inner group G has order 92897280, which seems not to be the size

of any known maximal subgroup of sporadic groups. At the quantum computational

level, a challenge would be to relate the discovered 6-fold symmetry of C2 to some

clever gate design. Finally, the symmetries of n-qubit systems presumably relate to

other branches of group theory such as Lie group theory, and algebra, such as Clifford

algebra, insufficiently explored so far. See [18, 19, 21] for recent developments.

As a final note, let us mention that the Klein group, which appears as the outer

automorphism group of the alternating group A(6) (and of its parent, the normal

subgroup U6 of the inner two-qubit Clifford group) can also be viewed as the additive

group of the ring R = GF (2) × GF (2). The projective line over R is a three by

three grid (see the boldfaced lines in Fig. 1 which models the entanglement part in

the quadrangle W (2) and Ref [14]). At least for the two-qubit system, there is a nice

‡ There exists up to equivalence a unique S(5,8,24) Steiner system called a Witt geometry. The group

M(24) is the automorphism group of this Steiner system, that is, the set of permutations which map

every block to some other block. The subgroups M(23) and M(22) are defined to be the stabilizers of

a single point and two points respectively.
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correspondence between the exceptional outer group of A(6) and the so-called Mermin

square used to prove the Kochen-Specker theorem in dimension four [15]. See also Ref

[24] for a different view related to Clifford spaces.

The Clifford group formalism may in principle be applied to any dimension [22, 23].

It is another open problem to relate the corresponding Clifford groups to the symplectic

polar spaces[14] and ring projective lines attached to composite systems [25].

Acknowledgements

The author acknowledges the support of the PEPS program (Projets Exploratoires

Pluridisciplinaires) from the STIC department at CNRS, France (Sciences et

Technologies de l’Information et de la Communication). The work was presented at

the workshop Prolegomena for quantum computing held at FEMTO-ST, Besançon, Nov
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