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Damien Gaboriau∗ Russell Lyons†

10 Nov. 2007

Abstract

We give a positive answer, in the measurable-group-theory context, to von Neumann’s problem of knowing

whether a non-amenable countable discrete group contains a non-cyclic free subgroup. We also get an

embedding result of the free-group von Neumann factor into restricted wreath product factors.
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Amenability of groups is a concept introduced by J. von Neumann in his seminal article [vN29] to explain
the so-called Banach-Tarski paradox. He proved that a discrete group containing the free group F2 on two
generators as a subgroup is non-amenable. Knowing whether this was a characterization of non-amenability
became known as von Neumann’s Problem and was solved by the negative by A. Ol′šanskĭı [Ol′80]. Still, this
characterization could become true after relaxing the notion of “containing a subgroup”. K. Whyte gave a
very satisfying geometric group-theoretic solution: A finitely generated group Γ is non-amenable iff it admits
a partition with pieces uniformly bilipschitz equivalent to the regular 4-valent tree [Why99]. Geometric group
theory admits a measurable counterpart, namely, measurable group theory. The main goal of our note is to
provide a solution to von Neumann’s problem in this context. We show that any countable non-amenable group
admits a measure-preserving free action on some probability space, such that the orbits may be measurably
partitioned into pieces given by an F2-action.

To be more precise, we use the following notation. For a finite or countable set E, let µ denote the product
of the Lebesgue measures on [0, 1]E and for p ∈ [0, 1], let µp denote the product of the discrete measures
(1 − p)δ{0} + pδ{1} on {0, 1}E. Thus, the meaning of µ may vary from use to use as E varies.

Theorem 1 For any countable discrete non-amenable group Λ, there is a measurable ergodic essentially free
action of F2 on ([0, 1]Λ, µ) such that almost every Λ-orbit of the Bernoulli shift decomposes into F2-orbits.

In other words, the orbit equivalence relation of the F2-action is contained in that of the Λ-action. We give two
proofs of this theorem, each with its own advantages.

For some purposes, it is useful to get a Bernoulli shift action with a discrete base space. We show:
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Theorem 2 For any finitely generated non-amenable group Γ, there is n ∈ N and a non-empty interval (p1, p2)
of parameters p for which there is an ergodic essentially free action of F2 on

∏n

1 ({0, 1}Γ, µp) such that almost
every Γ-orbit of the diagonal Bernoulli shift decomposes into F2-orbits.

These results have operator-algebra counterparts:

Corollary 3 Let Λ be a countable discrete non-amenable group and H be an infinite group. Then the von
Neumann factor L(H ≀Λ) of the restricted wreath product contains a copy of the von Neumann factor L(F2) of
the free group.

Corollary 4 Let Γ be a finitely generated discrete non-amenable group. Let n, p1, p2 be as in Theorem 2 and
let p = α

β
∈ (p1, p2), with α, β ∈ N. Assume that H contains an abelian subgroup K of order k = βn. Then

the von Neumann factor L(H ≀ Λ) of the restricted wreath product contains a copy of the von Neumann factor
L(F2) of the free group.

For this paper, we assume a certain familiarity with the results and notation of [Gab05], [Gab00] and [LS99].
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—— O ——

Proofs
Since the union of an increasing sequence of amenable groups is still amenable, Λ contains a non-amenable

finitely generated subgroup. Let Γ be such a subgroup.
—— O ——

If S is a finite generating set of Γ (maybe with repetitions), G = (V, E) denotes the associated right Cayley
graph (with edge set E): The set of edges is indexed by S and Γ. Given s ∈ S and γ ∈ Γ, the corresponding
edge is oriented from the vertex γ to γs. Note that Γ acts freely on G by multiplication on the left.

The set of the subgraphs of G (with the same set of vertices V) is naturally identified with Ω := {0, 1}E. The
connected components of ω ∈ Ω are called its clusters.

Consider a probability-measure-preserving essentially free (left) Γ-action on some standard Borel space (X, ν)
together with a Γ-equivariant Borel map π : X → {0, 1}E. Let ρ := id, the identity of the group Γ, chosen as
base vertex for G.

The full equivalence relation RΓ generated by the Γ-action X is graphed by the graphing Φ = (ϕs)s∈S ,
where ϕs denotes the action by s−1.

We define the following equivalence sub-relation on X (see [Gab05, Sect. 1]): the cluster equivalence

subrelation Rcl, graphed by the graphing Φcl := (ϕcl
s )s∈S of partial isomorphisms, where ϕcl

s is the restriction
ϕcl

s := ϕs|As of ϕs to the Borel subset As of x ∈ X for which the edge e labelled s from ρ to ρs lies in π(x),
i.e., π(x)(e) = 1. Consequently, two points x, y ∈ X are Rcl-equivalent if and only if there is some γ ∈ Γ such
that γ−1x = y and the vertices ρ, ργ are in the same cluster of π(x).

The graph structure Φcl[x] given by the graphing Φcl to the Rcl-class of any x ∈ X is naturally isomorphic
with the cluster π(x)(ρ) of π(x) that contains the base vertex. Denote by U∞ ⊂ X the Borel set of x ∈ X
whose Rcl-class is infinite and RΓ|∞ (resp. Rcl

|∞) the restriction of RΓ (resp. Rcl) to U∞.

Write P(Y ) for the power set of Y . The map X × V → X defined by (x, ργ) 7→ γ−1.x induces a map Ψ :
X×P(V) → P(X) that is constant under the (left) diagonal Γ-action and sends (x, V) to the whole RΓ-class of x.
The restriction of Ψ to the Γ-invariant subset Ccl

∞ :=
{

(x, C) : x ∈ X, C ∈ P(V), C is an infinite cluster of π(x)
}
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sends each (x, C) (and its Γ-orbit) to a whole infinite Rcl-class, namely, the Rcl-class of γ−1.x for any γ such
that ργ ∈ C. Moreover, for each x ∈ U∞, its RΓ|∞-class decomposes into infinite Rcl-sub-classes that are in

one-to-one correspondence with the elements of Ccl
∞ that have x as first coordinate.

We say that (ν, π) has indistinguishable infinite clusters if for every Γ-invariant Borel subset A ⊂ C
cl
∞,

the set of x ∈ X for which some (x, C) ∈ A and some (x, C) ∈ Ccl
∞ \ A has ν-measure 0. In other words, the

Rcl-invariant partition U∞ = Ψ(A) ∪ ∁Ψ(A) is not allowed to split any RΓ|∞-class (up to a union of measure
0 of such classes). The following proposition corrects [Gab05, Rem. 2.3].

Proposition 5 Let Γ act ergodically on (X, ν) and π : X → {0, 1}E be a Γ-equivariant Borel map such that
ν(U∞) 6= 0. Then Rcl

|∞, the cluster equivalence relation restricted to its infinite locus U∞, is ergodic if and only

if (ν, π) has indistinguishable infinite clusters.

Proof. Suppose that Rcl
|∞ is ergodic. Then for every Γ-invariant Borel subset A ⊂ Ccl

∞, its image Ψ(A) is a

union of Rcl
|∞-classes, whence Ψ(A) or its complement ∁Ψ(A) in U∞ has measure 0. In particular, the partition

U∞ = Ψ(A) ∪ ∁Ψ(A) is trivial, whence ν has indistinguishable infinite clusters.
Conversely, suppose that (ν, π) has indistinguishable infinite clusters. An Rcl

|∞-invariant partition U∞ =

U ∪ ∁U defines a partition Ccl
∞ = A ∪ ∁A according to whether Ψ(x, C) ∈ U or ∁U . Then for ν-almost every

x ∈ U∞, all Ψ(x, C) are in U or all are in its complement, i.e., the Rcl
|∞-subclasses into which the RΓ|∞-class of

x splits all belong to one side. Since RΓ|∞ is ν-ergodic, this side has to be the same for almost every x. This

means that the other side is a null set. This holds for any partition U ∪ ∁U , whence Rcl
|∞ is ergodic. �

If X has the form X = Ω × Y , then ν is called insertion tolerant (see [LS99]) if for each edge e ∈ E,
the map Πe : X → X defined by (ω, y) 7→

(

ω ∪ {e}, y
)

quasi-preserves the measure, i.e., ν(A) > 0 implies

ν
(

Πe(A)
)

> 0 for every measurable subset A ⊂ Ω. Call a map π : X → Ω increasing if π(ω, y) ≥ ω for all
ω ∈ Ω. A slight extension of [LS99, Th. 3.3, Rem. 3.4], proved in the same way, is the following:

Proposition 6 Assume that Γ acts on (Ω×Y, ν) and π : Ω×Y → Ω is an increasing Γ-equivariant Borel map
with ν(U∞) 6= 0. If ν is insertion tolerant, then (ν, π) has indistinguishable infinite clusters.

Proposition 7 If Γ < Λ, then there are Γ-equivariant isomorphisms [0, 1]E ≃ [0, 1]Γ ≃ [0, 1]Λ between the
Bernoulli shift actions of Γ. The Γ-action on [0, 1]Γ naturally extends to the Λ-action on [0, 1]Λ.

Proof. A countable set E on which Γ acts freely may be decomposed by choosing a representative in each orbit
so as to be identified with a disjoint union of Γ-copies, E ≃

∐

J Γ, and to give Γ-equivariant identifications

[0, 1]E = [0, 1]
∐

J
Γ = ([0, 1]J)Γ.

The edge set E ≃
∐

S Γ of the Cayley graph of Γ, as well as Λ ≃
∐

I Γ are such countable Γ-sets. Then
isomorphisms of standard Borel probability spaces ([0, 1], µ) ≃ ([0, 1]S , µ) ≃ ([0, 1]I , µ) induce Γ-equivariant
isomorphisms of the Bernoulli shifts:

[0, 1]Γ ≃ ([0, 1]S)Γ ≃ ([0, 1]I)Γ

‖ ‖ ‖
[0, 1]Γ ≃ [0, 1]E ≃ [0, 1]Λ .

�
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—— O ——

Proposition 8 (For any Cayley graph) Let X := Ω×[0, 1]Γ and ǫ > 0. Let ν := µǫ×µ. There is a Γ-equivariant
Borel map f : X → Ω such that (ν, f) has indistinguishable infinite clusters and for all sufficiently small ǫ, the
push-forward measure f∗(ν) of ν is supported on the set of spanning subgraphs each of whose components is a
tree with infinitely many ends.

Proof. We may equivariantly identify
(

[0, 1]Γ, µ
)

with
(

[0, 1]N×Γ × [0, 1]E, µ × µ
)

, so we identify (X, ν) with
(

Ω× [0, 1]N×Γ× [0, 1]E, µǫ×µ×µ
)

. Fix an ordering of S
∐

S−1; this determines an ordering of the edges incident
to each vertex in G, where we ignore edge orientations for the rest of this proof. With d denoting the degree
of G, write h(p) := ⌈dp⌉ for p ∈ [0, 1]. Given a point x = (ω, (p(n, γ))n∈N,γ∈Γ, u) ∈ X , construct the wired
spanning forest F1 of G by using the cycle-popping algorithm described in [BLPS01], also called there “Wilson’s
algorithm rooted at infinity”, applied to the stacks where the nth edge in the stack under γ is the h(p(n, γ))th
edge incident to γ. The measure ν is insertion tolerant and the map π : x 7→ ω ∪ F1 is increasing, whence by
Proposition 6, the pair (ν, π) has indistinguishable infinite clusters. (All clusters are infinite.) Now use u to
construct the free minimal spanning forest F2 in each cluster of π(x), that is, for every cycle ∆ ⊂ π(x), delete
the edge e ∈ ∆ with maximum u(e) in that cycle. The map f is f(x) := F2.

Now the ν-expected number of distinct simple paths in π(x) that join any two vertices is finite (equation
(13.7) of [BLPS01]) for all sufficiently small ǫ. In particular, the number of such paths is finite ν-a.s. This
means that if one removes all cut-edges (bridges) from π(x), one is left with only finite components. Therefore
each component of F2 spans a component of π(x). Thus, F2 determines the same cluster relation and so (ν, f)
also has indistinguishable (infinite) clusters. Finally, the fact that the clusters of π(x), and hence those of F2,
have infinitely many ends follows from [BLPS01, Th. 13.7]. �

The cluster relation determined by f of Proposition 8 is treeable and has cost larger than 1 by [Gab00,
Cor. IV.24 (2)], has finite cost (since the degree is bounded), and is ergodic by Proposition 5. Since we may
equivariantly identify

(

Ω × [0, 1]Γ, µǫ × µ
)

with
(

[0, 1]Γ, µ
)

, we proved:

Proposition 9 For any Cayley graph of Γ, the Bernoulli action on ([0, 1]Γ, µ) contains a treeable subrelation
that is ergodic and has cost in the interval (1,∞).

At this point, we already have a reasonable answer to the analogue of von Neumann’s problem, since “treeable
relation” is the analogue of “free group” and cost C > 1 is, in the context of treeable relations, equivalent to
non-amenability.

—— O ——

An alternative approach begins with a more explicit f and a more common measure f∗(µ), namely, the
Bernoulli measure µp on {0, 1}E for a certain parameter p, but requires us to choose a particular Cayley graph
for Γ. It also requires us to obtain a treeable subrelation in a less explicit way. This is accomplished as follows.

Results of Häggström-Peres [HP99] imply that when the parameter p increases in [0, 1], µp is successively
supported on
- (finite phase, p ∈ [0, pc)) the subgraphs with only finite clusters, then
- (non-uniqueness phase, p ∈ (pc, pu)) the subgraphs with infinitely many infinite connected components,
each one with infinitely many ends, then
- (the uniqueness phase, p ∈ (pu, 1]) the subgraphs with only one infinite component.

The situation for the critical values pc and pu themselves is far from clear. Benjamini and Schramm [BS96]
conjectured that pc 6= pu for every Cayley graph of a f.g. non-amenable group. The main result of [PSN00]
(Th. 1, p. 498) asserts that given a f.g. non-amenable group Γ, there is a finite set of generators such that the
associated Cayley graph admits a non-trivial interval of non-uniqueness. Thus:
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Proposition 10 (For particular Cayley graphs) There exists a Cayley graph of Γ and a non-empty interval
(pc, pu) such that, for any p ∈ (pc, pu), the Bernoulli measure µp on {0, 1}E is supported on the set of subgraphs
admitting infinite components, each one with infinitely many ends.

—— O ——
Let π : (X, ν) → {0, 1}E denote either

(i) fp : ([0, 1]E, µ) → {0, 1}E induced by the characteristic function χ[0,p] : [0, 1] → {0, 1} of the interval [0, p], or
(ii) the identity map ({0, 1}E, µp) → {0, 1}E,
both with the natural Bernoulli Γ-action. Notice that the action is essentially free when 0 < p < 1.

In case (ii), we have that (µp, π) has indistinguishable infinite clusters by [LS99, Th. 3.3]. Case (i) is
essentially the same, but first we must identify ([0, 1]E, µ) equivariantly as ({0, 1} × [0, 1])E = {0, 1}E × [0, 1]E

equipped with the product measure µp × µ in such a way that fp becomes the identity on the first coordinate.
Then we have insertion tolerance and so, by [LS99, Rem. 3.4], indistinguishable infinite clusters.

Hence, in both cases, for any p given by Prop. 10, the locus U∞ of infinite classes of Rcl is non-null and we
have ergodicity of the restriction Rcl

|∞ of Rcl to U∞ by Proposition 5. We claim that its normalized cost (i.e.,

computed with respect to the normalized probability measure ν/ν(U∞) on U∞) satisfies 1 < C(Rcl
|∞) < ∞.

The finiteness of the cost is clear since S, the index set for Φcl, is finite. That it is strictly greater than 1 is
a direct application of [Gab00, Cor. IV.24 (2)], since the graph Φcl[x] ≃ π(x)(ρ) associated with almost every
x ∈ U∞ has at least 3 ends.

By considering a family of partial isomorphisms whose domains form a partition of X \U∞ while the targets
all lie in U∞, Rcl

|∞ is easily extended to a subrelation of RΓ defined on the whole of X with the same ergodic

and cost properties by the induction formula of [Gab00, Prop. II.6]. We proved:

Proposition 11 For a Cayley graph and a p given by Proposition 10, the Bernoulli actions on both ([0, 1]E, µ)
and ({0, 1}E, µp) contain a subrelation that is ergodic and has cost in the open interval (1,∞).

—— O ——

Proposition 12 If an equivalence relation R is ergodic and has cost in (1,∞), then it contains a treeable
subrelation S1 that is ergodic and has cost in (1,∞).

Proof. This is ensured by a result proved independently by A. Kechris and B. Miller [KM04, Lem. 28.11; 28.12]
and by M. Pichot [Pic05, Cor. 40], through a process of erasing cycles from a graphing of S1 with finite cost
that contains an ergodic global isomorphism. �

—— O ——

Proposition 13 If a treeable equivalence relation S1 is ergodic and has cost in (1,∞), then it contains a.e. a
subrelation S2 that is generated by an ergodic free action of the free group F2.

Proof. If the cost of S1 is > 2, this follows from a result of G. Hjorth [Hjo06] (see also [KM04, Sect. 28]).
Otherwise, one first considers the restriction of the treeable S1 to a small enough Borel subset V : this increases
the normalized cost by the induction formula of [Gab00, Prop. II.6 (2)] to get C(S1|V ) ≥ 2. In fact, it follows
from the proof of [KM04, Th. 28.3] that a treeable probability measure-preserving equivalence relation with cost
≥ 2 contains a.e. an equivalence subrelation that is given by a free action of the free group F2 = 〈a, b〉 in such a
way that the generator a acts ergodically. By considering a subgroup of F2 generated by a and some conjugates
of a of the form bkab−k, one gets an ergodic treeable subrelation of S1|V with a big enough normalized cost
that, when extended to the whole of X (by using partial isomorphisms of S1), it gets cost ≥ 2 (by the induction
back [Gab00, Prop. II.6 (2)]) and of course remains ergodic. Another application of the above-italicized result
gives the desired ergodic action of F2 on X . �
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—— O ——
The proof of Theorem 2 is now complete as a direct consequence of Propositions 11 (for the case X = {0, 1}E),

12 and 13. �

—— O ——
In case X = [0, 1]E of Prop. 11, by using Prop. 7, we can see S2 (with S2 ⊂ S1 ⊂ RΓ given by Prop. 13

and 12) as an equivalence subrelation of that given by the Bernoulli shift action of Λ. This finishes the proof of
Theorem 1. Alternatively, we may use Prop. 9 and a similar argument to prove Theorem 1. �

—— O ——
Proof of Cor 3. For any diffuse abelian subalgebra A of L(H), the von Neumann factor L(H ≀Λ) = L(Λ⋉⊕ΛH)
contains the von Neumann algebra crossed product Λ⋉⊗ΛA, which is isomorphic with the group-measure-space
factor Λ ⋉ L∞([0, 1]Λ, µ) associated with the Bernoulli shift. The corollary then follows from Th. 1. �

—— O ——
Proof of Cor. 4. If K̂ is the dual group of K, then L(H ≀ Γ) contains L(K ≀ Γ), which is isomorphic with the
group-measure-space factor Γ ⋉ L∞(K̂Γ) associated with the Bernoulli shift of Γ on K̂Γ, where the finite set
K̂ ≃ {1, 2, . . . , k} is equipped with the equiprobability measure ν. The result is then obtained by taking the
pull-back of the F2-action on

∏n
1{0, 1}Γ, given in Th. 2, by the Γ-equivariant Borel map K̂Γ → ({0, 1}n)Γ ≃

∏n

1 {0, 1}Γ, sending ⊗ν to µp, that extends a map {1, 2, . . . , k} → {0, 1}n (whose existence is ensured by the
form of k = βn). �

—— O ——
It is likely that the free minimal spanning forest (FMSF) of a Cayley graph of Γ would serve as the desired

ergodic subrelation S1 of Prop. 12, but its indistinguishability, conjectured in [LPS06], is not known. Also, it
is not known to have cost > 1, but this is equivalent to pc < pu, which is conjectured to hold and which we
know holds for some Cayley graph. See [LPS06] for information on the FMSF and [Tim06] for a weak form of
indistinguishability.

A general question remains open:
Question: Does every probability-measure-preserving free ergodic action of a non-amenable countable group
contain an ergodic subrelation generated by a free action of a non-cyclic free group? More generally: Does
every standard countable probability-measure-preserving non-amenable ergodic equivalence relation contain a
treeable non-amenable ergodic equivalence subrelation?
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[HP99] Olle Häggström and Yuval Peres. Monotonicity of uniqueness for percolation on Cayley graphs: all
infinite clusters are born simultaneously. Probab. Theory Related Fields, 113(2):273–285, 1999.

[KM04] Alexander S. Kechris and Benjamin D. Miller. Topics in Orbit Equivalence, volume 1852 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 2004.

[LPS06] Russell Lyons, Yuval Peres, and Oded Schramm. Minimal spanning forests. Ann. Probab., 34(5):1665–
1692, 2006.

[LS99] Russell Lyons and Oded Schramm. Indistinguishability of percolation clusters. Ann. Probab.,
27(4):1809–1836, 1999.
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[Tim06] Ádám Timár. Ends in free minimal spanning forests. Ann. Probab., 34(3):865–869, 2006.

[vN29] John von Neumann. Zur allgemeinen Theorie des Maßes. Fund. Math., 13:73–116, 1929.

[Why99] Kevin Whyte. Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture. Duke
Math. J., 99(1):93–112, 1999.

Damien Gaboriau:

Unité de Mathématiques Pures et Appliquées
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