A Measurable-Group-Theoretic Solution to von Neumann's Problem

Damien Gaboriau, Russell Lyons

To cite this version:

Damien Gaboriau, Russell Lyons. A Measurable-Group-Theoretic Solution to von Neumann's Problem. 2007. hal-00186658v1

HAL Id: hal-00186658
https://hal.science/hal-00186658v1

Preprint submitted on 10 Nov 2007 (v1), last revised 11 Mar 2009 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Measurable-Group-Theoretic Solution to von Neumann's Problem

Damien Gaboriau* ${ }^{*} \quad$ Russell Lyons ${ }^{\dagger}$

10 Nov. 2007

Abstract

We give a positive answer, in the measurable-group-theory context, to von Neumann's problem of knowing whether a non-amenable countable discrete group contains a non-cyclic free subgroup. We also get an embedding result of the free-group von Neumann factor into restricted wreath product factors.

2000 Mathematical Subject Classification: 37A20, 20E05, 82B43, 05C80
Key words and phrases: Orbit equivalence, free group, non-amenability, von Neumann's problem, percolation theory, graphs, trees

Amenability of groups is a concept introduced by J. von Neumann in his seminal article vN29 to explain the so-called Banach-Tarski paradox. He proved that a discrete group containing the free group \mathbf{F}_{2} on two generators as a subgroup is non-amenable. Knowing whether this was a characterization of non-amenability became known as von Neumann's Problem and was solved by the negative by A. Ol^{\prime} 'šanskiŭ $\mathrm{Ol}^{\prime} 80$. Still, this characterization could become true after relaxing the notion of "containing a subgroup". K. Whyte gave a very satisfying geometric group-theoretic solution: A finitely generated group Γ is non-amenable iff it admits a partition with pieces uniformly bilipschitz equivalent to the regular 4-valent tree Why99. Geometric group theory admits a measurable counterpart, namely, measurable group theory. The main goal of our note is to provide a solution to von Neumann's problem in this context. We show that any countable non-amenable group admits a measure-preserving free action on some probability space, such that the orbits may be measurably partitioned into pieces given by an \mathbf{F}_{2}-action.

To be more precise, we use the following notation. For a finite or countable set E , let μ denote the product of the Lebesgue measures on $[0,1]^{\mathrm{E}}$ and for $p \in[0,1]$, let μ_{p} denote the product of the discrete measures $(1-p) \delta_{\{0\}}+p \delta_{\{1\}}$ on $\{0,1\}^{\mathrm{E}}$. Thus, the meaning of μ may vary from use to use as E varies.

Theorem 1 For any countable discrete non-amenable group Λ, there is a measurable ergodic essentially free action of \mathbf{F}_{2} on $\left([0,1]^{\Lambda}, \mu\right)$ such that almost every Λ-orbit of the Bernoulli shift decomposes into \mathbf{F}_{2}-orbits.

In other words, the orbit equivalence relation of the \mathbf{F}_{2}-action is contained in that of the Λ-action. We give two proofs of this theorem, each with its own advantages.

For some purposes, it is useful to get a Bernoulli shift action with a discrete base space. We show:

[^0]Theorem 2 For any finitely generated non-amenable group Γ, there is $n \in \mathbb{N}$ and a non-empty interval $\left(p_{1}, p_{2}\right)$ of parameters p for which there is an ergodic essentially free action of \mathbf{F}_{2} on $\prod_{1}^{n}\left(\{0,1\}^{\Gamma}, \mu_{p}\right)$ such that almost every Γ-orbit of the diagonal Bernoulli shift decomposes into \mathbf{F}_{2}-orbits.

These results have operator-algebra counterparts:
Corollary 3 Let Λ be a countable discrete non-amenable group and H be an infinite group. Then the von Neumann factor $L(H \imath \Lambda)$ of the restricted wreath product contains a copy of the von Neumann factor $L\left(\mathbf{F}_{2}\right)$ of the free group.

Corollary 4 Let Γ be a finitely generated discrete non-amenable group. Let n, p_{1}, p_{2} be as in Theorem Z^{2} and let $p=\frac{\alpha}{\beta} \in\left(p_{1}, p_{2}\right)$, with $\alpha, \beta \in \mathbb{N}$. Assume that H contains an abelian subgroup K of order $k=\beta^{n}$. Then the von Neumann factor $L(H \backslash \Lambda)$ of the restricted wreath product contains a copy of the von Neumann factor $L\left(\mathbf{F}_{2}\right)$ of the free group.

For this paper, we assume a certain familiarity with the results and notation of Gab05, Gab00 and LS99.

Acknowledgment

We are very grateful to Sorin Popa for bringing to our attention the above corollaries.

Proofs

Since the union of an increasing sequence of amenable groups is still amenable, Λ contains a non-amenable finitely generated subgroup. Let Γ be such a subgroup.

$$
-\mathrm{O}=
$$

If S is a finite generating set of Γ (maybe with repetitions), $\mathcal{G}=(\mathrm{V}, \mathrm{E})$ denotes the associated right Cayley graph (with edge set E): The set of edges is indexed by S and Γ. Given $s \in S$ and $\gamma \in \Gamma$, the corresponding edge is oriented from the vertex γ to γs. Note that Γ acts freely on \mathcal{G} by multiplication on the left.

The set of the subgraphs of \mathcal{G} (with the same set of vertices V) is naturally identified with $\Omega:=\{0,1\}^{\mathrm{E}}$. The connected components of $\omega \in \Omega$ are called its clusters.

Consider a probability-measure-preserving essentially free (left) Γ-action on some standard Borel space (X, ν) together with a Γ-equivariant Borel map $\pi: X \rightarrow\{0,1\}^{\mathrm{E}}$. Let $\rho:=\mathrm{id}$, the identity of the group Γ, chosen as base vertex for \mathcal{G}.

The full equivalence relation \mathcal{R}_{Γ} generated by the Γ-action X is graphed by the graphing $\Phi=\left(\varphi_{s}\right)_{s \in S}$, where φ_{s} denotes the action by s^{-1}.

We define the following equivalence sub-relation on X (see Gab05, Sect. 1]): the cluster equivalence subrelation $\mathcal{R}^{\mathrm{cl}}$, graphed by the graphing $\Phi^{\mathrm{cl}}:=\left(\varphi_{s}^{\mathrm{cl}}\right)_{s \in S}$ of partial isomorphisms, where $\varphi_{s}^{\mathrm{cl}}$ is the restriction $\varphi_{s}^{\mathrm{cl}}:=\varphi_{s} \mid A_{s}$ of φ_{s} to the Borel subset A_{s} of $x \in X$ for which the edge e labelled s from ρ to ρs lies in $\pi(x)$, i.e., $\pi(x)(e)=1$. Consequently, two points $x, y \in X$ are $\mathcal{R}^{\mathrm{cl}}$-equivalent if and only if there is some $\gamma \in \Gamma$ such that $\gamma^{-1} x=y$ and the vertices $\rho, \rho \gamma$ are in the same cluster of $\pi(x)$.

The graph structure $\Phi^{\mathrm{cl}}[x]$ given by the graphing Φ^{cl} to the $\mathcal{R}^{\mathrm{cl}}$-class of any $x \in X$ is naturally isomorphic with the cluster $\pi(x)(\rho)$ of $\pi(x)$ that contains the base vertex. Denote by $U^{\infty} \subset X$ the Borel set of $x \in X$ whose $\mathcal{R}^{\text {cl }}$-class is infinite and $\mathcal{R}_{\Gamma \mid \infty}\left(\right.$ resp. $\left.\mathcal{R}_{\mid \infty}^{\mathrm{cl}}\right)$ the restriction of \mathcal{R}_{Γ} (resp. $\mathcal{R}^{\mathrm{cl}}$) to U^{∞}.

Write $\mathcal{P}(Y)$ for the power set of Y. The map $X \times \mathrm{V} \rightarrow X$ defined by $(x, \rho \gamma) \mapsto \gamma^{-1}$. x induces a map Ψ : $X \times \mathcal{P}(\mathrm{V}) \rightarrow \mathcal{P}(X)$ that is constant under the (left) diagonal Γ-action and sends ($x, \mathrm{~V}$) to the whole \mathcal{R}_{Γ}-class of x. The restriction of Ψ to the Γ-invariant subset $\mathfrak{C}_{\infty}^{\mathrm{cl}}:=\{(x, C): x \in X, C \in \mathcal{P}(\mathrm{~V}), C$ is an infinite cluster of $\pi(x)\}$
sends each (x, C) (and its Γ-orbit) to a whole infinite $\mathcal{R}^{\mathrm{cl}}$-class, namely, the $\mathcal{R}^{\mathrm{cl}}$-class of $\gamma^{-1} . x$ for any γ such that $\rho \gamma \in C$. Moreover, for each $x \in U^{\infty}$, its $\mathcal{R}_{\Gamma \mid \infty}$-class decomposes into infinite $\mathcal{R}^{\text {cl }}$-sub-classes that are in one-to-one correspondence with the elements of $\mathfrak{C}_{\infty}^{\mathrm{cl}}$ that have x as first coordinate.

We say that (ν, π) has indistinguishable infinite clusters if for every Γ-invariant Borel subset $\mathcal{A} \subset \mathfrak{C}_{\infty}^{\mathrm{cl}}$, the set of $x \in X$ for which some $(x, C) \in \mathcal{A}$ and some $(x, C) \in \mathfrak{C}_{\infty}^{\mathrm{cl}} \backslash \mathcal{A}$ has ν-measure 0 . In other words, the $\mathcal{R}^{\mathrm{cl}}$-invariant partition $U^{\infty}=\Psi(\mathcal{A}) \cup \complement \Psi(\mathcal{A})$ is not allowed to split any $\mathcal{R}_{\Gamma \mid \infty}$-class (up to a union of measure 0 of such classes). The following proposition corrects [Gab05, Rem. 2.3].

Proposition 5 Let Γ act ergodically on (X, ν) and $\pi: X \rightarrow\{0,1\}^{\mathrm{E}}$ be a Γ-equivariant Borel map such that $\nu\left(U^{\infty}\right) \neq 0$. Then $\mathcal{R}_{\mid \infty}^{\mathrm{cl}}$, the cluster equivalence relation restricted to its infinite locus U^{∞}, is ergodic if and only if (ν, π) has indistinguishable infinite clusters.

Proof. Suppose that $\mathcal{R}_{\mid \infty}^{\mathrm{cl}}$ is ergodic. Then for every Γ-invariant Borel subset $\mathcal{A} \subset \mathfrak{C}_{\infty}^{\mathrm{cl}}$, its image $\Psi(\mathcal{A})$ is a union of $\mathcal{R}_{\mid \infty}^{\text {cl }}$-classes, whence $\Psi(\mathcal{A})$ or its complement $\left\lceil\Psi(\mathcal{A})\right.$ in U^{∞} has measure 0 . In particular, the partition $U^{\infty}=\Psi(\mathcal{A}) \cup \complement \Psi(\mathcal{A})$ is trivial, whence ν has indistinguishable infinite clusters.

Conversely, suppose that (ν, π) has indistinguishable infinite clusters. An $\mathcal{R}_{\mid \infty}^{\mathrm{cl}}$-invariant partition $U^{\infty}=$ $\mathcal{U} \cup \mathcal{C U}$ defines a partition $\mathfrak{C}_{\infty}^{\mathrm{cl}}=\mathcal{A} \cup \mathcal{C} \mathcal{A}$ according to whether $\Psi(x, C) \in \mathcal{U}$ or $\mathfrak{C U}$. Then for ν-almost every $x \in U^{\infty}$, all $\Psi(x, C)$ are in \mathcal{U} or all are in its complement, i.e., the $\mathcal{R}_{\mid \infty}^{\mathrm{cl}}$-subclasses into which the $\mathcal{R}_{\Gamma \mid \infty}$-class of x splits all belong to one side. Since $\mathcal{R}_{\Gamma \mid \infty}$ is ν-ergodic, this side has to be the same for almost every x. This means that the other side is a null set. This holds for any partition $\mathcal{U} \cup \mathcal{U}$, whence $\mathcal{R}_{\mid \infty}^{\mathrm{cl}}$ is ergodic.

If X has the form $X=\Omega \times Y$, then ν is called insertion tolerant (see LS99) if for each edge $e \in \mathrm{E}$, the map $\Pi_{e}: X \rightarrow X$ defined by $(\omega, y) \mapsto(\omega \cup\{e\}, y)$ quasi-preserves the measure, i.e., $\nu(A)>0$ implies $\nu\left(\Pi_{e}(A)\right)>0$ for every measurable subset $A \subset \Omega$. Call a map $\pi: X \rightarrow \Omega$ increasing if $\pi(\omega, y) \geq \omega$ for all $\omega \in \Omega$. A slight extension of LS99, Th. 3.3, Rem. 3.4], proved in the same way, is the following:

Proposition 6 Assume that Γ acts on $(\Omega \times Y, \nu)$ and $\pi: \Omega \times Y \rightarrow \Omega$ is an increasing Γ-equivariant Borel map with $\nu\left(U^{\infty}\right) \neq 0$. If ν is insertion tolerant, then (ν, π) has indistinguishable infinite clusters.

Proposition 7 If $\Gamma<\Lambda$, then there are Γ-equivariant isomorphisms $[0,1]^{\mathrm{E}} \simeq[0,1]^{\Gamma} \simeq[0,1]^{\Lambda}$ between the Bernoulli shift actions of Γ. The Γ-action on $[0,1]^{\Gamma}$ naturally extends to the Λ-action on $[0,1]^{\Lambda}$.

Proof. A countable set E on which Γ acts freely may be decomposed by choosing a representative in each orbit so as to be identified with a disjoint union of Γ-copies, $\mathrm{E} \simeq \coprod_{J} \Gamma$, and to give Γ-equivariant identifications $[0,1]^{\mathrm{E}}=[0,1] \coprod_{J}^{\Gamma}=\left([0,1]^{J}\right)^{\Gamma}$.

The edge set $\mathrm{E} \simeq \coprod_{S} \Gamma$ of the Cayley graph of Γ, as well as $\Lambda \simeq \coprod_{I} \Gamma$ are such countable Γ-sets. Then isomorphisms of standard Borel probability spaces $([0,1], \mu) \simeq\left([0,1]^{S}, \mu\right) \simeq\left([0,1]^{I}, \mu\right)$ induce Γ-equivariant isomorphisms of the Bernoulli shifts:

Proposition 8 (For any Cayley graph) Let $X:=\Omega \times[0,1]^{\Gamma}$ and $\epsilon>0$. Let $\nu:=\mu_{\epsilon} \times \mu$. There is a Γ-equivariant Borel map $f: X \rightarrow \Omega$ such that (ν, f) has indistinguishable infinite clusters and for all sufficiently small ϵ, the push-forward measure $f_{*}(\nu)$ of ν is supported on the set of spanning subgraphs each of whose components is a tree with infinitely many ends.
Proof. We may equivariantly identify $\left([0,1]^{\Gamma}, \mu\right)$ with $\left([0,1]^{\mathbb{N} \times \Gamma} \times[0,1]^{\mathrm{E}}, \mu \times \mu\right)$, so we identify (X, ν) with $\left(\Omega \times[0,1]^{\mathbb{N} \times \Gamma} \times[0,1]^{\mathrm{E}}, \mu_{\epsilon} \times \mu \times \mu\right)$. Fix an ordering of $S \coprod S^{-1}$; this determines an ordering of the edges incident to each vertex in \mathcal{G}, where we ignore edge orientations for the rest of this proof. With d denoting the degree of \mathcal{G}, write $h(p):=\lceil d p\rceil$ for $p \in[0,1]$. Given a point $x=\left(\omega,(p(n, \gamma))_{n \in \mathbb{N} . \gamma \in \Gamma, u)} \in X\right.$, construct the wired spanning forest \mathcal{F}_{1} of \mathcal{G} by using the cycle-popping algorithm described in BLPS01, also called there "Wilson's algorithm rooted at infinity", applied to the stacks where the nth edge in the stack under γ is the $h(p(n, \gamma))$ th edge incident to γ. The measure ν is insertion tolerant and the map $\pi: x \mapsto \omega \cup \mathcal{F}_{1}$ is increasing, whence by Proposition 6, the pair (ν, π) has indistinguishable infinite clusters. (All clusters are infinite.) Now use u to construct the free minimal spanning forest \mathcal{F}_{2} in each cluster of $\pi(x)$, that is, for every cycle $\Delta \subset \pi(x)$, delete the edge $e \in \Delta$ with maximum $u(e)$ in that cycle. The map f is $f(x):=\mathcal{F}_{2}$.

Now the ν-expected number of distinct simple paths in $\pi(x)$ that join any two vertices is finite (equation (13.7) of [BLPS01]) for all sufficiently small ϵ. In particular, the number of such paths is finite ν-a.s. This means that if one removes all cut-edges (bridges) from $\pi(x)$, one is left with only finite components. Therefore each component of \mathcal{F}_{2} spans a component of $\pi(x)$. Thus, \mathcal{F}_{2} determines the same cluster relation and so (ν, f) also has indistinguishable (infinite) clusters. Finally, the fact that the clusters of $\pi(x)$, and hence those of \mathcal{F}_{2}, have infinitely many ends follows from BLPS01, Th. 13.7].

The cluster relation determined by f of Proposition 8 is treeable and has cost larger than 1 by Gab00, Cor. IV. 24 (2)], has finite cost (since the degree is bounded), and is ergodic by Proposition 5 . Since we may equivariantly identify $\left(\Omega \times[0,1]^{\Gamma}, \mu_{\epsilon} \times \mu\right)$ with $\left([0,1]^{\Gamma}, \mu\right)$, we proved:
Proposition 9 For any Cayley graph of Γ, the Bernoulli action on $\left([0,1]^{\Gamma}, \mu\right)$ contains a treeable subrelation that is ergodic and has cost in the interval $(1, \infty)$.

At this point, we already have a reasonable answer to the analogue of von Neumann's problem, since "treeable relation" is the analogue of "free group" and cost $\mathcal{C}>1$ is, in the context of treeable relations, equivalent to non-amenability.
\qquad
An alternative approach begins with a more explicit f and a more common measure $f_{*}(\mu)$, namely, the Bernoulli measure μ_{p} on $\{0,1\}^{\mathrm{E}}$ for a certain parameter p, but requires us to choose a particular Cayley graph for Γ. It also requires us to obtain a treeable subrelation in a less explicit way. This is accomplished as follows.

Results of Häggström-Peres HP99 imply that when the parameter p increases in $[0,1], \mu_{p}$ is successively supported on

- (finite phase, $p \in\left[0, p_{c}\right)$) the subgraphs with only finite clusters, then
- (non-uniqueness phase, $p \in\left(p_{c}, p_{u}\right)$) the subgraphs with infinitely many infinite connected components, each one with infinitely many ends, then
- (the uniqueness phase, $\left.p \in\left(p_{u}, 1\right]\right)$ the subgraphs with only one infinite component.

The situation for the critical values p_{c} and p_{u} themselves is far from clear. Benjamini and Schramm BS96 conjectured that $p_{c} \neq p_{u}$ for every Cayley graph of a f.g. non-amenable group. The main result of PSN00 (Th. 1, p. 498) asserts that given a f.g. non-amenable group Γ, there is a finite set of generators such that the associated Cayley graph admits a non-trivial interval of non-uniqueness. Thus:

Proposition 10 (For particular Cayley graphs) There exists a Cayley graph of Γ and a non-empty interval (p_{c}, p_{u}) such that, for any $p \in\left(p_{c}, p_{u}\right)$, the Bernoulli measure μ_{p} on $\{0,1\}^{\mathrm{E}}$ is supported on the set of subgraphs admitting infinite components, each one with infinitely many ends.

Let $\pi:(X, \nu) \rightarrow\{0,1\}^{\mathrm{E}}$ denote either
(i) $f_{p}:\left([0,1]^{\mathrm{E}}, \mu\right) \rightarrow\{0,1\}^{\mathrm{E}}$ induced by the characteristic function $\chi_{[0, p]}:[0,1] \rightarrow\{0,1\}$ of the interval $[0, p]$, or (ii) the identity map $\left(\{0,1\}^{\mathrm{E}}, \mu_{p}\right) \rightarrow\{0,1\}^{\mathrm{E}}$,
both with the natural Bernoulli Γ-action. Notice that the action is essentially free when $0<p<1$.
In case (ii), we have that $\left(\mu_{p}, \pi\right)$ has indistinguishable infinite clusters by LS99, Th. 3.3]. Case (i) is essentially the same, but first we must identify $\left([0,1]^{\mathrm{E}}, \mu\right)$ equivariantly as $(\{0,1\} \times[0,1])^{\mathrm{E}}=\{0,1\}^{\mathrm{E}} \times[0,1]^{\mathrm{E}}$ equipped with the product measure $\mu_{p} \times \mu$ in such a way that f_{p} becomes the identity on the first coordinate. Then we have insertion tolerance and so, by LS99, Rem. 3.4], indistinguishable infinite clusters.

Hence, in both cases, for any p given by Prop. 10, the locus U^{∞} of infinite classes of $\mathcal{R}^{\mathrm{cl}}$ is non-null and we have ergodicity of the restriction $\mathcal{R}_{\mid \infty}^{\mathrm{cl}}$ of $\mathcal{R}^{\mathrm{cl}}$ to U^{∞} by Proposition 5 . We claim that its normalized cost (i.e., computed with respect to the normalized probability measure $\nu / \nu\left(U^{\infty}\right)$ on $\left.U^{\infty}\right)$ satisfies $1<\mathcal{C}\left(\mathcal{R}_{\mid \infty}^{\mathrm{cl}}\right)<\infty$. The finiteness of the cost is clear since S, the index set for $\Phi^{\text {cl }}$, is finite. That it is strictly greater than 1 is a direct application of Gab00, Cor. IV. 24 (2)], since the graph $\Phi^{\mathrm{cl}}[x] \simeq \pi(x)(\rho)$ associated with almost every $x \in U^{\infty}$ has at least 3 ends.

By considering a family of partial isomorphisms whose domains form a partition of $X \backslash U^{\infty}$ while the targets all lie in $U^{\infty}, \mathcal{R}_{\mid \infty}^{\text {cl }}$ is easily extended to a subrelation of \mathcal{R}_{Γ} defined on the whole of X with the same ergodic and cost properties by the induction formula of Gab00, Prop. II.6]. We proved:
Proposition 11 For a Cayley graph and a p given by Proposition 10, the Bernoulli actions on both $\left([0,1]^{\mathrm{E}}, \mu\right)$ and $\left(\{0,1\}^{\mathrm{E}}, \mu_{p}\right)$ contain a subrelation that is ergodic and has cost in the open interval $(1, \infty)$.

Proposition 12 If an equivalence relation \mathcal{R} is ergodic and has cost in $(1, \infty)$, then it contains a treeable subrelation \mathcal{S}_{1} that is ergodic and has cost in $(1, \infty)$.

Proof. This is ensured by a result proved independently by A. Kechris and B. Miller KM04, Lem. 28.11; 28.12] and by M. Pichot Pic05, Cor. 40], through a process of erasing cycles from a graphing of \mathcal{S}_{1} with finite cost that contains an ergodic global isomorphism.

Proposition 13 If a treeable equivalence relation \mathcal{S}_{1} is ergodic and has cost in $(1, \infty)$, then it contains a.e. a subrelation \mathcal{S}_{2} that is generated by an ergodic free action of the free group \mathbf{F}_{2}.
Proof. If the cost of \mathcal{S}_{1} is >2, this follows from a result of G. Hjorth Hjo06 (see also KM04, Sect. 28]). Otherwise, one first considers the restriction of the treeable \mathcal{S}_{1} to a small enough Borel subset V : this increases the normalized cost by the induction formula of Gab00, Prop. II.6 (2)] to get $\mathcal{C}\left(\mathcal{S}_{1} \mid V\right) \geq 2$. In fact, it follows from the proof of [KM04. Th. 28.3] that a treeable probability measure-preserving equivalence relation with cost ≥ 2 contains a.e. an equivalence subrelation that is given by a free action of the free group $\mathbf{F}_{2}=\langle a, b\rangle$ in such a way that the generator a acts ergodically. By considering a subgroup of \mathbf{F}_{2} generated by a and some conjugates of a of the form $b^{k} a b^{-k}$, one gets an ergodic treeable subrelation of $\mathcal{S}_{1} \mid V$ with a big enough normalized cost that, when extended to the whole of X (by using partial isomorphisms of \mathcal{S}_{1}), it gets cost ≥ 2 (by the induction back Gab00, Prop. II. 6 (2)]) and of course remains ergodic. Another application of the above-italicized result gives the desired ergodic action of \mathbf{F}_{2} on X.

The proof of Theorem 2 is now complete as a direct consequence of Propositions 11 (for the case $X=\{0,1\}^{\mathrm{E}}$), 12 and 13 .
\qquad
In case $X=[0,1]^{\mathrm{E}}$ of Prop. 11, by using Prop. 7, we can see \mathcal{S}_{2} (with $\mathcal{S}_{2} \subset \mathcal{S}_{1} \subset \mathcal{R}_{\Gamma}$ given by Prop. 13 and (12) as an equivalence subrelation of that given by the Bernoulli shift action of Λ. This finishes the proof of Theorem 11. Alternatively, we may use Prop. 9 and a similar argument to prove Theorem 1.

$$
-\mathrm{O}-
$$

Proof of Cor S. For any diffuse abelian subalgebra A of $L(H)$, the von Neumann factor $L(H \imath \Lambda)=L\left(\Lambda \ltimes \oplus_{\Lambda} H\right)$ contains the von Neumann algebra crossed product $\Lambda \ltimes \otimes_{\Lambda} A$, which is isomorphic with the group-measure-space factor $\Lambda \ltimes L^{\infty}\left([0,1]^{\Lambda}, \mu\right)$ associated with the Bernoulli shift. The corollary then follows from Th. 1.
\qquad
Proof of Cor. 母 If \hat{K} is the dual group of K, then $L(H \imath \Gamma)$ contains $L(K \imath \Gamma)$, which is isomorphic with the group-measure-space factor $\Gamma \ltimes L^{\infty}\left(\hat{K}^{\Gamma}\right)$ associated with the Bernoulli shift of Γ on \hat{K}^{Γ}, where the finite set $\hat{K} \simeq\{1,2, \ldots, k\}$ is equipped with the equiprobability measure ν. The result is then obtained by taking the pull-back of the \mathbf{F}_{2}-action on $\prod_{1}^{n}\{0,1\}^{\Gamma}$, given in Th. 2 , by the Γ-equivariant Borel map $\hat{K}^{\Gamma} \rightarrow\left(\{0,1\}^{n}\right)^{\Gamma} \simeq$ $\prod_{1}^{n}\{0,1\}^{\Gamma}$, sending $\otimes \nu$ to μ_{p}, that extends a map $\{1,2, \ldots, k\} \rightarrow\{0,1\}^{n}$ (whose existence is ensured by the form of $k=\beta^{n}$).
\qquad
It is likely that the free minimal spanning forest (FMSF) of a Cayley graph of Γ would serve as the desired ergodic subrelation \mathcal{S}_{1} of Prop. 12, but its indistinguishability, conjectured in LPS06, is not known. Also, it is not known to have cost >1, but this is equivalent to $p_{c}<p_{u}$, which is conjectured to hold and which we know holds for some Cayley graph. See [LPS06] for information on the FMSF and Tim06] for a weak form of indistinguishability.

A general question remains open:
Question: Does every probability-measure-preserving free ergodic action of a non-amenable countable group contain an ergodic subrelation generated by a free action of a non-cyclic free group? More generally: Does every standard countable probability-measure-preserving non-amenable ergodic equivalence relation contain a treeable non-amenable ergodic equivalence subrelation?

References

[BLPS01] Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm. Uniform spanning forests. Ann. Probab., 29(1):1-65, 2001.
[BS96] Itai Benjamini and Oded Schramm. Percolation beyond \mathbf{Z}^{d}, many questions and a few answers. Electron. Comm. Probab., 1:no. 8, 71-82 (electronic), 1996.
[Gab00] Damien Gaboriau. Coût des relations d'équivalence et des groupes. Invent. Math., 139(1):41-98, 2000.
[Gab05] Damien Gaboriau. Invariant percolation and harmonic Dirichlet functions. Geom. Funct. Anal., 15(5):1004-1051, 2005.
[Hjo06] Greg Hjorth. A lemma for cost attained. Ann. Pure Appl. Logic, 143(1-3):87-102, 2006.
[HP99] Olle Häggström and Yuval Peres. Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously. Probab. Theory Related Fields, 113(2):273-285, 1999.
[KM04] Alexander S. Kechris and Benjamin D. Miller. Topics in Orbit Equivalence, volume 1852 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.
[LPS06] Russell Lyons, Yuval Peres, and Oded Schramm. Minimal spanning forests. Ann. Probab., 34(5):16651692, 2006.
[LS99] Russell Lyons and Oded Schramm. Indistinguishability of percolation clusters. Ann. Probab., 27(4):1809-1836, 1999.
[Ol'80] Alexander Ju. Ol'šanskiĭ. On the question of the existence of an invariant mean on a group. Uspekhi Mat. Nauk, 35(4(214)):199-200, 1980.
[Pic05] Mikaël Pichot. Quasi-Périodicité et Théorie de la Mesure. Ph.D. Thesis, Ecole Normale Supérieure de Lyon, 2005.
[PSN00] Igor Pak and Tatiana Smirnova-Nagnibeda. On non-uniqueness of percolation on nonamenable Cayley graphs. C. R. Acad. Sci. Paris Sér. I Math., 330(6):495-500, 2000.
[Tim06] Ádám Timár. Ends in free minimal spanning forests. Ann. Probab., 34(3):865-869, 2006.
[vN29] John von Neumann. Zur allgemeinen Theorie des Maßes. Fund. Math., 13:73-116, 1929.
[Why99] Kevin Whyte. Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture. Duke Math. J., 99(1):93-112, 1999.

Damien Gaboriau:
Unité de Mathématiques Pures et Appliquées
Université de Lyon, CNRS, Ens-Lyon
46, allée d'Italie
69364 Lyon cedex 7, France
gaboriau@umpa.ens-lyon.fr

Russell Lyons:
Department of Mathematics
Indiana University Bloomington, IN 47405-5701
USA
rdlyons@indiana.edu

[^0]: * CNRS
 ${ }^{\dagger}$ Supported partially by NSF grant DMS-0705518 and Microsoft Research.

