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Abstract

We homogenize Maxwell’s equations for Drude-Born-Fedorov chiral crystals, using the multi-scale technique. We find that the

homogenized material is described by dispersive anisotropic effective matrices, derived from frequency dependent coupled auxiliary

problems. For low frequencies, these matrices may not be positive definite.
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1. Introduction

Between 1996 and 1999, the British physicist John
Pendry published a series of papers giving rise to a new class
of composite structures (christened metamaterials) which
exhibit low plasmon frequency (arrays of thin straight
wires) and artificial magnetism (split ring resonators) in
the low frequency regime (homogenization domain). When
combined, these two structures may exhibit negative re-
fractive index as was chiefly demonstrated by David Smith
and others in the microwave regime. Recently, John Pendry
proposed a new route to negative refraction through arrays
of chiral inclusions of helicoidal shape [1]: Backward waves
can propagate in composite structures with positive optical
parameters provided that one of the constituent materials
is chiral. This may open new vistas for negative refraction
in the optical region via homogenized chiral media (the
characteristic dimensions in the composite structure are
much smaller than the wavelength). This is the main mo-
tivation for the present analysis of effective properties of
finite periodic chiral structures.

2. Homogenization setting

In this paper, we consider the diffraction problem of a
monochromatic wave incident on a heterogeneous chiral
body, when its wavelength is large compared to the typical
heterogeneity size, but possibly in resonance with the over-
all finite structure. To model this, let us introduce a unit cell
Y = [0; 1[3 whose homothety ηY is repeated periodically

within a fixed bounded domain Ω. When η tends to zero,
Ω is filled by with an increasing number of very tiny cells,
so that it looks homogeneous. We also define the relative
permittivity and permeability and the chiral inductance at
every point x ∈ R3 by χη(x) = χ̃(x, x

η
), χ ∈ {εr, µr, β}

with

χ̃(x,y) =



















χ(y) , if x ∈ Ω ,

1 for χ = εr, µr , if x ∈ R3 \ Ω̄ ,

0 for χ = β , if x ∈ R3 \ Ω̄ .

The electromagnetic field (Eη,Hη) satisfies so-called
Drude-Born-Fedorov equations within the chiral body:






∇× Eη = iωµ0µη (Hη + βη∇× Hη) ,

∇× Hη = −iωε0εη (Eη + βη∇× Eη) ,
(1)

where ω is the frequency, ε0µ0 = c2, c being the speed of
light in vacuum. The ellipticity and boundedness of the op-
erator are ensured by the following assumptions: 0 < m ≤
εr, µr ≤ M and 0 ≤ β < 1. The diffraction problem admits
a unique solution under proper outgoing wave conditions
[2].

In fact, the smaller the typical heterogeneity size η, the
faster the modulus of the electromagnetic field (Eη,Hη)
oscillates. Hence, we suppose that it can be approximated
by a two-scale expansion of the form:

Eη(x) =
∞
∑

k=0

ηkEk(x,
x

η
) , Hη(x) =

∞
∑

k=0

ηkHk(x,
x

η
) , (2)
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where Ek , Hk : R3 × Y 7−→ C3 are smooth functions of
6 variables, independent of η, such that ∀x ∈ Ω, Ei(x, ·)
and Hi(x, ·) are Y -periodic.

Our goal is to characterize the diffracted field when η
tends to 0.

3. Homogenization result

To identify the limit problem, we introduce the rescaled
operator

∇ = ∇x +
1

η
∇y , (3)

where x denotes the macroscopic (slow) variable and y de-
notes the microscopic (fast) variable.

Substituting (2) and (3) in (1) and collecting the terms
sitting in front of same powers of η we obtain the following
homogenized Drude-Born-Fedorov equations:






























∇x × Ehom = iωµ0[µhom] (Hhom

+[βhom]∇x × Hhom) ,

∇x × Hhom = −iωε0[εhom] (Ehom

+[βhom]∇x × Ehom) .

(4)

Similarly to the case of ferro-magnetic photonic crys-
tals [3] (for which β = 0 in (1)), the homogenized matri-
ces [µhom], [εhom] are deduced from two auxiliary problems
arising on the basic cell Y . But it turns out that they are
now coupled and most importantly they do depend on the
frequency ω of the incoming wave. Indeed, the auxiliary
problem takes the following form:

∇y · {[Mβ,ω](y)∇y (Vε, Wµ)} = 0 , (5)

where

[Mβ,ω](y) =









ε

Λ

i

ω

√

ε0

µ0

1 − Λ

βΛ

−
i

ω

1 − Λ

β

√

ε0

µ0

µ

Λ









, (6)

with

Λ = 1 − ω2β2εµ . (7)

We note that for ferro-magnetic media β = 0, so that

Λ = 1 , and (1 − Λ)/β = ω2βεµ = 0 . (8)

Hence, one can see that off-diagonal entries of [Mβ,ω] vanish
in that case and we retrieve the result of [3].

We also note that

Det([Mβ,ω]) =

√

ε0

µ0

/Λ2(εµ − (1 − Λ)/ω2)

=

√

ε0

µ0

εµ(1 − β2)/(ω2Λ2) ,
(9)

which is positive since 0 ≤ β < 1 (this is the case for chiral
materials at hand [2]). Hence, from Lax-Milgram lemma

there is a unique solution (up to an additive constant) to
(5) in the space of periodic potentials of square integrable
energy on Y .

The homogenized matrices of permittivity and perme-
ability are given by

[εhom] =
< ε(I −∇yVε) >

< Λ >

−
< Λ >

ω2
<

Λ − 1

Λβ
>

2

< µ(I −∇yVµ) >
−1

,
(10)

and

[µhom] =
< µ(I −∇yVµ) >

< Λ >

+
< Λ >

ω2
<

Λ − 1

Λβ
>

2

< ε(I −∇yVε) >
−1

,
(11)

with < . >=
∫

Y
. dy. We remark that these matrices de-

scribe dispersive media (they depend upon ω); Interest-
ingly, if ω is small enough, [εhom] will become negative def-
inite.

Finally, the homogenized matrix of chiral inductance can
be expressed in two ways:

[βhom] = −[ξhom]−1 < Λ >

ω2

<
Λ − 1

Λβ
> < ν(I −∇yVν) >−1 ,

(12)

where (ξ, ν) ∈ {(ε, µ), (µ, ε)}. This makes an easily imple-
mentable consistency criterion to test convergence of a nu-
merical algorithm.

4. Conclusion

The results obtained so far are only theoretical ones, but
we are now investigating the numerical solutions of the aux-
iliary problems for realistic values of permittivity, perme-
ability and chiral parameter thanks to finite elements mod-
eling. We note that one can only prove a weak L2(Ω) conver-
gence of (Hη, Eη) towards the leading order term (H0, E0)
of the asymptotic expansion (2). This is because (Hη, Eη)
is not divergence free, a fact which was already reported for
the homogenization of ferro-magnetic photonic crystals in
[3]. For a proof of strong L2(Ω) convergence in the case of
a dielectric (non-magnetic) photonic crystal, we refer the
reader to [4].
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