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Abstract

We give a positive answer, in the measurable-group-theory context, to von Neumann’s problem
of knowing whether a non-amenable countable discrete group contains a non-cyclic free subgroup.
We also get an embedding result of the free-group von Neumann factor into restricted wreath
product factors.
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Amenability of groups is a concept introduced by J. von Neumann in his seminal article [vN29]
to explain the so-called Banach-Tarski paradox. He proved that a discrete group containing the free
group F2 on two generators as a subgroup is non-amenable. Knowing whether this was a characteri-
zation of non-amenability became known as von Neumann’s Problem and was solved by the negative
by A. Ol′šanskĭı [Ol′80]. Still, this characterization could become true after relaxing the notion of
“containing a subgroup”. K. Whyte gave a very satisfying geometric group-theoretic solution: A
finitely generated group Γ is non-amenable iff it admits a partition with pieces uniformly bilipschitz
equivalent to the regular 4-valent tree [Why99]. Geometric group theory admits a measurable coun-
terpart, namely, measurable group theory. The main goal of our note is to provide a solution to
von Neumann’s problem in this context. We show that any countable non-amenable group admits
a measure-preserving free action on some probability space, such that the orbits may be measurably
partitioned into pieces given by an F2-action.

To be more precise, we use the following notation. For a finite or countable set M , let µ denote
the product ⊗MLeb on [0, 1]M of the Lebesgue measures Leb on [0, 1], and for p ∈ [0, 1], let µp denote
the product of the discrete measures (1− p)δ{0} + pδ{1} on {0, 1}M . Thus, the meaning of µ may vary
from use to use as M varies. Usually M will be a countable group Λ or the set E of edges of a Cayley
graph.
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Theorem 1 For any countable discrete non-amenable group Λ, there is a measurable ergodic essen-
tially free action of F2 on ([0, 1]Λ, µ) such that almost every Λ-orbit of the Bernoulli shift decomposes
into F2-orbits.

In other words, the orbit equivalence relation of the F2-action is contained in that of the Λ-action.
We give two proofs of this theorem, each with its own advantages.

For some purposes, it is useful to get a Bernoulli shift action with a discrete base space. We show:

Theorem 2 For any finitely generated non-amenable group Γ, there is n ∈ N and a non-empty interval
(p1, p2) of parameters p for which there is an ergodic essentially free action of F2 on

∏n
1 ({0, 1}Γ, µp)

such that almost every Γ-orbit of the diagonal Bernoulli shift decomposes into F2-orbits.

These results have operator-algebra counterparts:

Corollary 3 Let Λ be a countable discrete non-amenable group and H be an infinite group. Then the
von Neumann factor L(H ≀ Λ) of the restricted wreath product contains a copy of the von Neumann
factor L(F2) of the free group.

Corollary 4 Let Γ be a finitely generated discrete non-amenable group. Let n, p1, p2 be as in The-
orem 2 and let p = α

β
∈ (p1, p2), with α, β ∈ N. Assume that H contains an abelian subgroup K of

order k = βn. Then the von Neumann factor L(H ≀Λ) of the restricted wreath product contains a copy
of the von Neumann factor L(F2) of the free group.

For this paper, we assume a certain familiarity with the results and notation of [Gab05], [Gab00]
and [LS99].

Acknowledgment
We are very grateful to Sorin Popa for bringing to our attention the above corollaries. We also thank
the referee for a careful reading.

—— O ——
A (countable standard) equivalence relation on the standard Borel space (X, ν) is an equiv-

alence relation R with countable classes that is a Borel subset of X × X for the product σ-algebra.
A (measure-preserving oriented) graphing on (X, ν) is a denumerable family Φ = (ϕi)i∈I of

partial measure-preserving isomorphisms ϕi : Ai → Bi between Borel subsets Ai, Bi ⊂ X.
A graphing Φ generates an equivalence relation RΦ: the smallest equivalence relation that con-

tains all pairs (x, ϕi(x)). The cost of a graphing Φ = (ϕi)i∈I is the sum of the measures of the domains
∑

i∈I ν(Ai). The cost , cost(R, ν), of (R, ν) is the infimum of the costs of the graphings that generate
R. The graph (structure) Φ[x] of a graphing Φ at a point x ∈ X is the graph whose vertex set is
the equivalence class RΦ[x] of x and whose edges are the pairs (y, z) ∈ RΦ[x] × RΦ[x] such that for
some i ∈ I, either ϕi(y) = z or ϕi(z) = y. For more on cost, see [Gab00] or [KM04].
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—— O ——

Proofs

Since the union of an increasing sequence of amenable groups is still amenable, Λ contains a
non-amenable finitely generated subgroup. Let Γ be such a subgroup.

—— O ——
If S is a finite generating set of Γ (maybe with repetitions), G = (V, E) denotes the associated

right Cayley graph (with vertex set V): The set E of edges is indexed by S and Γ. Given s ∈ S and
γ ∈ Γ, the corresponding edge is oriented from the vertex γ to γs. Note that Γ acts freely on G by
multiplication on the left. Let ρ := id, the identity of the group Γ, chosen as base vertex for G.

The set of the subgraphs of G (with the same set of vertices V) is naturally identified with Ω :=
{0, 1}E. The connected components of ω ∈ Ω are called its clusters.

Consider a probability-measure-preserving essentially free (left) Γ-action on some standard Borel
space (X, ν) together with a Γ-equivariant Borel map π : X → {0, 1}E.

The full equivalence relation RΓ generated by the Γ-action X is graphed by the graphing Φ =
(ϕs)s∈S, where ϕs denotes the action by s−1.

We define the following equivalence subrelation on X (see [Gab05, Sect. 1]): the cluster equiva-
lence subrelation Rcl, graphed by the graphing Φcl := (ϕcl

s )s∈S of partial isomorphisms, where ϕcl
s

is the restriction ϕcl
s := ϕs|As of ϕs to the Borel subset As of x ∈ X for which the edge e labelled s

from ρ to ρs lies in π(x), i.e., π(x)(e) = 1. Consequently, two points x, y ∈ X are Rcl-equivalent if and
only if there is some γ ∈ Γ such that γ−1x = y and the vertices ρ, γρ are in the same cluster of π(x).

The graph structure Φcl[x] given by the graphing Φcl to the Rcl-class of any x ∈ X is naturally
isomorphic with the cluster π(x)ρ of π(x) that contains the base vertex. Denote by U∞ ⊂ X the Borel
set of x ∈ X whose Rcl-class is infinite and by RΓ|∞ (resp. Rcl

|∞) the restriction of RΓ (resp. Rcl) to
U∞.

Write P(Y ) for the power set of Y . The map X×V → X defined by (x, γρ) 7→ γ−1.x induces a map
Ψ : X ×P(V) → P(X) that is invariant under the (left) diagonal Γ-action (i.e., Ψ(γ.x, γ.C) = Ψ(x,C)
for all γ ∈ Γ, x ∈ X, and C ⊂ V) and such that Ψ(x, V) is the whole RΓ-class of x. The restriction of
Ψ to the Γ-invariant subset C

cl
∞ :=

{

(x,C) : x ∈ X,C ∈ P(V), C is an infinite cluster of π(x)
}

sends
each (x,C) (and its Γ-orbit) to a whole infinite Rcl-class, namely, the Rcl-class of γ−1.x for any γ
such that γρ ∈ C. Moreover, for each x ∈ U∞, its RΓ|∞-class decomposes into infinite Rcl-sub-classes

that are in one-to-one correspondence with the elements of C
cl
∞ that have x as first coordinate. Note

that the set {(x, y,C) ∈ X × X × P(V) : x ∈ Ψ(y,C)} is Borel, whence for a Borel set A ⊂ C
cl
∞,

the set Ψ(A) :=
⋃

Ψ(A) is measurable, being the projection onto the first coordinate of the Borel set
{(x, y,C) : x ∈ Ψ(y,C)} ∩ (X ×A).

We say that (ν, π) has indistinguishable infinite clusters if for every Γ-invariant Borel subset
A ⊂ C

cl
∞, the set of x ∈ X for which some (x,C) ∈ A and some (x,C) ∈ C

cl
∞ \ A has ν-measure 0. In

other words, the Rcl-invariant partition U∞ = Ψ(A) ∪ ∁Ψ(A) is not allowed to split any RΓ|∞-class
(up to a union of measure 0 of such classes). The following proposition, using this refined notion of
indistinguishability, corrects [Gab05, Rem. 2.3].
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Proposition 5 Let Γ act ergodically on (X, ν) and π : X → {0, 1}E be a Γ-equivariant Borel map
such that ν(U∞) 6= 0. Then Rcl

|∞, the cluster equivalence relation restricted to its infinite locus U∞,

is ergodic if and only if (ν, π) has indistinguishable infinite clusters.

Proof. Suppose that Rcl
|∞ is ergodic. Then for every Γ-invariant Borel subset A ⊂ C

cl
∞, its image Ψ(A)

is a union of Rcl
|∞-classes, whence Ψ(A) or its complement ∁Ψ(A) in U∞ has measure 0. In particular,

the partition U∞ = Ψ(A) ∪ ∁Ψ(A) is trivial, whence ν has indistinguishable infinite clusters.
Conversely, suppose that (ν, π) has indistinguishable infinite clusters. An Rcl

|∞-invariant partition

U∞ = U ∪ ∁U defines a partition C
cl
∞ = A ∪ ∁A according to whether Ψ(x,C) ∈ U or ∁U . Then for

ν-almost every x ∈ U∞, all Ψ(x,C) are in U or all are in its complement, i.e., the Rcl
|∞-subclasses into

which the RΓ|∞-class of x splits all belong to one side. Since RΓ|∞ is ν-ergodic, this side has to be
the same for almost every x. This means that the other side is a null set. This holds for any partition
U ∪ ∁U , whence Rcl

|∞ is ergodic. �

If X has the form X = Ω × Y , then ν is called insertion tolerant (see [LS99]) if for each edge
e ∈ E, the map Πe : X → X defined by (ω, y) 7→

(

ω∪{e}, y
)

quasi-preserves the measure, i.e., ν(A) > 0
implies ν

(

Πe(A)
)

> 0 for every measurable subset A ⊆ X. Call a map π : X → Ω increasing if
π(ω, y) ⊇ ω for all ω ∈ Ω. An action of Γ on Ω × Y is always assumed to act on the first coordinate
in the usual way. A slight extension of [LS99, Th. 3.3, Rem. 3.4], proved in the same way, is the
following:

Proposition 6 Assume that Γ acts on (Ω × Y, ν) preserving the measure and π : Ω × Y → Ω is
an increasing Γ-equivariant Borel map with ν(U∞) 6= 0. If ν is insertion tolerant, then (ν, π) has
indistinguishable infinite clusters.

Proposition 7 If Γ < Λ, then there are Γ-equivariant isomorphisms ([0, 1]E, µ) ≃ ([0, 1]Γ, µ) ≃
([0, 1]Λ, µ) between the Bernoulli shift actions of Γ. In particular, the orbits of the Bernoulli shift Λ-
action on [0, 1]Λ are partitioned into subsets that are identified with the orbits of the standard Bernoulli
shift Γ-action on [0, 1]Γ.

Proof. A countable set E on which Γ acts freely may be decomposed by choosing a representative in
each orbit so as to be identified with a disjoint union of Γ-copies, E ≃

∐

J Γ, and to give Γ-equivariant

identifications [0, 1]E = [0, 1]
∐

J
Γ = ([0, 1]J )Γ.

The edge set E ≃
∐

S Γ of the Cayley graph of Γ, as well as Λ ≃
∐

I Γ are such countable
Γ-sets. Then isomorphisms of standard Borel probability spaces ([0, 1],Leb) ≃ ([0, 1]S ,⊗SLeb) ≃
([0, 1]I ,⊗ILeb) induce Γ-equivariant isomorphisms of the Bernoulli shifts:

[0, 1]Γ ≃ ([0, 1]S)Γ ≃ ([0, 1]I )Γ

‖ ‖ ‖
[0, 1]Γ ≃ [0, 1]E ≃ [0, 1]Λ .

�
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—— O ——
A subgraph (V′, E′) of a graph (V, E) is called spanning if V′ = V. A vertex a in a graph is called a

cutvertex if there are two other vertices in its component with the property that every path joining
them passes through a. A block of a graph is a maximal connected subgraph that has no cutvertex.
Every simple cycle of a graph is contained within one of its blocks.

Lemma 8 If all vertices of a block have finite degree and for each pair of vertices (a, b) there are only
finitely many distinct paths joining a to b, then the block is finite.

Proof. Suppose for a contradiction that the block is infinite. Then it contains a simple infinite path P
of vertices a1, a2, . . . . By Menger’s theorem, a1 and an belong to a simple cycle Cn for each n > 1. But
this implies that there are infinitely many distinct paths joining a1 to a2: Fix n and let aj (2 ≤ j ≤ n)
be the vertex on P ∩ Cn with minimal index j. We may assume that Cn is oriented so that it visits
an before it visits aj . Then simply follow Cn from a1 until aj, and then follow P to a2. �

Proposition 9 (For any Cayley graph) Let X := Ω × [0, 1]Γ and ǫ > 0. Let ν := µǫ × µ. There is a
Γ-equivariant Borel map f : X → Ω such that (ν, f) has indistinguishable infinite clusters and for all
sufficiently small ǫ, the push-forward measure f∗(ν) of ν is supported on the set of spanning subgraphs
of G each of whose components is a tree with infinitely many ends.

Proof. We may equivariantly identify
(

[0, 1]Γ, µ
)

with
(

[0, 1]N×Γ × [0, 1]E, µ × µ
)

, so we identify (X, ν)
with

(

Ω × [0, 1]N×Γ × [0, 1]E, µǫ × µ × µ
)

. Fix an ordering of S
∐

S−1; this determines an ordering of
the edges incident to each vertex in G, where we ignore edge orientations for the rest of this proof.
With d denoting the degree of G, define the function h(t) := ⌈dt⌉ for t ∈ [0, 1]. Given a point
x = (ω, (r(n, γ))n∈N,γ∈Γ, u) ∈ X, construct the wired spanning forest F1 of G by using the cycle-
popping algorithm of D. Wilson [Wil96, Sect. 3] as adapted in [BLPS01, Th. 5.1], also called there
“Wilson’s algorithm rooted at infinity”, applied to the stacks where the nth edge in the stack under
γ is defined as the h(r(n, γ))th edge incident to γ. The measure ν is insertion tolerant and the map
π : x 7→ ω ∪ F1 is increasing, whence by Proposition 6, the pair (ν, π) has indistinguishable infinite
clusters. Notice that all clusters are infinite. Now use u to construct the free minimal spanning forest
F2 in each cluster of π(x), that is, for every cycle ∆ ⊂ π(x), delete the edge e ∈ ∆ with maximum
u(e) in that cycle. The map f is f(x) := F2.

Now the ν-expected number of distinct simple paths in π(x) that join any two vertices is finite
(equation (13.7) of [BLPS01]) for all sufficiently small ǫ. In particular, the number of such paths is
finite ν-a.s. By Lemma 8, this means that all blocks of π(x) are finite, so that F2 is a spanning tree
in each block. Therefore each component of F2 spans a component of π(x). Thus, F2 determines the
same cluster relation and so (ν, f) also has indistinguishable (infinite) clusters. Finally, the fact that
the clusters of π(x), and hence those of F2, have infinitely many ends follows, e.g., from [BLPS01,
Th. 13.7]. �
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The cluster relation determined by f of Proposition 9 is treeable and has cost larger than 1 by
[Gab00, Cor. IV.24 (2)], has finite cost (since the degree is bounded), and is ergodic by Proposition
5. Since we may equivariantly identify

(

Ω × [0, 1]Γ, µǫ × µ
)

with
(

[0, 1]Γ, µ
)

, we proved:

Proposition 10 For any Cayley graph of Γ, the Bernoulli action on ([0, 1]Γ, µ) contains a treeable
subrelation that is ergodic and has cost in the interval (1,∞).

At this point, we already have a reasonable answer to the analogue of von Neumann’s problem,
since “treeable relation” is the analogue of “free group” and cost C > 1 is, in the context of treeable
relations, equivalent to non-amenability.

—— O ——

An alternative approach begins with a more explicit f and a more common measure f∗(µ), namely,
the Bernoulli measure µp on {0, 1}E for a certain parameter p, but requires us to choose a particular
Cayley graph for Γ. It also requires us to obtain a treeable subrelation in a less explicit way. This is
accomplished as follows.

Results of Häggström-Peres [HP99] imply that there are two critical values 0 < pc ≤ pu ≤ 1 such
that
- (finite phase, p ∈ [0, pc)) µp-a.s., the subgraph has only finite clusters;
- (non-uniqueness phase , p ∈ (pc, pu)) µp-a.s., infinitely many of the clusters of the subgraph are
infinite, each one with infinitely many ends;
- (the uniqueness phase, p ∈ (pu, 1]) µp-a.s., the subgraph has only one cluster that is infinite.

The situation for the critical values pc and pu themselves is far from clear. Benjamini and Schramm
[BS96] conjectured that pc 6= pu for every Cayley graph of a f.g. non-amenable group. The main result
of [PSN00] (Th. 1, p. 498) asserts that given a f.g. non-amenable group Γ, there is a finite set of
generators such that the associated Cayley graph admits a non-trivial interval of non-uniqueness.
Thus:

Proposition 11 (For particular Cayley graphs) There exists a Cayley graph of Γ and a non-empty
interval (pc, pu) such that, for any p ∈ (pc, pu), the Bernoulli measure µp on {0, 1}E is supported on
the set of subgraphs admitting infinite components, each one with infinitely many ends.

Let π : (X, ν) → {0, 1}E denote either
(i) fp : ([0, 1]E, µ) → {0, 1}E induced by the characteristic function χ[0,p] : [0, 1] → {0, 1} of [0, p], or
(ii) the identity map ({0, 1}E, µp) → {0, 1}E,
both with the natural Bernoulli Γ-action. Notice that the action is essentially free when 0 < p < 1.

In case (ii), we have that (µp, π) has indistinguishable infinite clusters by [LS99, Th. 3.3]. Case
(i) is essentially the same, but first we must identify ([0, 1]E, µ) equivariantly as ({0, 1} × [0, 1])E =
{0, 1}E×[0, 1]E equipped with the product measure µp×µ in such a way that fp becomes the identity on
the first coordinate. Then we have insertion tolerance and so, by [LS99, Rem. 3.4], indistinguishable
infinite clusters.
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Hence, in both cases, for any p given by Prop. 11, the locus U∞ of infinite classes of Rcl is non-null
and we have ergodicity of the restriction Rcl

|∞ of Rcl to U∞ by Proposition 5. We claim that its

normalized cost (i.e., computed with respect to the normalized probability measure ν/ν(U∞) on U∞)
satisfies 1 < C(Rcl

|∞) < ∞. The finiteness of the cost is clear since S, the index set for Φcl, is finite.

That it is strictly greater than 1 is a direct application of [Gab00, Cor. IV.24 (2)], since the graph
Φcl[x] ≃ π(x)ρ associated with almost every x ∈ U∞ has at least 3 ends.

In order to extend Rcl
|∞ to a subrelation of RΓ defined on the whole of X, choose an enumeration

{γi}i∈N of Γ. For each x ∈ X \ U∞, let γx be the first element γj ∈ Γ such that γj · x ∈ U∞. Then
the smallest equivalence relation containing Rcl

|∞ and the (x, γx ·x)’s is a subrelation of RΓ, is ergodic,

and has cost in (1,∞) by the induction formula of [Gab00, Prop. II.6]. We proved:

Proposition 12 For a Cayley graph and a p given by Proposition 11, the Bernoulli actions on both
([0, 1]E, µ) and ({0, 1}E, µp) contain a subrelation that is ergodic and has cost in the open interval
(1,∞).

—— O ——

Proposition 13 If an equivalence relation R is ergodic and has cost in (1,∞), then it contains a
treeable subrelation S1 that is ergodic and has cost in (1,∞).

Proof. This is ensured by a result proved independently by A. Kechris and B. Miller [KM04, Lem. 28.11;
28.12] and by M. Pichot [Pic05, Cor. 40], through a process of erasing cycles from a graphing of S1

with finite cost that contains an ergodic global isomorphism. �

—— O ——

Proposition 14 If a treeable equivalence relation S1 is ergodic and has cost > 1, then it contains a.e.
a subrelation S2 that is generated by an ergodic free action of the free group F2.

Proof. If the cost of S1 is > 2, this follows from a result of G. Hjorth [Hjo06] (see also [KM04,
Sect. 28]). Otherwise, one first considers the restriction of the treeable S1 to a small enough Borel
subset V : this increases the normalized cost by the induction formula of [Gab00, Prop. II.6 (2)] to
get C(S1|V ) ≥ 2. In fact, it follows from the proof of [KM04, Th. 28.3] that a treeable probability
measure-preserving equivalence relation with cost ≥ 2 contains a.e. an equivalence subrelation that is
given by a free action of the free group F2 = 〈a, b〉 in such a way that the generator a acts ergodically.
By considering a subgroup of F2 generated by a and some conjugates of a of the form bkab−k, one gets
an ergodic treeable subrelation of S1|V with a big enough normalized cost that, when extended to the
whole of X (by using partial isomorphisms of S1), it gets cost ≥ 2 (by the induction back [Gab00,
Prop. II.6 (2)]) and of course remains ergodic. Another application of the above-italicized result gives
the desired ergodic action of F2 on X. �
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—— O ——
The proof of Theorem 2 is now complete as a direct consequence of Propositions 12 (for the case

X = {0, 1}E), 13 and 14. �

—— O ——
In case X = [0, 1]E of Prop. 12, by using Prop. 7, we can see S2 (with S2 ⊂ S1 ⊂ RΓ given by

Prop. 14 and 13) as an equivalence subrelation of that given by the Bernoulli shift action of Λ. This
finishes the proof of Theorem 1. Alternatively, we may use Prop. 10 and a similar argument to prove
Theorem 1. �

—— O ——
Proof of Cor 3. For any diffuse abelian subalgebra A of L(H), the von Neumann factor L(H ≀ Λ) =
L(Λ ⋉ ⊕ΛH) contains the von Neumann algebra crossed product Λ ⋉ ⊗ΛA, which is isomorphic with
the group-measure-space factor Λ ⋉ L∞([0, 1]Λ, µ) associated with the Bernoulli shift. The corollary
then follows from Th. 1. �

—— O ——
Proof of Cor. 4. If K̂ is the dual group of K, then L(H ≀Γ) contains L(K ≀Γ), which is isomorphic with
the group-measure-space factor Γ⋉L∞(K̂Γ) associated with the Bernoulli shift of Γ on K̂Γ, where the
finite set K̂ ≃ {1, 2, . . . , k} is equipped with the equiprobability measure ν. The result is then obtained
by taking the pull-back of the F2-action on

∏n
1{0, 1}

Γ, given in Th. 2, by the Γ-equivariant Borel map
K̂Γ → ({0, 1}n)Γ ≃

∏n
1{0, 1}

Γ, sending ⊗ν to µp, that extends a map {1, 2, . . . , k} → {0, 1}n (whose
existence is ensured by the form of k = βn). �

—— O ——
It is likely that the free minimal spanning forest (FMSF) of a Cayley graph of Γ would serve as the

desired ergodic subrelation S1 of Prop. 13, but its indistinguishability, conjectured in [LPS06], is not
known. Also, it is not known to have cost > 1, but this is equivalent to pc < pu, which is conjectured
to hold and which we know holds for some Cayley graph. See [LPS06] for information on the FMSF
and [Tim06] for a weak form of indistinguishability.

A general question remains open:
Question: Does every probability-measure-preserving free ergodic action of a non-amenable count-
able group contain an ergodic subrelation generated by a free action of a non-cyclic free group?
More generally: Does every standard countable probability-measure-preserving non-amenable ergodic
equivalence relation contain a treeable non-amenable ergodic equivalence subrelation?
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Université de Lyon, CNRS, Ens-Lyon



10

46, allée d’Italie

69364 Lyon cedex 7, France

gaboriau@umpa.ens-lyon.fr

Russell Lyons:

Department of Mathematics

Indiana University Bloomington, IN 47405-5701

USA

rdlyons@indiana.edu


