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INTRODUCTION

This is the first part of a series of two papers (see [START_REF] Cantat | Painlevé and Schrödinger[END_REF]), the aim of which is to describe the dynamics of a polynomial action of the group where A, B, C, and D are complex parameters. This dynamical system appears in several different mathematical areas, like the monodromy of the sixth Painlevé differential equation, the geometry of hyperbolic threefolds, and the spectral properties of certain discrete Schrödinger operators. One of our main goals here is to classify parameters (A, B,C, D) for which Γ * 2 preserves a holomorphic geometric structure, and to apply this classification to provide a galoisian proof of the irreducibility of the sixth Painlevé equation.

1.1. Character variety. Let S 2 4 be the four punctured sphere. Its fundamental group is isomorphic to a free group of rank 3; if α, β, γ and δ are the four loops which are depicted on figure 1 Let Rep(S 2 4 ) be the set of representations of π 1 (S 2 4 ) into SL (2, C). Such a representation ρ is uniquely determined by the 3 matrices ρ(α), ρ(β), and ρ(γ), so that Rep(S 2 4 ) can be identified with the affine algebraic variety (SL (2, C)) 3 . Let us associate the 7 following traces to any element ρ of Rep(S 2 4 ): a = tr(ρ(α)) ; b = tr(ρ(β)) ; c = tr(ρ(γ)) ; d = tr(ρ(δ)) x = tr(ρ(αβ)) ; y = tr(ρ(βγ)) ; z = tr(ρ(γα)).

The polynomial map χ : Rep(S 2 4 ) → C 7 defined by (1.3) χ(ρ) = (a, b, c, d, x, y, z)

is invariant under conjugation, by which we mean that χ(ρ ′ ) = χ(ρ) if ρ ′ is conjugate to ρ by an element of SL (2, C). Moreover, [START_REF] Roger | An elementary account of Selberg's lemma[END_REF] the algebra of polynomial functions on Rep(S 2 4 ) which are invariant under conjugation is generated by the components of χ;

(2) the components of χ satisfy the quartic equation (3) the algebraic quotient Rep(S 2 4 )//SL (2, C) of Rep(S 2 4 ) by the action of SL (2, C) by conjugation is isomorphic to the six-dimensional quartic hypersurface of C 7 defined by equation (1.4). The affine algebraic variety Rep(S 2 4 )//SL (2, C) will be denoted χ(S 2 4 ) and called the character variety of S 2 4 . For each choice of four complex parameters A, B, C, and D, S (A,B,C,D) (or S if there is no obvious possible confusion) will denote the cubic surface of C 3 defined by the equation (1.4). The family of these surfaces S (A,B,C,D) will be denoted Fam. (a,b,c,d) → (A,B,C,D) defined by (1.5) is a non Galois ramified cover of degree 24. Fibers are studied in Appendix B. It is important to notice that a point m ∈ S (A,B,C,D) will give rise to representations of very different nature depending on the choice of (a, b, c, d) in the fiber, e.g. reducible or irreducible, finite or infinite image. Remark 1.2. As we shall see in section 2.4, if we replace the four puntured sphere by the once puntured torus, the character variety is naturally fibered by the family of cubic surfaces S (0,0,0,D .

1.2. Automorphisms and modular groups. The group of automorphisms Aut(π 1 (S 2 4 )) acts on Rep(S 2 4 ) by composition: (Φ, ρ) → ρ • Φ -1 . Since inner automorphisms act trivially on χ(S 2 4 ), we get a morphism from the group of outer automorphisms Out(π 1 (S 2 4 )) into the group of polynomial diffeomorphisms of χ(S 2 4 ):

(1.6) Out(π 1 (S 2 4 )) → Aut[χ(S 2 4 )] Φ → f Φ such that f Φ (χ(ρ)) = χ(ρ • Φ -1 )
for any representation ρ.

The group Out(π 1 (S 2 4 )) is isomorphic to the extended mapping class group MCG * (S 2 4 ), i.e. to the group of isotopy classes of homeomorphisms of S 2 4 , that preserve or reverse the orientation. It contains a copy of PGL (2, Z) which is obtained as follows. Let T 2 = R 2 /Z 2 be a torus of dimension 2 and σ be the involution of T 2 defined by σ(x, y) = (-x, -y). The fixed point set of σ is the 2-torsion subgroup H ⊂ T 2 , isomorphic to Z/2Z × Z/2Z:

(1.7) H = {(0, 0); (0, 1/2); (1/2, 0); (1/2, 1/2)}.

The quotient T 2 /σ is homeomorphic to the sphere, S 2 , and the quotient map π : T 2 → T 2 /σ = S 2 has four ramification points, corresponding to the four fixed points of σ. The affine group GL (2, Z) ⋉ H acts linearly on T 2 and commutes with σ. This yields an action of PGL (2, Z) ⋉ H on the sphere S 2 , that permutes ramification points of π. Taking these four ramification points as the punctures of S 2 4 , we get a morphism (1.8) PGL (2, Z) ⋉ H → MCG * (S 2 4 ), which, in fact, is an isomorphism (see [START_REF] Birman | Braids, links, and mapping class groups[END_REF], section 4.4). The image of PGL (2, Z) is the stabilizer of π(0, 0), freely permuting the three other points. As a consequence, PGL (2, Z) acts by polynomial transformations on χ(S 2 4 ). The image of H permutes the 4 punctures by products of disjoint transpositions and acts trivially on χ(S 2 4 ), so that the action of the whole mapping class group MCG * (S 2 4 ) on χ(S 2 4 ) actually reduces to that of PGL (2, Z) (see section 2.2).

Let Γ * 2 be the subgroup of PGL (2, Z) whose elements coincide with the identity modulo 2. This group coincides with the (image in PGL (2, Z) of the) stabilizer of the fixed points of σ, so that Γ * 2 acts on S 2 4 and fixes its four punctures. Consequently, Γ * 2 acts polynomially on χ(S 2 4 ) and preserves the fibers of the projection (a, b, c, d, x, y, z) → (a, b, c, d).

From this we obtain, for any choice of four complex parameters (A, B,C, D), a morphism from Γ * 2 to the group of polynomial diffeomorphisms of the surface S (A,B,C,D) . The following result is essentially due to Èl'-Huti (see [START_REF] Marat | Èl ′ -Huti. Cubic surfaces of Markov type[END_REF], and §3.1).

Theorem A. For any choice of the parameters A, B, C, and D, the morphism

Γ * 2 → Aut[S (A,B,C,D) ] is injective and the index of its image is bounded by 24. For a generic choice of the parameters, this morphism is an isomorphism.

As a consequence of this result, it suffices to understand the action of Γ * 2 on the surfaces S (A,B,C,D) in order to get a full understanding of the action of MCG * (S 2 4 ) on χ(S 2 4 ). (see also remark 2.4 for the case of orientation preserving transformations and an action of the pure braid group on three strings).

Remark 1.3. If the parameters A, B, C, and D belong to a ring K, the group Γ * 2 acts on S (A,B,C,D) (K), i.e. on the set of points of the surface with coordinates in K. In particular, when the parameters are real numbers, Γ * 2 acts on the real surface S (A,B,C,D) (R).

There are useful symmetries of the parameter space, as well as covering between distinct surfaces S (A,B,C,D) and S (A ′ ,B ′ ,C ′ ,D ′ ) , that can be used to relate dynamical properties of Γ * 2 on different surfaces of our family. These symmetries and covering will be described in section 2 and appendix B.

1.3. Projective structures. Once S 2 4 is endowed with a complex projective structure, which means that we have an atlas on S 2 4 made of charts into P 1 (C) with transition functions in the group of homographic transformations of P 1 (C), the holonomy defines a morphism from π 1 (S 2 4 ) to PSL (2, C). Since π 1 (S 2 4 ) is a free group, the holonomy can be lifted to a morphism ρ : π 1 (S 2 4 ) → SL (2, C). Properties of the holonomy such as discreteness, finiteness, or the presence of parabolic elements in ρ(π 1 (S 2 4 )), are invariant by conjugation and by the action of the mapping class group MCG * (S 2 4 ). This kind of properties may be used to construct invariant subsets of S (A,B,C,D) for the action of Γ * 2 , and the dynamics of this action may be used to understand those invariant sets and the space of projective structures. This approach has been popularized by Goldman (see [START_REF] William | Ergodic theory on moduli spaces[END_REF], [START_REF] William | Mapping class group dynamics on surface group representations[END_REF] for example). 
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the coefficients of which depend on complex parameters θ = (θ α , θ β , θ γ , θ δ ).

The main property of this equation is the absence of movable singular points, the so-called Painlevé property: All essential singularities of all solutions q(t) of the equation only appear when t ∈ {0, 1, ∞}; in other words, any solution q(t) extends analytically as a meromorphic function on the universal cover of P 1 (C) \ {0, 1, ∞}.

Another important property, expected by Painlevé himself, is the irreducibility. Roughly speaking, the general solution is more transcendental than solutions of linear, or first order non linear, ordinary differential equations with polynomial coefficients. Painlevé proved that any irreducible second order polynomial differential equation without movable singular point falls after reduction into the 4-parameter family P V I or one of its degenerations P I , . . . , P V . The fact that Painlevé equations are actually irreducible was proved by Nishioka and Umemura for P I (see [START_REF] Nishioka | A note on the transcendency of Painlevé's first transcendent[END_REF][START_REF] Umemura | Second proof of the irreducibility of the first differential equation of Painlevé[END_REF]) and by Watanabe in [START_REF] Watanabe | Birational canonical transformations and classical solutions of the sixth Painlevé equation[END_REF] for P V I . Another notion of irreducibility, related with transcendence of first integrals, was developped by Malgrange and Casale in [START_REF] Malgrange | Le groupoïde de Galois d'un feuilletage[END_REF][START_REF] Casale | The Galois groupoid of Picard-Painlevé VI equation. In Algebraic, analytic and geometric aspects of complex differential equations and their deformations[END_REF] and then applied to the first of Painlevé equations (see 7 for more details).

A third important property, discovered by R. Fuchs, is that solutions of P V I parametrize isomonodromic deformations of rank 2 meromorphic connections over the Riemann sphere having simple poles at {0,t, 1, ∞}, with respective set of local exponents (± θ α 2 , ±

θ β 2 , ± θ γ 2 , ± θ δ 2 )
. From this point of view, the good space of initial conditions at, say, t 0 , is the moduli space M t 0 (θ) of those connections for t = t 0 (see [START_REF] Inaba | Dynamics of the sixth Painlevé equation, in théories asymptotiques et équations de Painlevé[END_REF]); it turns to be a convenient semi-compactification of the naive space of initial conditions C 2 ∋ (q(t 0 ), q ′ (t 0 )) (compare [38]). Via the Riemann-Hilbert correspondence, M t 0 (θ) is analytically isomorphic to the moduli space of corresponding monodromy representations, namely to (a desingularization of) S (A,B,C,D) with parameters (1.9) a = 2 cos(πθ α ), b = 2 cos(πθ β ), c = 2 cos(πθ γ ), d = 2 cos(πθ δ ).

The (non linear) monodromy of P V I , obtained after analytic continuation around 0 and 1 of local P V I solutions at t = t 0 , induces a representation

π 1 (P 1 (C) \ {0, 1, ∞},t 0 ) → Aut[S (A,B,C,D) ]
whose image coincides with the action of Γ 2 ⊂ PSL (2, Z) (see [START_REF] Dubrovin | Monodromy of certain Painlevé-VI transcendents and reflection groups[END_REF][START_REF] Inaba | Dynamics of the sixth Painlevé equation, in théories asymptotiques et équations de Painlevé[END_REF]).

1.5. The Cayley cubic. One very specific choice of the parameters will play a central role in this paper. The parameters are (0, 0, 0, 4), and the surface S (0,0,0,4) is the unique surface in our family with four singularities. Four is the maximal possible number of isolated singularities for a cubic surface, and S (0,0,0,4) is therefore isomorphic to the well known Cayley cubic. From the point of view of character varieties, this surface appears in the very special case (a, b, c, d) = (0, 0, 0, 0) consisting only of solvable representations (dihedral or reducible). I. The Cayley cubic S C ; II. S (-0.2,-0.2,-0.2,4.39) ; III. S (0,0,0,3) ; IV. S (0,0,0,4.1) .

From the Painlevé point of view, it corresponds to the Picard parameter (θ 1 , θ 2 , θ 3 , θ 4 ) = (0, 0, 0, 1). The singular foliation which is defined by the corresponding Painlevé equation P V I (0, 0, 0, 1) is transversely affine (see [START_REF] Casale | The Galois groupoid of Picard-Painlevé VI equation. In Algebraic, analytic and geometric aspects of complex differential equations and their deformations[END_REF]) and, as was shown by Picard himself, admits explicit first integrals by means of elliptic functions (see 7). Moreover, this specific equation has countably many agebraic solutions, that are given by finite order points on the Legendre family of elliptic curves (see 7).

The Cayley cubic has also the "maximal number of automorphisms": The whole group PGL (2, Z), in which Γ * and there are extra symmetries coming from the permutation of coordinates (see section 3.1), so that the maximal index 24 of theorem A is obtained in the case of the Cayley cubic. Moreover, the degree 2 orbifold cover

(1.10) π C : C * × C * → S (0,0,0,4)
semi-conjugates the action of PGL (2, Z) on the character surface S (0,0,0,4) to the monomial action of GL (2, Z) on C * × C * , which is defined by

(1.11) M u v = u m 11 v m 12 u m 21 v m 22 ,
for any element M of GL (2, Z). On the universal cover C × C → C * × C * , the lifted dynamics is the usual affine action of the group GL (2, Z) ⋉ Z 2 on the complex plane C 2 .

1.6. Compactification and entropy. Our first goal is to classify automorphisms of surfaces S (A,B,C,D) in three types, elliptic, parabolic and hyperbolic, and to describe the main properties of the dynamics of each type of automorphisms. This classification is compatible with the description of mapping classes, Dehn twists corresponding to parabolic transformations, and pseudo-Anosov mappings to hyperbolic automorphisms. The most striking result in that direction is summarized in the following theorem. The proof is obtained by a deformation argument: We shall show that the topological entropy does not depend on the parameters (A, B,C, D), and then compute it in the case of the Cayley cubic. To do so, we first describe the geometry of surfaces S ∈ Fam (section 2), their groups of automorphisms (section 3), and the action of automorphisms by birational transformations on the Zariski closure S of S in P 3 (C) (section 4).

Another algorithm to compute the topological entropy has been obtained by Iwasaki and Uehara for non singular cubics S in Fam (see [START_REF] Iwasaki | An ergodic study of Painlevé VI[END_REF]). The case of singular cubics is crucial for the study of the set of quasi-fuchsian deformations of fuchsian representations, in connection with Bers embedding of Teichmüller spaces (see [START_REF] William | Mapping class group dynamics on surface group representations[END_REF] and [START_REF] Cantat | Painlevé and Schrödinger[END_REF]). 1.7. Bounded orbits. Section 5 is devoted to the study of parabolic elements (or Dehn twists), and bounded or periodic (i.e. finite) orbits of Γ * 2 . For instance, given a representation ρ : S 2 4 → SU (2) ⊂ SL (2, C), the Γ * 2 -orbit of the correponding point χ(ρ) will be bounded, contained in the cube [-2, 2] 3 . If moreover the image of ρ is finite, then so will be the corresponding orbit. Though, there are periodic orbits with complex coordinates.

First of all, fixed points of Γ * 2 are precisely the singular points of S (A,B,C,D) and have been extensively studied (see [START_REF] Inaba | Dynamics of the sixth Painlevé equation, in théories asymptotiques et équations de Painlevé[END_REF]). Singular points arise from semi-stable points of Rep(S 2 4 ), that is to say either from reducible representations, or from those representations for which one of the matrices ρ(α), ρ(β), ρ(γ) or ρ(δ) is ±I. Both type of degeneracy occur at each singular point of S (A,B,C,D) depending on the choice of parameters (a, b, c, d) fitting

to (A, B,C, D). The Riemann-Hilbert correspondance M t 0 (θ) → S (A,B,C,D)
is a minimal resolution of singularities and P V I equation restricts to the exceptional divisor as a Riccati equation : this is the locus of Riccati-type solutions. We note that any point (x, y, z) is the singular point of one member S (A,B,C,D) .

Periodic orbits of length ≥ 2 correspond to algebraic solutions of P V I equation (see [START_REF] Iwasaki | Finite branch solutions to Painlevé VI around a fixed singular point[END_REF]). In Proposition 5.4, we classify orbits of length ≤ 4 : we find one 2-parameter family of length 2 orbits and two 1-parameter families of length 3 and 4 orbits. They correspond to well-known 1 algebraic solutions of P V I equation (see [START_REF] Bassem | Families of Painlevé VI equations having a common solution[END_REF]). For instance, the length 2 orbit arise when A = C = 0 ; the corresponding P V I -solution is q(t) = √ t. The following result shows that infinite bounded orbits are real and contained in the cube [-2, 2] 3 . If the orbit of m is finite, then both the surface and the orbit are actually defined over a (real) number field.

Theorem C. Let m be a point of S

If the orbit of m is infinite, then it corresponds to a SU (2)-representation for a convenient choice of parameters (a, b, c, d), and the orbit is contained and dense in the unique bounded connected component of the smooth part of S (A,B,C,D) (R).

As a corollary, periodic orbits of length > 4 are rigid and we recover the main result of [START_REF] Bassem | Families of Painlevé VI equations having a common solution[END_REF]. Recall that Cayley cubic contains infinitely many periodic orbits, of arbitrary large order. It is conjectured that there are finitely many periodic orbits apart from the Cayley member, but this is still an open problem. A classification of known periodic orbits can be found in [START_REF] Boalch | Towards a nonlinear schwarz's list[END_REF].

About infinite orbits, Theorem C should be compared with results of Goldman and Previte and Xia, concerning the dynamics on the character variety for representations into SU (2) [41] 2 . We note that an infinite bounded orbit may also correspond to SL (2, R)-representation for an alternate choice of parameters (a, b, c, d).

This theorem stresses the particular role played by the real case, when all the parameters A, B, C, and D are real numbers; in that case, Γ * 2 preserves the real part of the surface and we have two different, but closely related, dynamical systems: The action on the complex surface S (A,B,C,D) (C) and 1 Although we usually find 4 families of algebraic solutions of P V I in the litterature (see [START_REF] Boalch | Towards a nonlinear schwarz's list[END_REF][START_REF] Bassem | Families of Painlevé VI equations having a common solution[END_REF]), there are actually 3 up to Okamoto symmetries : degree 4 solutions 3B and 4C in [START_REF] Bassem | Families of Painlevé VI equations having a common solution[END_REF] are conjugated by the symmetry s 1 s 2 s 1 (with notations of [START_REF] Noumi | A new Lax pair for the sixth Painlevé equation associated with so(8)[END_REF]). 2 After reading the first version of this paper, professor Iwasaki informed us that part of theorem C was already announced in [START_REF] Iwasaki | Some dynamical aspects of Painlevé VI[END_REF].

the action on the real surface S (A,B,C,D) (R). The link between those two dynamical systems will be studied in [START_REF] Cantat | Painlevé and Schrödinger[END_REF].

1.8. Dynamics, affine structures, and the irreducibility of P V I . The last main result that we shall prove concerns the classification of parameters (A, B,C, D) for which S (A,B,C,D) admits a Γ * 2 -invariant holomorphic geometric structure.

Theorem D. The group Γ *

2 does not preserve any holomorphic curve of finite type, any singular holomorphic foliation, or any singular holomorphic web. The group Γ * 2 does not preserve any meromorphic affine structure, except in the case of the Cayley cubic, i.e. when (A, B,C, D) = (0, 0, 0, 4), or equivalently when

(a, b, c, d) = (0, 0, 0, 0) or (2, 2, 2, -2),
up to multiplication by -1 and permutation of the parameters.

Following [START_REF] Casale | Le groupo ïde de Galois de P 1 et son irréductibilité[END_REF], the same strategy shows that the Galois groupoid is the whole symplectic pseudo-group except in the Cayley case (see section 7), and we get Theorem E. The sixth Painlevé equation is irreducible in the sense of Malgrange and Casale except when (A, B,C, D) = (0, 0, 0, 4), i.e. except in one of the following cases:

• θ ω ∈ 1 2 + Z, ∀ ω = α, β, γ, δ, • θ ω ∈ Z, ∀ ω = α,
β, γ, δ, and ∑ ω θ ω is even.

Following [START_REF] Casale | Une preuve Galoisienne de l'irréductibilité au sens de Nishioka-Umemura de la première équation de Painlevé[END_REF], Malgrange-Casale irreducibility also implies Nishioka--Umemura irreducibility, so that theorem 1.8 indeed provides a galoisian proof of the irreducibility in the spirit of Drach and Painlevé. 1.9. Aknowledgement. This article has been written while the first author was visiting Cornell University: Thanks to Cliff Earle, John Smillie and Karen Vogtmann for nice discussions concerning this paper, and to the DREI for travel expenses between Rennes and Ithaca.

We would like to kindly thank Marta Mazzocco who introduced us to Painlevé VI equation, its geometry and dynamics. The talk she gave in Rennes was the starting point of our work. Many thanks also to Guy Casale who taught us about irreducibility, and to Yair Minsky who kindly explained some aspects of character varieties to the first author.

Part of this paper was the subject of a conference held in Rennes in 2005, which was funded by the ANR project "Systèmes dynamiques polynomiaux", and both authors are now taking part to the ANR project "Symplexe."

THE FAMILY OF SURFACES

As explained in 1.1, we shall consider the family Fam of complex affine surfaces which are defined by the following type of cubic equations

x 2 + y 2 + z 2 + xyz = Ax + By +Cz + D,
in which A, B, C, and D are four complex parameters. Each choice of (A, B,C, D) gives rise to one surface S in our family; if necessary, S will also be denoted S (A,B,C,D) . When the parameters are real numbers, S(R) will denote the real part of S. Figure 1.5 presents a few pictures of S(R) for various choices of the parameters.

This section contains preliminary results on the geometry of the surfaces S (A,B,C,D) , and the automorphisms of these surfaces. Most of these results are well known to algebraic geometers and specialists of Painlevé VI equations.

2.1. The Cayley cubic. In 1869, Cayley proved that, up to projective transformations, there is a unique cubic surface in P 3 (C) with four isolated singularities. One of the nicest models of the Cayley cubic is the surface S (0,0,0,4) , whose equation is

x 2 + y 2 + z 2 + xyz = 4. The four singular points of S C are rational nodes located at (-2, -2, -2), (-2, 2, 2), (2, -2, 2) and (2, 2, -2),
and can be seen on figure 1.5. This specific member of our family of surfaces will be called the Cayley cubic and denoted S C . This is justified by the following theorem (see Appendix A).

Theorem 2.1 (Cayley).

If S is a member of the family Fam with four singular points, then S coincides with the Cayley cubic S C .

The Cayley cubic is isomorphic to the quotient of

C * × C * by the involu- tion η(u, v) = (u -1 , v -1 ). The map π C (x, y) = -u - 1 u , -v - 1 v , -uv - 1 uv
gives an explicit isomorphism between (C * × C * )/η and S C . The four fixed points (1, 1), (1, -1), (-1, 1) and (-1, -1) of η respectively correspond to the singular points of S C above.

The real surface S C (R) contains the four singularities of S C , and the smooth locus S C (R) \ Sing(S C ) is made of five components : A bounded one, the closure of which coincides with the image of T 2 = S 1 × S 1 ⊂ C * × C * by π C , and four unbounded ones, corresponding to images of

R + × R + , R + × R -, R -× R + , and R -× R -(see figure 1.5).
As explained in section 1.5, the group GL (2, Z) acts on C * × C * by monomial transformations, and this action commutes with the involution η, permuting its fixed points. As a consequence, PGL (2, Z) acts on the quotient S C . Precisely, the generators 

1 0 -1 1 , 1 
MCG * (S 2 4 ) → Aut[χ(S 2 4 )] [h] → χ(ρ) → χ(ρ • h -1 )
into the group of polynomial diffeomorphisms of χ(S 2 4 ). (here, we use that ρ 

• (h * ) -1 = ρ • h * = ρ • h -1
π T : T 2 = R 2 /Z 2 → S 2
with Galois involution σ : (x, y) → (-x, -y) sending its ramification points (1/2, 0), (0, 1/2), (1/2, 1/2) and (0, 0) respectively to the four punctures p α , p β , p γ and p δ (see figure 1.1).

ω 2 α α 1 p0 β ω 1 1/2 p′ 0 (0, 0) δ 1/2 γ 1 FIGURE 3.
The torus cover.

The mapping class group of the torus, and also of the once punctured torus T 2 1 = T 2 \ {(0, 0)}, is isomorphic to GL (2, Z). This group acts by linear homeomorphisms on the torus, fixing (0, 0), and permuting the other three ramification points of π T . This action provides a section of the projection Diff (T 2 ) → MCG * (T 2 ). Since this action commutes with the involution σ (which generates the center of GL (2, Z)), we get a morphism from PGL (2, Z) to MCG * (S 2 4 ). This morphism is one to one and its image is contained in the stabilizer of p δ in MCG * (S 2 4 ). The subset H ⊂ T 2 of ramification points of π coincides with the 2-torsion subgroup of (T 2 , +) ; H acts by translation on T 2 and commutes with the involution σ as well. This provides an isomorphism (see section 4.4 in [START_REF] Birman | Braids, links, and mapping class groups[END_REF]) ) is generated by the three polynomial automorphisms B 1 , B 2 and T 3 of equations 2.7, 2.8, and 2.9 below. The 4-order translation group H acts trivially on parameters (A, B,C, D, x, y, z), permuting parameters (a, b, c, d) as follows

(2.4) PGL (2, Z) ⋉ H → MCG * (S 2 
P 1 = (1/2, 0) : (a, b, c, d) → (d, c, b, a) (2.5) P 2 = (0, 1/2) : (a, b, c, d) → (b, a, d, c) (2.6)
Proof. Let p0 and p′ 0 be the lifts of the base point p 0 ∈ S 2 4 . Still denote by α, β, γ and δ the two lifts of those loops, with respective initial points p0 and p′ 0 . The fundamental group of the four punctured torus T 2 4 = T 2 \ H based at p0 may be viewed as the set of even words in α, β, γ and δ, or equivalently of words in ω 1 , ω 2 and δ that are even in δ where

ω 1 = βγ = α -1 δ -1 and ω 2 = γδ = β -1 α -1 .
(see Figure 2.2.1). The action of the linear homeomorphism

B 1 = 1 0 -1 1 : T 2 4 → T 2 4 ,
or we should say, of a convenient isotopic homeomorphism h fixing p0 , on the fundamental groups π 1 (T 2 4 , p0 ) and π 1 (S 2 4 , p 0 ) is given by :

h * :    ω 1 → δ -1 ω -1 1 ω 2 δ -1 ω 2 → ω 2 δ → δ i.e.        α → αβα -1 β → α γ → γ δ → δ
This automorphism of π 1 (S 2 4 , p 0 ), which depends on the choice of h in the isotopy class of B 1 , induces an automorphism

Rep(S 2 4 ) → Rep(S 2 4 ) ; ρ → ρ • (h * ) -1 .
The corresponding action on the character variety, i.e. on the corresponding 7-uples (a, b, c, d, x, y, z) ∈ C 7 , is independant of that choice. In order to compute it, note that

(h * ) -1 = h * :        α → β β → β -1 αβ γ → γ δ → δ
We therefore obtain

(2.7) B 1 = 1 0 -1 1 :        a → b b → a c → c d → d and    x → x y → -z -xy + ac + bd z → y
For instance, the coordinate y ′ of the image is given by y ′ = tr(ρ • h * (βγ)) = tr(ρ(β -1 αβγ)), and its value is easily computed using standard Fricke-Klein formulae, like

tr(M 1 ) = tr(M -1 1 ), tr(M 1 M 2 ) = tr(M 2 M 1 ), tr(M 1 M -1 2 ) + tr(M 1 M 2 ) = tr(M 1 )tr(M 2 ) and tr(M 1 M 2 M 3 ) + tr(M 1 M 3 M 2 ) + tr(M 1 )tr(M 2 )tr(M 3 ) = tr(M 1 )tr(M 2 M 3 ) + tr(M 2 )tr(M 1 M 3 ) + tr(M 3 )tr(M 1 M 2 ) for any M 1 , M 2 , M 3 ∈ SL (2, C).
A similar computation yields

(2.8) B 2 = 1 1 0 1 :        a → a b → c c → b d → d and    x → z y → y z → -x -yz + ab + cd
which, together with B 1 , provide a system of generators for the PSL (2, Z)action. In order to generate PGL (2, Z), we have to add the involution (2.9)

T 3 = 0 1 1 0 :        a → c b → b c → a d → d and    x → y y → x z → z
The formulae for the action of H are obtained in the same way.

Remark 2.3. The formulae 2.7, 2.8, and 2.9 for B 1 , B 2 and T 3 specialize to the formulae of section 2.1 when (A, B,C, D) = (0, 0, 0, 4).

Remark 2.4. The Artin Braid Group

B 3 = β 1 , β 2 | β 1 β 2 β 1 = β 2 β 1 β 2 is
isomorphic to the group of isotopy classes of the thrice punctured disk fixing its boundary. There is therefore a morphism from B into the subgroup of MCG(S 2 4 ) that stabilizes p δ . This morphism gives rise to the following well known exact sequence

I → (β 1 β 2 ) 3 → B 3 → PSL (2, Z) → 1,
where generators β 1 and β 2 are respectively sent to B 1 and B 2 , and the group (β 1 β 2 ) 3 coincides with the center of B 3 . In particular, the action of B 3 on χ(S 2 4 ) coincides with the action of PSL (2, Z). We note that PSL (2, Z)

is the free product of the trivolution B 1 B 2 and the involution B 1 B 2 B 1 . In PGL (2, Z), we also have relations

T 2 3 = I, T 3 B 1 T 3 = B -1 2 and T 3 B 2 T 3 = B -1 1 . 2.2.2.
The modular groups Γ * 2 and Γ 2 . Since the action of M ∈ GL (2, Z) on the set H of points of order 2 depends only on the equivalence class of M modulo 2, we get an exact sequence

I → Γ * 2 → PGL (2, Z) ⋉ H → Sym 4 → 1 where Γ * 2 ⊂ PGL (2, Z)
is the subgroup defined by those matrices M ≡ I modulo 2. This group acts on the character variety, and since it preserves the punctures, it fixes a, b, c, and d. The group Γ * 2 is the free product of 3 involutions, s x , s y , and s z , acting on the character variety as follows.

(2.10)

s x = -1 2 0 1 :    x → -x -yz + ab + cd y → y z → z (2.11) s y = 1 0 2 -1 :    x → x y → -y -xz + bc + ad z → z (2.12) s z = 1 0 0 -1 :    x → x y → y z → -z -xy + ac + bd We note that s x = B 2 B -1 1 B -1 2 T 3 , s y = B 2 B 1 B -1 2 T 3 and s z = B 2 B 1 B 2 T 3 . The standard modular group Γ 2 ⊂ PSL (2, Z) is generated by                g x = s z s y = B 2 1 = 1 0 -2 1 g y = s x s z = B 2 2 = 1 2 0 1 g z = s y s x = B -2 1 B -2 2 = 1 -2 2 -3
(we have g z g y g x = I); as we shall see, this corresponds to Painlevé VI monodromy (see [START_REF] Inaba | Dynamics of the sixth Painlevé equation, in théories asymptotiques et équations de Painlevé[END_REF] and section 7 )) coincides with the image of Γ * 2 (resp. Γ 2 ) and is therefore generated by the three involutions s x , s y and s z (resp. the three automorphisms g x , g y , g z ).

As we shall see in sections 3.1 and 3.2, this group is of finite index in Aut(χ(S 2 4 ). Remark 2.6. Let us consider the exact sequence

I → Γ * 2 → PGL (2, Z) → Sym 3 → 1, where Sym 3 ⊂ Sym 4 is the stabilizer of p δ , or equivalently of d, or D. A splitting Sym 3 ֒→ PGL (2, Z) is generated by the transpositions T 1 = T 3 B 1 B 2 and T 2 = B 1 B 2 T 3 .
They act as follows on the character variety.

T 1 = -1 0 1 1 :        a → b b → a c → c d → d and    x → x y → z z → y and T 2 = 1 1 0 -1 :        a → a b → c c → b d → d and    x → z y → y z → x 2.3.
Twists. There are other symmetries between surfaces S (A,B,C,D) that do not arise from the action of the mapping class group. Indeed, given any

4-uple ε = (ε 1 , ε 2 , ε 3 , ε 4 ) ∈ {±1} 4 with ∏ 4 i=1 ε i = 1, the ε-twist of a repre- sentation ρ ∈ Rep(S 2 4 ) is the new representation ⊗ ε ρ generated by        ρ(α) = ε 1 ρ(α) ρ(β) = ε 2 ρ(β) ρ(γ) = ε 3 ρ(γ) ρ(δ) = ε 4 ρ(δ)
This provides an action of Z/2Z × Z/2Z × Z/2Z on the character variety given by 

⊗ ε :        a → ε 1 a b → ε 2 c c → ε 3 b d → ε 4 d        A → ε 1 ε 2 A B → ε 2 ε 3 B C → ε 1 ε 3 C D → D and    x → ε 1 ε 2 x y → ε 2 ε 3 y z → ε 1 ε 3 z The action on (A, B,C, D, x, y, z) is trivial iff ε = ±(1, 1, 1, 1
Rep(T 2 1 ) → χ(T 2 1 ) ≃ C 3 ρ → (X ,Y, Z) = (tr(ρ(ω 1 )), tr(ρ(ω 2 )), -tr(ρ(ω 1 ω 2 )))
(see [START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF]). Using that

tr([M 1 , M 2 ]) = tr(M 1 ) 2 +tr(M 2 ) 2 +tr(M 1 M 2 ) 2 -tr(M 1 )tr(M 2 )tr(M 1 M 2 )-2,
for all M 1 , M 2 ∈ SL (2, C), we note that those representations with given trace d = tr(ρ([ω 1 , ω 2 ])) are parametrized by the affine cubic

X 2 +Y 2 + Z 2 + XY Z = d + 2 which is precisely S (0,0,0,D) with D = d + 2.
The reason is given by the twofold ramified cover π : ).

T 2 → S 2 used in §2.2. Consider a representation ρ ∈ Rep(S 2 
Since π * ω 1 = βγ and π * ω 2 = β -1 α -1 (see §2.2), the character associated to the lifted representation ρ is given by    X = tr( ρ(ω 1 )) = y Y = tr( ρ(ω 2 )) = x Z = -tr( ρ(ω 1 ω 2 ) = -z -xy which satisfies X 2 +Y 2 +Z 2 +XY Z = 4-d 2 .
Note that the local monodromy of ρ at (0, 0) is -ρ(δ 2 ) and we indeed find d = 2d 2 . We can now reverse the formulae and deduce that any representation (X ,Y, Z) ∈ χ(T 2 1 ) is the lifting of a representation (x, y, z) ∈ χ(S 2 4 ). This is due to the hyperelliptic nature of the once punctured torus.

GEOMETRY AND AUTOMORPHISMS

This section is devoted to a geometric study of the family of surfaces S (A,B,C,D) , and to the description of the groups of polynomial automorphisms Aut[S (A,B,C,D) ].

In section 3.4, we describe a special case that is famous in Teichmüller theory. Section 3.3 introduces the concept of elliptic, parabolic, and hyperbolic automorphisms of S (A,B,C,D) .

3.1. The triangle at infinity and automorphisms. Let S be any member of the family Fam. The closure S of S in P 3 (C) is given by a cubic homogeneous equation

w(x 2 + y 2 + z 2 ) + xyz = w 2 (Ax + By +Cz) + Dw 3 .
The intersection of S with the plane at infinity does not depend on the parameters and coincides with the triangle ∆ given by the equation

∆ : xyz = 0;
moreover, one easily checks that the surface S is smooth in a neighborhood of ∆ (all the singularities of S are contained in S).

Since the equation defining S is of degree 2 with respect to the x variable, each point (x, y, z) of S gives rise to a unique second point (x ′ , y, z). This procedure determines a holomorphic involution of S, namely

s x (x, y, z) = (A -x -yz, y, z).
This automorphism coincides with the automorphism of S determined by the involution s x of Γ * 2 (see equation 2.10, §2.2.2). Geometrically, the involution s x corresponds to the following: If m is a point of S, the projective line which joins m and the vertex v x = [1; 0; 0; 0] of the triangle ∆ intersects S on a third point; this point is s x (m). The same construction provides two more involutions

s y (x, y, z) = (x, B -y -xz, z) and s z (x, y, z) = (x, y,C -z -xy),
and therefore a subgroup

A = s x , s y , s z of the group Aut[S] of polynomial automorphisms of the surface S.
From section 2.2.2, we deduce that for any member S of the family Fam, the group A coincides with the image of Γ *

2 into Aut[S], which is obtained by the action of Γ * 2 ⊂ MCG * (S 2 4 ) on χ(S 2 4 ) (see §1.2).
Theorem 3.1. Let S = S (A,B,C,D) be any member of the family of surfaces Fam. Then • there is no non-trivial relation between the three involutions s x , s y and s z , and A is therefore isomorphic to the free product (Z/2Z) ⋆

(Z/2Z) ⋆ (Z/2Z) ; • the index of A in Aut[S] is bounded by 24 ; • A coincides with the image of Γ * 2 in Aut[S].

Moreover, for a generic choice of the parameters (A, B,C, D), A coincides with Aut[S].

This result is almost contained in Èl'-Huti's article [START_REF] Marat | Èl ′ -Huti. Cubic surfaces of Markov type[END_REF] and is more precise than Horowitz's main theorem (see [START_REF] Horowitz | Characters of free groups represented in the two-dimensional special linear group[END_REF], [START_REF] Horowitz | Induced automorphisms on Fricke characters of free groups[END_REF]).

Proof. Since S is smooth in a neighborhood of the triangle at infinity and the three involutions are the reflexions with respect to the vertices of that triangle, we can apply the main theorems of Èl'-Huti's article:

• A is isomorphic to the free product

(Z/2Z) ⋆ (Z/2Z) ⋆ (Z/2Z) = s x ⋆ s y ⋆ s z ; • A is of finite index in Aut[S] ; • Aut[S]
is generated by A and the group of projective transformations of P 3 (C) which preserve S and ∆ (i.e., by affine transformations of C 3 that preserve S).

We already know that A and the image of Γ * 2 in Aut[S] coincide. We now need to study the index of A in Aut[S]. Let f be an affine invertible transformation of C 3 , that we decompose as the composition of a linear part M and a translation of vector T. Let S be any member of Fam. If f preserves S, then the equation of S is multiplied by a non zero complex number when we apply f . Looking at the cubic terms, this means that M is a diagonal matrix composed with a permutation of the coordinates. Looking at the quadratic terms, this implies that T is the nul vector, so that f = M is linear. Coming back to the equation of S, we now see that M is one of the 24 linear transformations of the type σ • ε where ε either is the identity or changes the sign of two coordinates, and σ permutes the coordinates. If (A,B,C,D) are generic,S (A,B,C,D) is not invariant by any of these linear maps. Moreover, one easily verifies that the subgroup A is a normal subgroup of Aut[S]: If such a linear transformation M = σ • ε preserves S, then it normalizes A . This shows that A is a normal subgroup of Aut[S], the index of which is bounded by 24. Let H be the Poincaré half plane. The group of isometries of H is isomorphic to PGL (2, R): If M is an element of GL (2, R), its action on H is defined by

M(z) = m 11 z + m 12 m 21 z + m 22
if the determinant of M is positive, and by the same formula but with z replaced by z if the determinant is negative. In particular, Γ * 2 acts isometrically on H. Let j x , j y and j z be the three points on the boundary of H with coordinates -1, 0, and ∞ respectively. Let r x (resp. r y and r z ) be the reflection of H around the geodesic between j y and j z (resp. j z and j x , resp. j x , and j y ). These isometries are respectively induced by the three matrices s x , s y , and s z given in section 2.2.2. As a consequence, Γ * 2 coincides with the group of symmetries of the tesselation of H by ideal triangles, one of which has vertices j x , j y and j z (see the left part of figure 3.3).

In the following, we shall identify the subgroup Γ * 2 of PGL (2, Z) and the subgroup A of Aut[S (A,B,C,D) ] : If f is an element of A , M f will denote the associated element of Γ * 2 (either viewed as a matrix or an isometry of H), and if M is an element of Γ * 2 , f M will denote the automorphism associated to M (for any surface S of the family Fam). If f is one of the three involutions s x , s y , or s z (resp. the three elements g x , g y , or g z ), we shall use exactly the same letters to denote the element f of Γ * 2 or the corresponding automorphism f ∈ A . The only place where this rule is not followed is when we study the action of Γ * 2 on the Poincar disk: We then use the notation r x , r y , and r z to denote the involutive isometrys induced by s x , s y , and s z . An element f of A \ {Id} will be termed elliptic, parabolic, or hyperbolic, according to the type of M f . Examples of elliptic elements are given by the three involutions s x , s y and s z . Examples of parabolic elements are given by the three automorphisms g x , g y and g z (see section 2.2.2). The dynamics of these automorphisms will be described in details in §5.1. Let us just mention the fact that g x (resp. g y , g z ) preserves the conic fibration {x = c ste } (resp. {y = c ste }, {z = c ste }) of any member S of Fam. 

Γ * 2 is a subgroup of PGL (2, Z). As a consequence, any elliptic element of Γ * 2 is periodic. Since Γ * 2 = (Z/2Z) ⋆ (Z/2Z) ⋆ (Z/2Z), any periodic element of Γ *
2 is conjugate to one of the involutions r x , r y , r z (see for example [START_REF] Serre | Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass[END_REF]), and the first property is proved.

If M is a parabolic element of Γ * 2 , its unique fixed point on the boundary R ∪ {∞} of H is a rational number. The action of Γ * 2 on the set Q ∪ {∞} of rational numbers has three distinct orbits: The orbits of j x = -1, j y = 0 and j z = ∞. This implies that there exists an element F of Γ * 2 such the FMF -1 is parabolic and fixes one of these three points, say j z . Any parabolic element

G of Γ * 2 that fixes ∞ is of the type ± 1 2k 0 1
where k is an integer. This fact shows that M is conjugate to a power of g z (see section 2.2.2) and concludes the proof of the second point.

Let M be a hyperbolic element of Γ * 2 . After conjugation, we can write M as a cyclically reduced word in the involutive generators r x , r y and r z . If the number of involutions that appear in this composition is equal to 1 or 2, then 

j x j y j z = ∞ v x v z v y c c( j z ) c( j y ) c( j x )
: w] = [X Q : Y Q : ZQ : XY Z], with Q = X 2 +Y 2 + Z 2 . This change of variables sends the interior of the triangle {X ≥ 0,Y ≥ 0, Z ≥ 0} onto S M + (R).
M is an involution or a power of g x , g y or g z . The third property follows from this remark.

Remark 3.3. The three vertices j x , j y and j z disconnect ∂H in three segments [ j y , j z ], [ j z , j x ] and [ j x , j y ]. Let M be a hyperbolic element of Γ * 2 . Let α M be the repulsive and attrating fixed points of M on the boundary of H. The Fricke-Klein ping-pong lemma, as described in [START_REF] De | Topics in geometric group theory[END_REF], page 25, shows that M is a cyclically reduced composition of r x , r y , and r z if and only if the fixed points of M are contained in two distinct connected components of ∂H \ { j x , j y , j z }.

3.4. The Markov surface. Let S M be the element of Fam corresponding to the parameter (A, B,C, D) = (0, 0, 0, 0). After a simultaneous multiplication of each coordinate by -3, the equation of S M is

x 2 + y 2 + z 2 = 3xyz.
This surface has been studied by Markov in 1880 in his papers concerning diophantine approximation. The real part S M (R) of the Markov surface has an isolated singular point at the origin and four other connected components, each of which is homeomorphic to a disk. One of these components is

S M+ (R) = S M (R) ∩ (R + ) 3 .
Proposition 3.4 (Markov, [START_REF] Cassels | An introduction to Diophantine approximation[END_REF]). The action of A = Γ *

on the Markov surface S M preserves each connected component of S M (R).

There exists a diffeomorphism c : H → S M+ (R) such that (i) the image of the (closed) ideal triangle with vertices j x , j y and j z is the subset of S M+ (R) defined by the three inequalities xy ≤ 2z, yz ≤ 2x, and zx ≤ 2y, and (ii) c conjugates the action of Γ * 2 on H with the action of Γ * 2 on S M+ (R) in such a way that andc • r z = s z • c. Remark 3.5. We refer the reader to [START_REF] Cassels | An introduction to Diophantine approximation[END_REF] or [START_REF] William | The modular group action on real SL(2)-characters of a oneholed torus[END_REF] for a proof (see figure 3.3 for a visual argument). This result is not surprising if one notices that S M+ (R) is a model of the Teichmüller space of the once punctured torus with a cusp at the puncture, and finite area 2π. 3.6. Singularities, fixed points, and an orbifold structure. The singularities of the elements of Fam will play an important role in this article. In this section, we collect a few results regarding these singularities.

c • r x = s x • c, c • r y = s y • c,

Lemma 3.7. Let S be a member of Fam. A point m of S is singular if and only if m is a fixed point of the group A .

Proof. This is a direct consequence of the fact that m is a fixed point of s x if and only if 2x + yz = Ax, if and only if the partial derivative of the equation of S with respect to the x-variable vanishes. Proof. Any singularity of a cubic surface is a quotient singularity, except when the singularity is isomorphic to x 3 + y 3 + z 3 + λxyz = 0, for at least one parameter λ (see [START_REF] Bruce | On the classification of cubic surfaces[END_REF]). Since the second jet of the equation of S never vanishes when S is a member of Fam, the singularities of S are quotient singularities. Since S admits a global volume form Ω, the finite group is conjugate to a subgroup of SU (2, C).

As a consequence, any member S of Fam is endowed with a well defined orbifold structure. If S is singular, the group A fixes each of the singular points and preserves the orbifold structure. We shall consider this action in the orbifold category, but we could as well extend the action of A to a smooth desingularization of S. Lemma 3.10. The complex affine surface S is simply connected. When S is singular, the fundamental group of the complex surface S \ Sing(S) is normally generated by the local finite fundamental groups around the singular points.

Proof. First of all, recall that a smooth cubic surface in P 3 (C) may be viewed as the blowing-up of P 2 (C) at 6-points in general position. Let us be concrete. After a projective change of coordinates, one can assume that those 6 points lie on the triangle XY Z = 0 and are labelled as follows

p i = [0 : 1 : u i ], q i = [v i : 0 : 1] et r i = [1 : w i : 0], i = 1, 2
where [X : Y : Z] are projective coordinates of P 2 . One can moreover assume that the three following products take the same value λ:

u 1 u 2 = v 1 v 2 = w 1 w 2 =: λ.

Now, consider the map

Φ : P 2 C 3 ; (X : Y : Z) → P Y Z , Q X Z , R XY where P, Q and R are degree 2 homogeneous polynomials given by      P = -X 2 -1 λ Y 2 -λZ 2 + ( 1 w 1 + 1 w 2 )XY + (v 1 + v 2 )X Z Q = -λX 2 -Y 2 -1 λ Z 2 + (w 1 + w 2 )XY + ( 1 u 1 + 1 u 2 )Y Z R = -1 λ X 2 -λY 2 -Z 2 + ( 1 v 1 + 1 v 2 )X Z + (u 1 + u 2 )Y Z
For u i , v i and w i generic, the map Φ sends the triangle XY Z = 0 to the triangle at infinity xyz = 0 of P 3 ⊃ C 3 and has simple indeterminacy points exactly at p i , q i , and r i , i = 1, 2. Let S be the surface obtained by blowing-up the 6 indeterminacy points of Φ. One can check that the image of Φ : S → P 3 (C) is exactly the cubic surface S = S (A,B,C,D) , with parameters

                     A = v 1 w 1 + v 2 w 2 + v 1 w 2 + v 2 w 1 -u 1 λ + 1 u 1 λ + u 2 λ + 1 u 2 λ B = u 1 w 1 + u 2 w 2 + u 1 w 2 + u 2 w 1 -v 1 λ + 1 v 1 λ + v 2 λ + 1 v 2 λ C = u 1 v 1 + u 2 v 2 + u 1 v 2 + u 2 v 1 -w 1 λ + 1 w 1 λ + w 2 λ + 1 w 2 λ D = ∑ i, j,k∈{1,2} u i v j w k + 1 u i v j w k -u 1 u 2 + u 2 u 1 + v 1 v 2 + v 2 v 1 + w 1 w 2 + w 2 w 1 + λ 3 + 1 λ 3 + 4
Singular cubics arise when 3 of the 6 points lie on a line, or all of them lie on a conic. In this case, the corresponding line(s) and/or conic have negative self-intersection in S, and are blown-down by Φ to singular point(s) of S. A smooth resolution of S is therefore given by S.

Our claim is that the quasi-projective surface S′ obtained by deleting the strict transform of the triangle XY Z = 0 from S is simply connected. Indeed, the fundamental group of P 2 -{XY Z = 0} is isomorphic to Z 2 , generated by two loops, say one turning around X = 0, and the other one around Y = 0. After blowing-up one point lying on X = 0, and adding the exceptional divisor (minus X = 0), the first loop becomes homotopic to 0; after blowing-up the 6 points and adding all exceptional divisors, the two generators become trivial and the resulting surface S′ is simply connected. The affine surface S is obtained after blowing-down some rational curves in S and is therefore simply connected as well.

The second assertion of the lemma directly follows from Van Kampen Theorem.

BIRATIONAL EXTENSION AND DYNAMICS

4.1. Birational transformations of surfaces. Let f be a birational transformation of a complex projective surface X and Ind( f ) be its indeterminacy set. The critical set of f is the union of all the curves C in S such that f (C \ Ind( f )) is a point (in fact a point of Ind( f -1 )). One says that f is not algebraically stable if there is a curve C in the critical set and a positive integer k such that f k (C \ Ind( f )) is contained in Ind( f ). Otherwise, f is said to be algebraically stable (see [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF]). Let H 2 (X , Z) be the second cohomology group of X and f * : H 2 (X , Z) → H 2 (X , Z) be the linear transformation induced by f . It turns out that f is algebraically stable if and only if ( f k ) * = ( f * ) k for any positive integer k (see [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF]). More generally, ( f • g) * = g * • f * if and only if g does not blow down any curve onto an element of Ind( f ).

The (first) dynamical degree λ( f ) of f is the spectral radius of the sequence of linear operators

( f k ) * . If f is algebraically stable, λ( f ) is therefore the largest eigenvalue of f * . It follows from Hodge theory that lim sup 1 k log ( f k ) * [v] = log λ( f ).
for any class [v] that is obtained through a hyperplane section of X . The dynamical degree of f is invariant under birational conjugation (see [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF][START_REF] Guedj | Théorie ergodique des transformations rationnelles[END_REF]), and provides an upper bound for the topological entropy of f (see [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF][START_REF] Guedj | Théorie ergodique des transformations rationnelles[END_REF]). ). The dynamical degree of this monomial transformation is equal to the spectral radius ρ(M) of M. If f M is the automorphism of the Cayley cubic S C which is induced by M, the dynamical degree of f M coincides also with ρ(M) (see [START_REF] Favre | Les applications monomiales en deux dimensions[END_REF], or the survey article [START_REF] Guedj | Théorie ergodique des transformations rationnelles[END_REF]). ). Let V be the subspace of H 2 (S, Z) defined by

V = Z[D x ] + Z[D y ] + Z[D z ],
where [D x ] denotes either the homology class of D x in H 2 (S, Z) or its dual in H 2 (S, Z). Since ∆ is A -invariant, the action of any element f in A on H 2 (S, Z) preserves the subspace V.

Lemma 4.2 (see [START_REF] Marat | Èl ′ -Huti. Cubic surfaces of Markov type[END_REF] or [START_REF] Iwasaki | An ergodic study of Painlevé VI[END_REF]). The involution s x acts on the triangle ∆ in the following way.

• The image of the side D x is the vertex v x and the vertex v x is blown up onto the side D x . • the sides D y and D z are invariant and s x permutes the vertices and fixes the middle point of each of these sides.

Of course, we have the same result for s y and s z , with the obvious required modifications. In the following, we shall denote by s *

x (resp. s * y or s * z ) the restriction of (s x ) * (resp. (s y ) * or (s z ) * ) on the subspace V of H 2 (S, Z). Remark 4.3. The "action" of A on the triangle ∆ does not depend on the choice of the parameters (A, B,C, D). Let f = w(s x , s y , s z ) be an element of A , given by a reduced word in the letters s x , s y and s z . Since s x (resp. s y , s z ) does not blow down any curve on indeterminacy points of the other two involutions, the linear transformation

f * : V → V is the composition f * = w t (s * x , s * y , s * z )
, where w t is the transpose of w (see section 4.1). If w ends with s x (resp. s y or s z ), then f contracts the side D x (resp. D y or D z ). If w starts with s x (resp. s y or s z ), the image of the critical set of f is the vertex v x (resp. v y or v z ). In particular, Ind( f ) and Ind( f -1 ) are not empty if f is different from the identity.

Example 4.4. The element g x = s z • s y preserves the coordinate variable x. Its action on ∆ is the following: g x contracts both D y and D z \ {v y } on v z , and preserves D x ; its inverse contracts D y and D z \ {v z } on v y . In particular Ind(g x ) = v y and Ind(g -1

x ) = v z . The elements g y and g z act in a similar way. In particular, g x , g y and g z are algebraically stable.

Let us now present a nice way of describing the "action" of A , i.e. of Γ * between the Poincaré half plane and S M+ (R) described in §3.4 does not extend up to the boundary of this compactification. Nevertheless, one can "extend" the map in the following way (see figure 3.3):

• the three segments ( j y , j z ), ( j z , j x ) and ( j x , j y ) of ∂H are sent to the three vertices v x , v y and v z of ∆; • the three points j x , j y , and j z are "sent" to the three sides D x , D y and D z of ∆ + (R) by c (or equivalently to the middle points m x , m y and m z ); Then, if M is a hyperbolic element of Γ * 2 , the two fixed points of M on the boundary of H are sent to the indeterminacy points of f M and f -1

M : If M is hyperbolic, with one attractive fixed point ω M and one repulsive fixed point α M , then

Ind( f M ) = c(α M ), Ind( f -1 M ) = c(ω M ).
Remark 4.5. Let us consider the surface obtained by blowing up the vertices of the triangle ∆. This is a new compactification of the affine cubic S M by a cycle of six rational curves. Then we blow up the six vertices of this hexagon, and so on : This defines a sequence of rational surfaces S i . Let S ∞ be the projective limit of these surfaces. The group Γ * 2 acts continously on this space, and we can extend c -1 so as to obtain a semi-conjugation between the action on S ∞ M \ S M and the action of Γ * 2 on the circle. Such a construction is presented in details in a similar context in [START_REF] Hubbard | Newton's method applied to two quadratic equations in C 2 viewed as a global dynamical system[END_REF], chapter 4 (see also [START_REF] Cantat | Sur les groupes de transformations birationnelles des surfaces[END_REF] for a related approach).

The following proposition reformulates and makes more precise, section 7 of [START_REF] Iwasaki | An ergodic study of Painlevé VI[END_REF]. Proposition 4.6. Let S be any member of the family Fam and f an element of A .

• The birational transformation f : S → S is algebraically stable if, and only if f is a cyclically reduced composition of the three involutions s x , s y and s z of length at least 2.

• Every hyperbolic element f of A is conjugate to an algebraically stable element of A .

• If f is algebraically stable and hyperbolic, Ind( f ) and Ind( f -1 ) are two distinct vertices of ∆, and f n contracts the whole triangle ∆ \ Ind( f ) onto Ind( f -1 ) as soon as n is a positive integer.

Proof. If Ind( f ) = Ind( f -1 ) = / 0, f is not algebraically stable. This shows, for example, that an involution with a non empty indeterminacy set is not algebraically stable.

Let M be an element of Γ * 2 \ {Id} and f M the corresponding element of A , viewed as a birational transformation of S. From remark 4.3, we know that Ind( f M ) is non empty, and from proposition 3.2 that any elliptic element of Γ * 2 is an involution. This shows that f M is not algebraically stable if M is elliptic.

Let us now fix a non elliptic element M of Γ * 2 , which we write as a reduced word w(r x , r y , r z ) in the generators r x , r y and r z of Γ * 2 (see §3.3). Let us first assume that M is parabolic. If f M is a non trivial iterate of g x (resp. g y or g z ), we know from example 4.4 that M is algebraically stable. If not, the unique fixed point of M on ∂H is different from j x , j y and j z and its image by c is a vertex of ∆. This vertex v coincides with Ind( f M ) and Ind( f -1 M ), and f M is not algebraically stable. Since M is cyclically reduced if, and only if M is an iterate of g x , g y , or g z , the result is proved in the parabolic case.

Let us now suppose that M is hyperbolic : The fixed points α M and ω M define two distinct elements of ∂H \ { j x , j y , j z } and the indeterminacy sets of f M and f -1 M are the vertices Ind( f M ) = c(α M ) and Ind( f -1 M ) = c(ω M ) of ∆. These vertices are distinct if, and only if α M and ω M are contained in two distinct components of ∂H \ { j x , j y , j z }, if, and only if f M is a cyclically reduced composition of the three involutions s x , s y , s z (see remark 3.3). This shows that f M is not algebraically stable if w is not cyclically reduced. In the other direction, if w is cyclically reduced, then c(ω M ) is not an indeterminacy point of f M , f M fixes this point, and contracts the three sides of ∆ on this vertex. As a consequence, the positive orbit of Ind( f -1 M ) does not intersect Ind( f M ), and f M is algebraically stable. which is associated to f . The dynamical degree λ( f ) is equal to the spectral radius of M f . This result is different from, but similar to, the main theorem of [START_REF] Iwasaki | An ergodic study of Painlevé VI[END_REF], which provides another algorithm to compute λ( f ).

Proof. Let f be an element of A . After conjugation inside A (this does not change the dynamical degree and the spectral radius of M f ), we can assume that f = w(s x , s y , s z ) is a cyclically reduced word. If f is periodic, then f is one of the involutive generators and the theorem is proved. If f is parabolic, then f is conjugate to an iterate of g x , g y or g z , f preserves a fibration of S into rational curves, and λ( f

) = 1. If f is hyperbolic, proposition 4.6 shows that f is algebraically stable. Let [v] = [D x ] + [D y ] + [D z ]
be the class of the hyperplane section of S which is obtained by cutting S with the plane at infinity. We know that lim sup

k→∞ 1 k log ( f k ) * [v] = log(λ( f )).
Since the action of f * on the subspace V of H 2 (X , Z) does not depend on the parameters (A, B,C, D), and since [v] is contained in V, λ( f ) does not depend on (A, B,C, D). Consequently, to calculate λ( f ), we can choose the parameters (0, 0, 0, 4) and work on the Cayley cubic. The conclusion now follows from example 4.1.

Entropy of birational transformations.

Let f be a hyperbolic element of A (see section 3.3). Up to conjugation, the birational transformation

f : S → S is algebraically stable, Ind( f ) is a fixed point of f -1 and Ind( f -1 )
is a fixed point of f . As remarked in [START_REF] Iwasaki | An ergodic study of Painlevé VI[END_REF], this enables us to apply the main results from [START_REF] Bedford | Energy and invariant measures for birational surface maps[END_REF] and [START_REF] Dujardin | Laminar currents and birational dynamics[END_REF]. In [START_REF] Cantat | Painlevé and Schrödinger[END_REF], we shall explain how the dynamics of f is related to the dynamics of Hénon mappings, and deduce a much more precise description of the dynamics.

Example 4.9. Let M be an element of GL (2, Z). Let U be the unit circle in C * and T 2 be the subgroup U ×U of C * × C * . The monomial automorphism M of C * × C * preserves T and induces a "linear" automorphism on this real torus. The entropy of M : T 2 → T 2 is equal to the logarithm of the spectral radius of M. If (x, y) is a point of C * × C * , the orbit M n (x, y), n ≥ 0, converges toward T 2 or goes to infinity. The same property remains true for the dynamics of f M on the Cayley cubic S C ; the role played by T 2 is now played by

T 2 /η = S C (R) ∩ [-2, 2] 3 .

BOUNDED ORBITS

5.1. Dynamics of parabolic elements. Parabolic elements will play an important role in the proof of theorem 1.8. In this section, we describe the dynamics of these automorphisms, on any member S of our family of cubic surfaces. Since any parabolic element is conjugate to a power of g x , g y or g z , we just need to study one of these examples.

Once the parameters A, B, C, and D have been fixed, the automorphism g z is given by

g z   x y z   =   A -x -zy B -Az + zx + (z 2 -1)y z   .
This defines a global polynomial diffeomorphism of C 3 , that preserves each horizontal plane Π z 0 = {(x, y, z 0 ), x ∈ C, y ∈ C}. On each of these planes, g z induces an affine transformation

x y → -1 -z 0 z 0 z 2 0 -1 x y + A B -Az 0 ,
which preserves the conic S z 0 = S ∩ Π z 0 . The trace of the linear part of this affine transformation is z 2 0 -2 while the determinant is 1. Proposition 5.1. Let S be any member of the family of cubic surfaces Fam. Let g z be the automorphism of S defined by the composition s y • s x . On each fiber S z 0 of the fibration π z : S → C, π z (x, y, z) = z, g z induces a homographic transformation g z 0 , and 

= ±2; • g z 0 is loxodromic if and only if z 0 is not in the interval [-2, 2].
If z 0 is different from 2 and -2, g z has a unique fixed point inside Π z 0 , the coordinate of which are (x 0 , y 0 , z 0 ) where

x 0 = Bz 0 -2A z 0 2 -4 , y 0 = Az 0 -2B z 0 2 -4 .
This fixed point is contained in the surface S if and only if z 0 satisfies the quartic equation P z (z 0 ) = 0 where (5.1)

P z = z 4 -Cz 3 -(D + 4)z 2 + (4C -AB)z + 4D + A 2 + B 2 .
In that case, the union of the two g z -invariant lines of Π z 0 which go through the fixed point coincides with S z 0 ; moreover, the involutions s x and s y permute those two lines. If the fixed point is not contained in S, the conic S z 0 is smooth, and the two fixed points of the (elliptic or loxodromic) homography g z 0 are at infinity.

If z 0 = 2, the affine transformation induced by g z on Π z 0 is

g z 0 x y = -1 -2 2 3 x y + A B -2A
.

Either g z 0 has no fixed point, or A = B and there is a line of fixed points, given by x + y = A/2. This line of fixed points intersects the surface S if and only if S z 0 coincides with this (double) line. In that case the involutions s x and s y also fix the line pointwise. When the line does not intersect S, the conic S z 0 is smooth, with a unique point at infinity; this point is the unique fixed point of the parabolic transformation g z 0 . In particular, any point of S z 0 goes to infinity under the action of g z .

If z 0 = -2, then

g z 0 x y = -1 2 -2 3 x y + A B + 2A .
Either g z does not have any fixed point in Π z 0 , or A = -B and g z 0 has a line of fixed points given by xy = A/2. This line intersects S if and only if S z 0 coincides with this (double) line. In that case the involutions s x and s y fixe the line pointwise.

Lemma 5.2. With the notation that have just been introduced, the homographic transformation g z 0 induced by g z on S z 0 has a fixed point in S z 0 if and only if z 0 satisfies equation (5.1). Moreover

• when z 0 = 2, -2, S z 0 is a singular conic, namely a union of two lines that are permuted by s x and s y , and the unique fixed point of g z 0 is the point of intersection of these two lines, with coordinates

x 0 = Bz 0 -2A z 0 2 -4 , y 0 = Az 0 -2B z 0 2 -4 ;
• when z 0 = 2, then A = B, S z 0 is the double line x + y = A/2, and this line is pointwise fixed by g z 0 , s x and s y ; • when z 0 = -2, then A = -B, S z 0 is the double line xy = A/2, and this line is pointwise fixed by g z 0 , s x and s y ;

The dynamics of g z on S is now easily described. Let p 0 = (x 0 , y 0 , z 0 ) be a point of S. If z 0 is in the interval (-2, 2), the orbit of p 0 under g z is bounded, and it is periodic if, and only if, either p 0 is a fixed point, or z 0 is of type ±2 cos(πθ), where θ is a rational number. If z 0 = ±2, and if p 0 is not a fixed point, g n (p 0 ) goes to infinity when n goes to +∞ and -∞. If z 0 is not contained in the interval [-2, 2], for instance if the imaginary part of z 0 is not 0, either p 0 is fixed or g n (p 0 ) goes to infinity when n goes to -∞ or +∞. Of course, the same kind of results are valid for g x and g y , with the appropriate permutation of variables and parameters.

Bounded Orbits.

There is a huge literature on the classification of algebraic solutions of Painlevé VI equation (see [START_REF] Boalch | Towards a nonlinear schwarz's list[END_REF] and references therein).

Such solutions give rise to periodic orbits for the action of A on the cubic surface S (A,B,C,D) , where the parameters are defined in terms of the coefficients of the Painlevé equation (see §9). Of course, periodic orbits are bounded. Here, we study infinite bounded orbits. We fix a point p in one of the surfaces S and denote its Γ * (2)-orbit by Orb(p). Let us first study orbits of small finite length. Recall that orbits of length 1 are singular points of the cubic S. 

′ : (α, β, γ, δ) → (M, M -1 NM, NMN -1 , -N).
To this length 2 orbit corresponds a two-sheeted algebraic solution of P V Iequation, namely

q(t) = 1 + √ 1 -t, for parameters θ = (θ 0 , θ 1 , θ 0 , -θ 1 ),
with a = 2 cos(πθ 0 ) and b = 2 cos(πθ 1 ). This representation was already considered in [START_REF] Previte | Exceptional discrete mapping class group orbits in moduli spaces[END_REF] : for convenient choice of parameters a and b, the image of the representation is a dense subgroup of SU (2).

Other choice of the trace parameters are provided by

(a ′ , b ′ , a ′ , -b ′ ) with a ′ = 4 -b 2 and b ′ = 4 -a 2 ,
giving rise to a representation of the same kind, and

(a ′′ , 0, c ′′ , 0) with a ′′ , c ′′ = a 2 4 -b 2 ± b 2 4 -a 2 .
The later one corresponds to a dihedral representation of the form

(α, β, γ, δ) → λ 0 0 λ -1 , 0 µ -µ -1 0 , τ -1 0 0 τ , 0 -ν -1 ν 0 ) with λµντ = 1.
Proof. Let p = (x 0 , y 0 , z 0 ) be a point of S (A,B,C,D) . Recall that p is fixed if, and only if, p is a singular point of S. On the other hand, p is periodic of order n > 1 for g z if, and only if,

z 0 = 2 cos(π k n ), k ∧ n = 1
and at least one of the equalities P z (z 0 ) = 0, 2x 0 + y 0 z 0 = A, 2y 0 + x 0 z 0 = B does not hold. In particular, denoting by Orb g z (p) the orbit of p under the action of g z , we have:

#Orb g z (p) = 2 ⇒ z 0 = 0, #Orb g z (p) = 3 ⇒ z 0 = ±1, #Orb g z (p) = 4 ⇒ z 0 = ± √ 2, #Orb g z (p) = 6 ⇒ z 0 = ± √ 3.
Up to permutation of variables x, y and z (and correspondingly of the parameters A, B and C), an orbit of length 2 takes the form Orb(p) = {p, s z (p)}. In this case, p and p ′ = s z (p) = (x 0 , y 0 , z ′ 0 ) are permuted by s z , and thus by g x = s z • s y and g y = s x • s z ; this implies x 0 = y 0 = 0. On the other hand, p and p ′ are fixed by s x , s y , and therefore A = B = 0. Since p = (0, 0, z 0 ) is contained in S, we deduce that z 0 and z ′ 0 are the roots of z 2 = Cz + D. Up to permutation of the variables x, y and z, an orbit of length 3 takes the form Orb(p) = {p 0 , p 1 = s x (p 0 ), p 2 = s y (p 0 )} with p 0 = (x 0 , y 0 , z 0 ), p 1 = (x ′ 0 , y 0 , z 0 ), and p 2 = (x 0 , y ′ 0 , z 0 ). Since g x (resp. g y ) permutes p 0 and p 2 (resp. p 0 and p 1 ), we get x 0 = y 0 = 0. On the other hand, g z permutes cyclically p 0 → p 2 → p 1 , so that z 0 = ±1. Changing signs if necessary by a twist (see 2.3), we can assume z 0 = 1. Now, studying the fixed points of s x , s y and s z , amongst p 0 , p 1 and p 2 , we obtain:

2z 0 + x 0 y 0 = C, 2y 0 + x ′ 0 z 0 = B 2z 0 + x ′ 0 y 0 = C and 2x 0 + y ′ 0 z 0 = A 2z 0 + x 0 y ′ 0 = C and thus C = 2, x ′ 0 = B and y ′ 0 = A.
We also have x ′ 0 = Ax 0y 0 z 0 and y ′ 0 = By 0x 0 z 0 (action of s x and s y ) yielding A = B. Finally, the fact that p 0 is contained in S gives 1 = C + D, whence the result.

Up to symmetry, an orbit of length 4 consists in p 0 , p 1 and p 2 like before (p 1 = s x (p 0 ) and p 2 = s y (p 0 )) and there are 4 possibilities for the fourth point p 3 :

(1)

p 3 = (x ′ 0 , y ′ 0 , z 0 ) = s y (p 1 ) = s x (p 2 ), (2) p 3 = (x ′ 0 , y ′′ 0 , z 0 ) = s y (p 1 ) = s x (p 2 ), (3) p 3 = (x ′ 0 , y 0 , z ′ 0 ) = s z (p 1 ), (4) p 3 = (x 0 , y 0 , z ′ 0 ) = s z (p 0 )
. The first case is impossible: Since g x and g y have order 2 for each p i , the coordinates x and y vanish for each point p i , and therefore p 0 = p 1 = p 2 = p 3 , a contradiction. The second case is impossible for the same reason since g x and g y have order 2 for p 0 and p 1 , so that p 0 = p 1 , a contradiction. The same argument applies in third case: g x has order 2 for p 0 and p 1 implying p 0 = p 1 , contradiction.

For the fourth case, since g x , g y and g z have order 3 for p 0 , we get p 0 = (±1, ±1, ±1). Up to symmetry, there are two subcases: p 0 = (1, 1, 1) or p 0 = (-1, -1, -1). In the first sub-case, conditions given by the fixed points of s x , s y and s z yield

A = B = C = 2 + x ′ 0 = 2 + y ′ 0 = 2 + z ′ 0
, and the fact that p i is contained in S gives 4 = 3A + D. Proceeding in the same way with the second sub-case, conditions given by the fixed points of s x , s y and s z yield Proof. Let p 0 = (x 0 , y 0 , z 0 ) be a point of the orbit. If the third coordinate z 0 ∈ (-2, 2), the homography induced by g z on the conic S z 0 is parabolic or hyperbolic. Since the orbit of p 0 is bounded, this implies that p 0 is a fixed point of g z , s x and s y (see lemma 5.2). Since Orb(p 0 ) has length > 4, s z (p 0 ) is different from p 0 , so that p 0 is not fixed by g x , nor by g y either ; this implies that x 0 , y 0 ∈ (-2, 2). Moreover, the point p 1 := s z (p 0 ) = (x 0 , y 0 , z 1 ) is not fixed by g z , otherwise the orbit would have length 2, so that z 1 ∈ (-2, 2) and p 1 ∈ (-2, 2) 3 . This argument shows the following: If one of the coordinates of p 0 is not contained in (-2, 2), then p 0 is fixed by two of the involutions s x , s y and s z while the third one maps p 0 into (-2, 2) 3 .

A = B = C = -2 -x ′ 0 = -2 -y ′ 0 = -2 -z ′
Let now p be a point of the orbit with coordinates in (-2, 2) 3 ; if the three points s x (p), s y (p) and s z (p) either escape from (-2, 2) 3 or coincide with p, then the orbit reduces to {p, s x (p), s y (p), s z (p)}, and has length ≤ 4. From this we deduce that the orbit contains at least two distinct points p 1 , p 2 ∈ (-2, 2) 3 , which are, say, permuted by s x . Let (x i , y 1 , z 1 ) be the coordinates of p i , i = 1, 2. Then, A = x 1 + x 2 + y 1 z 1 ∈ R. If B and C are also real, then p 1 is real and satisfies the equation of S, so that D is real as well and Orb(m) = Orb(p 1 ) ⊂ S(R). Now, assume by contradiction that B ∈ R. Then,

q i := s y (p i ) = (x i , B - y 1 -x i z 1 , z 1 ) ∈ (-2, 2
) and is therefore fixed by s x (otherwise the orbit would not be bounded): We thus have

2x i + (B -y 1 -x i z 1 )z 1 = A.
Since B is the unique imaginary number of this equation, z 1 must vanish, and we get

x 1 = x 2 (= A
2 ), a contradiction. A similar argument shows that C must be real as well.

Proposition 5.7. If Orb(p) is finite and #Orb(p) > 4, then A, B, C, and D are real algebraic numbers and p ∈ S(R) has algebraic coordinates as well.

The proof is exactly the same, replacing (-2, 2) by (-2, 2) ∩ 2 cos(πQ) and thus R by R ∩ Q. Lemma 5.8. Let S be an element of the family Fam and p a point of S. There exists a positive integer N such that, if p ′ is a point of the orbit of p with a coordinate of the form

2 cos(π k n ), k ∧ n = 1,
then n divides N.

Proof. The point p is an element of the character variety χ(S 2 4 ). Let us choose a representation ρ : π 1 (S 2 4 ) → SL (2, C) in the conjugacy class that is determined by p. Since π 1 (S 2 4 ) is finitely generated, Selberg's lemma (see [START_REF] Roger | An elementary account of Selberg's lemma[END_REF]) implies the existence of a torsion free, finite index subgroup G of ρ(π 1 (S 2 4 )). If we define N to be the cardinal of the quotient ρ(π 1 (S 2 4 ))/G, then the order of any torsion element in ρ(π 1 (S 2 4 )) divides N. If p ′ is a point of the orbit of p, the coordinates of p ′ are traces of elements of ρ(π 1 (S 2 4 )). Assume that the trace of an element M in ρ(π 1 (S 2 4 )) is of type 2 cos(πθ). If θ = k n and k and n are relatively prime integers, then M is a cyclic element of ρ(π 1 (S 2 4 )) of order n, so that n divides N. The subset of SU (2)-representations always form a connected component of S \ Sing(S) contained into [-2, 2] 3 ; the corresponding orbits are bounded, generally infinite. A bounded component can also consist in SL (2, R)-representations, depending on the choice of (a, b, c, d); for instance, in the Cayley case, the bounded component consists in SL (2, R)-representations (resp. SU (2)-representations) when (a, b, c, d) = (2, 2, 2, -2) (resp. (0, 0, 0, 0)). We want to prove that the closure Orb(p) is open in S(R) \ {Sing(S(R))}; since Orb(p) is closed, it will therefore coincide with the (unique) bounded connected component of S \ {Sing(S)}, thus proving the theorem.

Proposition 5.9 (Benedetto-Goldman [4]). When A, B, C and D are real, then S(R) \ {Sing(S)} has at most one bounded connected component. In this case, a, b, c and d lie in

We first claim that there exists an element (actually infinitely many) p 0 = (x 0 , y 0 , z 0 ) of the orbit which is contained in (-2, 2) 3 and for which at least one of the Möbius transformations g x 0 , g y 0 or g z 0 is (elliptic) non periodic. Indeed, if a point p 0 of the orbit is such that g z 0 is not of the form above, then we are in one of the following cases

• P z (z 0 ) = 0 and p 0 is a fixed point of g z 0 ,

• z 0 = 2 cos(π k n ) with k ∧ n = 1, n|N and g z 0 is periodic of period n (where N is given by Lemma 5.8). This gives us finitely many possibilities for z 0 ; we also get finitely many possibilities for x 0 and y 0 and the claim follows.

Let p 0 be a point of Orb(p), with, say, g x 0 elliptic and non periodic, so that the closure Orb(p) contains the "circle" Orb g x (p 0 ) = S x 0 (R). Let us first prove that Orb(p) contains an open neighborhood of p 0 in S(R) \ {Sing(S(R))}.

Since the point p 0 is not fixed by g x = s z • s y , then either s y or s z does not fix p 0 , say s z ; this means that the point p 0 is not a critical point of the projection

π x × π y : S(R) → R 2 ; (x, y, z) → (x, y).
Therefore, there exists some ε > 0 and a neighborhood V ε of p 0 in S(R) such that π x × π y maps V ε diffeomorphically onto the square (x 0 -ε, x 0 + ε) × (y 0 -ε, y 0 + ε). By construction, we have

π x × π y (Orb(p)) ⊃ π x × π y (Orb g x (p 0 )) ⊃ {x 0 } × (y 0 -ε, y 0 + ε).
For each y 1 ∈ (y 0 -ε, y 0 + ε) of irrational type, that is to say not of the form 2 cos(πθ) with θ rational, there exists p 1 = (x 0 , y 1 , z 1 ) ∈ Orb(p) (namely, the preimage of (x 0 , y 1 ) by π x × π y ) and

Orb(p) ⊃ Orb g y (p 1 ) = S y 1 (R);
in other words, for each y 1 ∈ (y 0 -ε, y 0 + ε) of irrational type, we have

π x × π y (Orb(p)) ⊃ π x × π y (Orb g y (p 1 )) ⊃ (x 0 -ε, x 0 + ε) × {y 0 }.
Since those coordinates y 1 of irrational type are dense in (y 0 -ε, y 0 + ε), we deduce that V ε ⊂ Orb(p), and Orb(p) is open at p 0 . It remains to prove that Orb(p) is open at any point q ∈ Orb(p) which is not a singular point of S(R). Let q = (x 0 , y 0 , z 0 ) be such a point and assume that q ∈ Orb(p) (otherwise we have already proved the assertion).

Since q is not a singular point of S(R), one of the projections, say π x ×π y : S(R) → R 2 , is regular at q and we consider a neighborhood V ε like above,

π x × π y (V ε ) = (x 0 -ε, x 0 + ε) × (y 0 -ε, y 0 + ε).
By assumption, Orb(p) ∩V ε is infinite (accumulating q) and, applying once again Lemma 5.8, one can find one such point p 1 = (x 1 , y 1 , z 1 ) ∈ Orb(p) ∩ V ε such that either x 1 or y 1 has irrational type, say x 1 . Now, reasonning with p 1 like we did above with p 0 , we eventually conclude that V ε ⊃ Orb(p), and Orb(p) is open at q.

INVARIANT GEOMETRIC STRUCTURES

In this section, we study the existence of A -invariant geometric structures on surfaces S of the family Fam. An example of such an invariant structure is given by the area form Ω, defined in Proposition 3. Remark 6.1. The surface S C is endowed with a natural orbifold structure, the analytic structure near its singular points being locally isomorphic to the quotient of C 2 near the origin by the involution σ(x, y) = (-x, -y). The affine structure can be understood either in the orbifold language, or as an affine structure defined only outside the singularities (see below).

6.1. Invariant curves, foliations and webs. We start with Lemma 6.2. Whatever the choice of S in the family Fam, the group A does not preserve any (affine) algebraic curve on S.

Of course, invariant curves appear if we blow up singularities. This is important for the study of special (Riccati) solutions of Painlevé VI equation (see section 7).

Proof. Let C be an algebraic curve on S. Either C is contained in a fiber of π z , or the projection π z (C) covers C minus at most finitely many points. If C is not contained in a fiber, we can choose m 0 = (x 0 , y 0 , z 0 ) in C and a neighborhood U of m 0 such that z 0 is contained in (0, 2) and, in U, C intersects each fiber S z of the projection π z in exactly one point. Let m ′ = (x ′ , y ′ , z ′ ) be any element of C ∩U such that z ′ is an element of (0, 2). Then g z is an elliptic transformation of S z ′ that preserves C ∩S z ′ ; since the intersection of C and S z ′ contains an isolated point m ′ , this point is g z periodic. As a consequence, z ′ is of the form 2 cos(πp/q) (see proposition 5.1). Since any z ′ ∈ (0, 2) sufficiently close to z 0 should satisfy an equation of this type, we obtain a contradiction.

Since no curve can be simultaneously contained in fibers of π x , π y and π z , the lemma is proved.

A (singular) web on a surface X is given by a hypersurface in the projectivized tangent bundle PT X ; for each point, the web determines a finite collection of directions tangent to X through that point. The number of directions is constant on an open subset of X but it may vary along the singular locus of the web. Foliations are particular cases of webs, and any web is locally made of a finite collection of foliations in the complement of its singular locus. Proposition 6.3. Whatever the choice of S in the family Fam, the group A does not preserve any web on S.

Proof. Let us suppose that there exists an invariant web W on one of the surfaces S. Let k and l be coprime positive integers and m = (x, y, z) be a periodic point of g z of period l, with z = 2 cos(πk/l).

Let L 1 , ..., L d be the directions determined by W through the point m, and C 1 , ..., C d the local leaves of W which are tangent to these directions. The automorphism g s z , with s = l(d!), fixes m, preserves the web and fixes each of the directions L i ; it therefore preserves each of the C i . The proof of lemma 6.2 now shows that d = 1 and that the curves C i are contained in the fiber of π z through m. Since the set of points m which are g z -periodic is Zariski dense in S, this argument shows that the web is the foliation by fibers of π z . The same argument shows that the web should also coincide with the foliations by fibers of π x or π y , a contradiction. Corollary 6.4. Whatever the choice of S in the family Fam, the group A does not preserve any holomorphic riemannian metric on S.

Proof. Let g be an invariant holomorphic riemannian metric. At each point m of S, g has two isotropic lines. This determines an A -invariant web, and we get a contradiction with the previous proposition.

Invariant Affine Structures.

A holomorphic affine structure on a complex surface M is given by an atlas of charts Φ i : U i → C 2 for which the transition functions

Φ i • Φ -1 j are affine transformations of the plane C 2 . A local chart Φ : U → C 2 is said to be affine if, for all i, Φ • Φ -1 i is the re- striction of an affine transformation of C 2 to Φ i (U i ) ∩ Φ(U ). A subgroup G of Aut(M)
preserves the affine structure if elements of G are given by affine transformations in local affine charts.

Theorem 6.5. Let S be an element of Fam. Let G be a finite index subgroup of Aut(S). The group G preserves an affine structure on S \ Sing(S), if, and only if S is the Cayley cubic S C .

In what follows, S is a cubic of the family Fam and G will be a finite index subgroup of A preserving an affine structure on S.

Before giving the proof of this statement, we collect a few basic results concerning affine structures. Let X be a complex surface with a holomorphic affine structure. Let π : X → X be the universal cover of X ; the group of deck transformations of this covering is isomorphic to the fundamental group π 1 (X ). Gluing together the affine local charts of X , we get a developping map

dev : X → C 2 ,
and a monodromy representation Mon :

π 1 (X ) → Aff (C 2 ) such that dev(γ(m)) = Mon(γ)(dev(m))
for all γ in π 1 (X ) and all m in X. The map dev is a local diffeomorphism but, a priori, it is neither surjective, nor a covering onto its image.

Let f be an element of Aut(X ) that preserves the affine structure of X . Let m 0 be a fixed point of f , let m 0 be an element of the fiber π -1 (m 0 ), and let f : X → X be the lift of f that fixes m 0 . Since f is affine, there exists a unique affine automorphism Aff ( f ) of C 2 such that

dev • f = Aff ( f ) • dev.
6.3. Proof of theorem 6.5; step 1. In this first step, we show that S \ Sing(S) cannot be simply connected, and deduce from this fact that S is singular. Then we study the singularities of S and the fundamental group of S \ Sing(S).

Simple connectedness.

Assume that S \ Sing(S) is simply connected. The developping map dev is therefore defined on S \ Sing(S) → C 2 . Let N be a positive integer for which g N x is contained in G. Choose a fixed point m 0 of g x as a base point. Since g N x preserves the affine structure, there exists an affine transformation Aff (g N x ) such that dev

• g N x = Aff (g N x )
• dev. In particular, dev sends periodic points of g N x to periodic points of Aff (g N x ). Let m be a nonsingular point of S with its first coordinate in the interval (-2, 2), and let U be an open neighborhood of m. Section 5.1 shows that periodic points of g N x form a Zariski-dense subset of U, by which we mean that any holomorphic functions Ψ : U → C which vanishes on the set of periodic points of g N x vanishes everywhere. Since dev is a local diffeomorphism, periodic points of Aff (g N x ) are Zariski-dense in a neighborhood of dev(m), and therefore Aff (g N x ) = Id. This provides a contradiction, and shows that S \ Sing(S) is not simply connected.

Consequently, lemma 3.10 implies that S is singular and that the fundamental group of S \ Sing(S) is generated, as a normal subgroup, by the local fundamental groups around the singularities. 6.3.2. Orbifold structure. We already explained in section 3.6 that the singularities of S are quotient singularities. If q is a singular point of S, S is locally isomorphic to the quotient of the unit ball B in C 2 by a finite subgroup H of SU (2).

The local affine structure around q can therefore be lifted into a H-invariant affine structure on B\ {(0, 0)}, and then extended up to the origin by Hartogs theorem. In particular, dev lifts to a local diffeomorphism between B and an open subset of C 2 . This remark shows that the affine structure is compatible with the orbifold structure of S defined in section 3.6.

Let h be an element of the local fundamental group H. Let us lift the affine structure on B and assume that the monodromy action of h is trivial, i.e. dev• h = dev. Since dev is a local diffeomorphism, the singularity is isomorphic to a quotient of B by a proper quotient of H, namely the quotient of H by the smallest normal subgroup containing h. This provides a contradiction and shows that (i) H embeds in the global fundamental group of S \ Sing(S) and (ii) the universal cover of S in the orbifold sense is smooth (it is obtained by adding points to the universal cover of S \ Sing(S) above singularities of S).

In what follows, we denote the orbifold universal cover by π : S → S, and the developing map by dev : S → C 2 . 6.3.3. Singularities. Let q be a singular point of S. Let q be a point of the fiber π -1 (q). Since the group A fixes all the singularities of S, it fixes q and one can lift the action of A on S to an action of A on S that fixes q. If f is an element of A , f will denote the corresponding holomorphic diffeomorphism of S. Then we compose dev by a translation of the affine plane C 2 in order to assume that dev( q) = (0, 0).

By assumption, dev • g = Aff (g) • dev for any element g in G, from which we deduce that the affine transformation Aff (g) are in fact linear. Since A almost preserves an area form, Aff (g) is an element of GL (2, C) with determinant +1 or -1; passing to a subgroup of index 2 in G, we shall assume that the determinant is 1. Since dev realizes a local conjugation between the action of G near q and the action of Aff (G) near the origin, the morphism

G → SL (2, C) g → Aff (g) is injective.
Since G is a finite index subgroup of Aut(S), G contains a non abelian free group of finite index and is not virtually solvable. Let H be the finite subgroup of π 1 (S \ Sing(S)) that fixes the point q. This group is normalized by the action of A on S. Consequently, using the local affine chart determined by dev, the group Aff (G) normalizes the monodromy group Mon(H). If Mon(H) is not contained in the center of SL (2, C), the eigenlines of the elements of Mon(H) determine a finite, non empty, and Aff (G)-invariant set of lines in C 2 , so that Aff (G) is virtually solvable. This would contradict the injectivity of g → Aff (g). From this we deduce that any element of Mon(H) is a homothety with determinant 1. Since the monodromy representation is injective on H, we conclude that H "coincides" with the subgroup {+Id, -Id} of SU (2). 6.3.4. Linear part of the monodromy. By lemma 3.10, the fundamental group of S \ Sing(S) is generated, as a normal subgroup, by the finite fundamental groups around the singularities of S. Since ±Id is in the center of GL (2, C), the linear part of the monodromy Mon(γ) of any element γ in π 1 (S \ Sing(S)) is equal to +Id or -Id.

6.4. Proof of theorem 6.5; step 2. We now study the dynamics of the parabolic elements of G near the fixed point q.

6.4.1. Linear part of automorphisms. Let g be an element of the group G. Let m be a fixed point of g and m a point of the fiber π -1 (m). Let g m be the unique lift of g to S fixing m (with the notation used in step 1, g q = g). Since g preserves the affine structure, there exists an affine transformation Aff ( g m ) such that

dev • g m = Aff ( g m ) • dev.
Note that Aff ( g m ) depends on the choice of m and m, but that Aff ( g m ) is uniquely determined by g up to composition by an element of the monodromy group Mon(π 1 (S\Sing(S)). Since the linear parts of the monodromy are equal to +Id or -Id, we get a well defined morphism

G → PSL (2, C) g → Lin(g)
that determines the linear part of Aff ( g m ) modulo ±Id for any choice of m and m. 6.4.2. Parabolic elements. Since the linear part Lin(g) does not depend on the fixed point m, it turns out that Lin preserves the type of g: We now prove and use this fact in the particular case of the parabolic elements g x , g y and g z .

Let N be a positive integer such that g N x is contained in G. For m, we choose a regular point of S which is periodic of period l for g N x and which is not a critical point of the projection π x . Then g Nl x fixes the fiber S x of π x through m pointwise. Since g x is not periodic and preserves the fibers of π x , this implies that the differential of g Nl x at m is parabolic. Let m be a point of π -1 (m) and ( g Nl x ) m the lift of g Nl x fixing that point. The universal cover π provides a local conjugation between g Nl x and ( g Nl x ) m around m and m, and the developping map provides a local conjugation between ( g Nl x ) m and Lin(g Nl x ). As a consequence, Lin(g Nl x ) is a parabolic element of PSL (2, C). Since a power of Lin(g N x ) is parabolic, Lin(g N x ) itself is parabolic. In particular, the dynamics of g N x near q is conjugate to a linear upper triangular transformation of C 2 with diagonal entries equal to 1.

As a consequence, the lift g x is locally conjugate near q to a linear parabolic transformation with eigenvalues ±1. The eigenline of this transformation corresponds to the fiber S z through q. Since the local fundamental group H coincides with ±Id, this eigenline is mapped to a curve a fixed point by the covering π. In particular, the fiber S z through q is a curve of fixed points for g x .

Of course, a similar study holds for g y and g z .

6.4.3. Fixed points and coordinates of the singular point. The study of fixed points of g x , g y and g z (see lemma 5.2) now shows that the coordinates of the singular point q are equal to ±2. Let ε x , ε y and ε z be the sign of the coordinates of q, so that q = (2ε x , 2ε y , 2ε z ).

Recall from section 3.6 that the coefficients A, B, C, and D are uniquely determined by the coordinates of any singular point of S. If the product ε x ε y ε z is positive, then, up to symmetry, q = (2, 2, 2) and S is the surface

x 2 + y 2 + z 2 + xyz = 8x + 8y + 8z -28;
in this case, q is the unique singular point of S, and this singular point is not a node: The second jet of the equation near q is (x + y + z) 2 = 0. This contradicts the fact that q has to be a node (see section 6.3.3). From this we deduce that the product ε x ε y ε z is equal to -1, and that S is the Cayley cubic.

IRREDUCIBILITY OF PAINLEV É VI EQUATION.

The goal of this section is to apply the previous section to the irreducibility of Painlevé VI equation. 7.1. Phase space and space of initial conditions. The naive phase space of Painlevé VI equation is parametrized by coordinates (t, q(t), q ′ (t)) ∈ (P 1 \ {0, 1, ∞})×C 2 ; the "good" phase space is a convenient semi-compactification still fibering over the three punctured sphere

M (θ) → P 1 \ {0, 1, ∞}
whose fibre M t 0 (θ), at any point t 0 ∈ P 1 \ {0, 1, ∞}, is the Hirzebruch surface F 2 blown-up at 8-points minus some divisor, a union of 5 rational curves (see [START_REF] Okamoto | Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé[END_REF]). The analytic type of the fibre, namely the position of the 8 centers and the 5 rational curves, only depends on Painlevé parameters θ = (θ α , θ β , θ γ , θ δ ) ∈ C 4 and t 0 . This fibre bundle is analytically (but not algebraically!) locally trivial: The local trivialization is given by the Painlevé foliation (see [START_REF] Saito | Deformation of Okamoto-Painlevé pairs and Painlevé equations[END_REF]) which is transversal to the fibration. The monodromy of Painlevé equation is given by a representation

π 1 (P 1 \ {0, 1, ∞},t 0 ) → Diff (M t 0 (θ))
into the group of analytic diffeomorphisms of the fibre. 7.2. The Riemann-Hilbert correspondance and P V I -monodromy. On the other hand, the space of initial conditions M t 0 (θ) may be interpreted as the moduli space of rank 2, trace free meromorphic connections over P 1 having simple poles at (p α , p β , p γ , p δ ) = (0,t 0 , 1, ∞) with prescribed residual

eigenvalues ± θ α 2 , ± θ β 2 , ± θ γ
2 and ± θ δ 2 . The Riemann-Hilbert correspondance therefore provides an analytic diffeomorphism

M t 0 (θ) → Ŝ(A,B,C,D)
where Ŝ(A,B,C,D) is the minimal desingularization of S = S (A,B,C,D) , the parameters (A, B,C, D) being given by formulae (1.9) and (1.5). From this point of view, the Painlevé VI foliation coincides with the isomonodromic foliation: Leaves correspond to universal isomonodromic deformations of those connections. The monodromy of Painlevé VI equation correspond to a morphism

π 1 (P 1 \ {0, 1, ∞},t 0 ) → Aut(S (A,B,C,D) )
and coincides with the Γ 2 -action described in section 2.2.2. For instance, g x (resp. g y ) is the Painlevé VI monodromy when t 0 turns around 0 (resp. 1) in the obvious simplest way. All this is described with much detail in [START_REF] Inaba | Dynamics of the sixth Painlevé equation, in théories asymptotiques et équations de Painlevé[END_REF].

7.3. Riccati solutions and singular points. When S (A,B,C,D) is singular, the exceptional divisor in Ŝ(A,B,C,D) is a finite union of rational curves in restriction to which Γ 2 acts by Möbius transformations. To each such rational curve corresponds a rational hypersurface H of the phase space M (θ) invariant by the Painlevé VI foliation. On H , the projection M (θ) → P 1 \ {0, 1, ∞} restricts to a regular rational fibration and the Painlevé equation restricts to a Riccati equation of hypergeometric type: We get a one parameter family of Riccati solutions. See [START_REF] Watanabe | Birational canonical transformations and classical solutions of the sixth Painlevé equation[END_REF][START_REF] Saito | Nodal curves and Riccati solutions of Painlevé equations[END_REF][START_REF] Inaba | Dynamics of the sixth Painlevé equation, in théories asymptotiques et équations de Painlevé[END_REF] for a classification of singular points of S (A,B,C,D) and their link with Riccati solutions; they occur precisely when either one of the θ-parameter is an integer, or when the sum ∑ θ i is an integer. Since S (A,B,C,D) is affine, there are obviously no other complete curve in M t 0 (θ) (see section 6.1).

7.4. Algebraic solutions and periodic orbits. A complete list of algebraic solutions of Painlevé VI equation is still unknown. Apart from those solutions arising as special cases of Riccati solutions, that are well known, they correspond to periodic Γ 2 -orbits on the smooth part of S (A,B,C,D) (see [START_REF] Iwasaki | Finite branch solutions to Painlevé VI around a fixed singular point[END_REF]). Following section 5.2, apart from the three well-known families of 2, 3 and 4-sheeted algebraic solutions, other algebraic solutions are countable and the cosines of the corresponding θ-parameters are real algebraic numbers.

In the particular Cayley case S C = S (0,0,0,4) , periodic Γ 2 -orbits arise from pairs of roots of unity (u, v) on the two-fold cover (C * ) 2 (see 2.1); there are infinitely many periodic orbits in this case and they are dense in the real bounded component of S C \ {Sing(S C )}. The corresponding algebraic solutions were discovered by Picard in 1889 (before Painlevé discovered the general P V I -equation !); see [START_REF] Mazzocco | Picard and Chazy solutions to the Painlevé VI equation[END_REF] and below. All algebraic solutions (resp. periodic Γ 2 -orbits) have been classified in the particular case θ = (0, 0, 0, * ) (resp. (A, B,C, D) = (0, 0, 0, * )) in [START_REF] Dubrovin | Monodromy of certain Painlevé-VI transcendents and reflection groups[END_REF][START_REF] Mazzocco | Picard and Chazy solutions to the Painlevé VI equation[END_REF]: Apart from Riccati and Picard algebraic solutions, there are 5 extra solutions up to symmetry (see also [START_REF] Boalch | The fifty-two icosahedral solutions to Painlevé VI[END_REF] for finite orbit coming from finite subgroups of SU (2)). Bounded Γ 2 -orbits correspond to what Iwasaki calls "tame solutions" in [START_REF] Iwasaki | A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation[END_REF]. 7.5. Nishioka-Umemura irreducibility. In 1998, Watanabe proved in [START_REF] Watanabe | Birational canonical transformations and classical solutions of the sixth Painlevé equation[END_REF] the irreducibility of Painlevé VI equation in the sense of Nishioka-Umemura for any parameter θ: The generic solution of P V I (θ) is non classical, and classical solutions are

• Riccati solutions (like above),

• algebraic solutions.

Non classical roughly means "very transcendental" with regards to the XIXth century special functions: The general solution cannot be expressed in an algebraic way by means of solutions of linear, or first order non linear differential equations. A precise definition can be found in [START_REF] Casale | Une preuve Galoisienne de l'irréductibilité au sens de Nishioka-Umemura de la première équation de Painlevé[END_REF].

7.6. Malgrange irreducibility. Another notion of irreducibility was introduced by Malgrange in [START_REF] Malgrange | Le groupoïde de Galois d'un feuilletage[END_REF]: He defines the Galois groupoid of an algebraic foliation to be the smallest algebraic Lie-pseudo-group that contains the tangent pseudo-group of the foliation (hereafter referred to as the "pseudogroup"); this may be viewed as a kind of Zariski closure for the pseudo-group of the foliation. Larger Galois groupoids correspond to more complicated foliations. From this point of view, it is natural to call irreducible any foliation whose Galois groupoid is as large as possible, i.e. coincides with the basic pseudo-group. For Painlevé equations, a small restriction has to be taken into account: It has been known since Malmquist that Painlevé foliations may be defined as kernels of closed meromorphic 2-forms. The pseudo-group, and the Galois groupoid, both preserve the closed 2-form. The irreducibility conjectured by Malgrange is that the Galois groupoid of Painlevé equations coincide with the algebraic Lie-pseudo-group of those transformations on the phase space preserving ω. This was proved for Painlevé I equation by Casale in [START_REF] Casale | Le groupo ïde de Galois de P 1 et son irréductibilité[END_REF].

For a second order polynomial differential equation P(t, y, y ′ , y ′′ ) = 0, like Painlevé equations, Casale proved in [START_REF] Casale | Une preuve Galoisienne de l'irréductibilité au sens de Nishioka-Umemura de la première équation de Painlevé[END_REF] that Malgrange-irreducibility implies Nishioka-Umemura-irreducibility; the converse is not true as we shall see. 7.7. Invariant geometric structures. Restricting to a transversal, e.g. the space of initial conditions M t 0 (θ) for Painlevé VI equations, the Galois groupoid defines an algebraic geometric structure which is invariant under monodromy transformations; reducibility would imply the existence of an extra geometric structure on M t 0 (θ), additional to the volume form ω, preserved by all monodromy transformations. In that case, a well known result of Cartan, adapted to our algebraic setting by Casale in [START_REF] Casale | Le groupo ïde de Galois de P 1 et son irréductibilité[END_REF], asserts that monodromy transformations

• either preserve an algebraic foliation,

• or preserve an algebraic affine structure. Here, "algebraic" means that the object is defined over an algebraic extension of the field of rational functions, or equivalently, becomes well-defined over the field of rational functions after some finite ramified cover. For instance, "algebraic foliation" means polynomial web. As a corollary of proposition 6.3 and Theorem 6.5, we shall prove the following Theorem 7.1. The sixth Painlevé equation is irreducible in the sense of Malgrange, except in one of the following cases:

• θ ω ∈ 1 2 + Z, ω = α, β, γ, δ,

• θ ω ∈ Z, ω = α, β, γ, δ, and ∑ ω θ ω is even. All these special parameters are equivalent, modulo Okamoto symmetries, to the case θ = (0, 0, 0, 1). The corresponding cubic surface is the Cayley cubic.

Of course, in the Cayley case, the existence of an invariant affine structure shows that the Painlevé foliation is Malgrange-reducible (see [START_REF] Casale | The Galois groupoid of Picard-Painlevé VI equation. In Algebraic, analytic and geometric aspects of complex differential equations and their deformations[END_REF]). This will be made more precise in section 7.9.

Before proving the theorem, we need a stronger version of Lemma 6.2

Lemma 7.2. Let S be an element of the family Fam. There is no A -invariant curve of finite type in S.

By "curve of finite type" we mean a complex analytic curve in S with a finite number of irreducible components C i , such that the desingularization of each C i is a Riemann surface of finite type.

Proof. Let C ⊂ S be a complex analytic curve of finite type. Since S is embedded in C 3 , C is not compact. In particular, C is not isomorphic to the projective line and the group of holomorphic diffeomorphisms of C is virtually solvable. Since A contains a non abelian free subgroup, there exists an element f in A \ {Id} which fixes C pointwise. From this we deduce that C is contained in the algebraic curve of fixed points of f . This shows that the Zariski closure of C is an A -invariant algebraic curve, and we conclude by Lemma 6.2. 7.8. Proof of theorem 7.1. In order to prove that Painlevé VI equation, for a given parameter θ ∈ C 4 is irreducible, it suffices, due to [START_REF] Casale | Le groupo ïde de Galois de P 1 et son irréductibilité[END_REF] and the discussion above, to prove that the space of initial conditions M t 0 (θ) does not admit any monodromy-invariant web or algebraic affine structure. Via the Riemann-Hilbert correspondance, such a geometric structure will induce a similar Γ 2 -invariant structure on the corresponding character variety S (A,B,C,D) . But we have to be carefull: The Riemann-Hilbert map is not algebraic but analytic. As a consequence, the geometric structures we have now to deal with on S (A,B,C,D) are not rational anymore, but meromorphic (on a finite ramified cover). Anyway, the proof of proposition 6.3 is still valid in this context and exclude the possibility of Γ 2 -invariant analytic web. 7.8.1. Multivalued affine structures. We now explain more precisely what is a Γ 2 -invariant multivalued meromorphic affine structure in the above sense. First of all, a meromorphic affine structure is an affine structure in the sense of section 6.2 defined on the complement of a proper analytic subset Z, having moderate growth along Z in a sense that we do not need to consider here. This structure is said to be Γ 2 -invariant if both Z, and the regular affine structure induced on the complement of Z, are Γ 2 -invariant. Now, a multivalued meromorphic affine structure is a meromorphic structure (with polar locus Z ′ ) defined on a finite analytic ramified cover π ′ : S ′ → S; the ramification locus X is an analytic set. This structure is said to be Γ 2 -invariant if both X and Z = π ′ (Z ′ ) are invariant and, over the complement of X ∪ Z, Γ 2 permutes the various regular affine structures induced by the various branches of π ′ .

Let us prove that the multivalued meromorphic affine structure induced on S by a reduction of Painlevé VI Galois groupoid has actually no pole, and no ramification apart from singular points of S. Indeed, let C be the union of Z and R; then C is analytic in S but comes from an algebraic curve in M t 0 (θ) (the initial geometric structure is algebraic in M t 0 (θ)), so that the 1dimensional part of C is a curve of finite type. Lemma 7.2 then show that C is indeed a finite set. In other words, C is contained in Sing(S), R itself is contained in Sing(S) and Z is empty. 7.8.2. Singularities of S. Since the ramification set R is contained in Sing(S), the cover π ′ is an étale cover in the orbifold sense (singularities of S ′ are also quotient singularities). Changing the cover π ′ : S ′ → S if necessary, we may assume that π ′ is a Galois cover.

If S is simply connected, then of course π ′ is trivial, the affine structure is univalued, and theorem 6.5 provides a contradiction. We can therefore choose a singularity q of S, and a point q ′ in the fiber (π ′ ) -1 (q). Since π 1 (S; q) is finitely generated, the number of subgroups of index deg(π ′ ) in π 1 (S; q) is finite. As a consequence, there is a finite index subgroup G in Γ 2 which lifts to S ′ and preserves the univalued affine structure defined on S ′ .

We now follow the proof of theorem 6.5 for G, S ′ and its affine structure. First, we denote π : S → S ′ the universal cover of S ′ , we choose a point q in the fiber π -1 (q ′ ), and we lift the action of G to an action on the universal cover S fixing q. Then we fix a developping map dev : S → C 2 with dev( q) = 0; these choices imply that Aff (g) is linear for any g in G. Section 6.3.3 shows that the singularities of S and S ′ are simple nodes. Now comes the main difference with sections 6.3.4 and 6.4: A priori, the fundamental group of S ′ is not generated, as a normal subgroup, by the local fundamental groups around the singularities of Sing(S ′ ). It could be the case that S ′ is smooth, with an infinite fundamental group. So, we need a new argument to prove that g x (resp. g y and g z ) has a curve of fixed points through the singularity q. 7.8.3. Parabolic dynamics. Let g = g n

x be a non trivial iterate of g x that is contained in G. The affine transformation Aff (g) is linear, with determinant 1 ; we want to show that this transformation is parabolic.

Let Ũ be an open subset of S on which both dev and the universal cover π ′ • π are local diffeomorphisms, and let U be the projection of Ũ on S by π ′ • π. We choose Ũ in such a way that U contains points m = (x, y, z) with x in the interval [-2, 2]. The fibration of U by fibers of the projection π x is mapped onto a fibration F of dev( Ũ) by the local diffeomorphism dev • (π ′ • π) -1 . Let us prove, first, that F is a foliation by parallel lines.

Let m be a point of U which is g-periodic, of period l. Then, the fiber of π x through m is a curve of fixed point for g l . If m is a lift of m in S, one can find a lift γ • gl of g to S (γ in π 1 (S, q) = Aut(π)) that fixes pointwise the fiber through m. As a consequence, the fiber of F through dev( m) coincides locally with the set of fixed points of the affine transformation Aff (g l ) • Mon(γ). As such, the fiber of F through dev( m) is an affine line.

This argument shows that an infinite number of leaves of F are affine lines, or more precisely coincide with the intersection of affine lines with dev( Ũ). Since g preserves each fiber of π x , the foliation F is leafwise (Aff (g l )•

Mon(γ))-invariant. Assume now that L is a line which coincides with a leaf of F on dev( Ũ). If L is not parallel to the line of fixed points of Aff (g l ) •

Mon(γ), then the affine transformation Aff (g l ) • Mon(γ) is a linear map (since it has a fixed point), with determinant ±1, and with two eigenlines, one of them, the line of fixed points, corresponding to the eigenvalue 1. This implies that Aff (g l ) • Mon(γ) has finiter order. Since g is not periodic, we conclude that L is parallel to the line of fixed points of Aff (g l ) • Mon(γ), and that the foliation F is a foliation by parallel lines.

By holomorphic continuation, we get that the image by dev of the fibration π x • π is a foliation of the plane by parallel lines.

Let us now study the dynamics of g near the fixed point q. Using the local chart dev, g is conjugate to the linear transformation Aff (g). Since g preserves each fiber of π x , Aff (g) preserves each leaf of the foliation F . Since g is not periodic, Aff (g) is not periodic either, and Aff (g) is a linear parabolic transformation. As a consequence, g has a curve of fixed points through q. 7.8.4. Conclusion. We can now apply the arguments of section 6.4.3 word by word to conclude that S is the Cayley cubic.

Picard parameters of Painlevé VI equation and the Cayley cubic.

Let us now explain in more details why the Cayley case is so special with respect to Painlevé equations. Consider the universal cover

π t : C → {y 2 = x(x -1)(x -t)} ; z → (x(t, z), y(t, z))
of the Legendre elliptic curve with periods Z + τZ -this makes sense at least on a neighborhood of t 0 ∈ P 1 \ {0, 1, ∞}. The functions τ = τ(t) and π t are analytic in t.

The following theorem, obtained by Picard in 1889, shows that the Painlevé equations corresponding to the Cayley cubic have (almost) classical solutions.

Theorem 7.3 (Picard, see [START_REF] Casale | The Galois groupoid of Picard-Painlevé VI equation. In Algebraic, analytic and geometric aspects of complex differential equations and their deformations[END_REF] for example). The general solution of the Painlevé sixth differential equation P V I (0, 0, 0, 1) is given by t

→ x(t, c 1 + c 2 • τ(t)), c 1 , c 2 ∈ C.
Moreover, the solution is algebraic if, and only if c 1 and c 2 are rational numbers.

Note that c 1 , c 2 ∈ Q exactly means that π t (c 1 + c 2 • τ(t)
) is a torsion point of the elliptic curve.

Finally, P V I (0, 0, 0, 1)-equation can actually be integrated by means of elliptic functions, but in a way that is non classical with respect to Nishioka-Umemura definition. Coming back to Malgrange's point of view, the corresponding polynomial affine structure on the phase space M (0, 0, 0, 1) has been computed by Casale in [START_REF] Casale | The Galois groupoid of Picard-Painlevé VI equation. In Algebraic, analytic and geometric aspects of complex differential equations and their deformations[END_REF], thus proving the reducibility of P V I (0, 0, 0, 1) equation (and all its birational Okamoto symmetrics) in the sense of Malgrange.

APPENDIX A

This section is devoted to the proof of theorem 2.1, according to which the unique surface in the family Fam with four singularities is the Cayley cubic S C .

Proof. I. The point q = (x, y, z) is a singular point of S (A,B,C,D) if, and only if q is contained in S (A,B,C,D) and 2x + yz = A, 2y + zx = B, and 2z + xy = C.

In particular, any pair of two coordinates of q determines the third coordinate.

II. If (u, v) is a couple of complex numbers, κ uv (X ) will denote the following quadratic polynomial

κ uv (X ) = X 2 -uvX + (u 2 + v 2 -4).
This polynomial has a double root, namely α = uv/2, if and only if

κ uv (X ) = (X -uv/2) 2 , if and only if (u 2 -4)(v 2 -4) = 0.
Let us now fix a set of (a, b, c, d) parameters that determines (A, B,C, D). It is proved in [START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF] that the coordinates of a singular point q satisfy the following properties:

(i) The x coordinate satisfy one of the following conditions -x is a double root of κ ab (X ), -x is a double root of κ cd (X ), -x is a common root of κ ab and κ cd (X ) ; (i) y satisfies the same kind of conditions with respect to κ ad and κ bc ; (i) z also, with respect to κ ac and κ bd . This shows that the number of possible x (resp. y, z)-coordinates for q is bounded from above by 2. Together with step I, this shows that S (A,B,C,D) has at most four singularities.

When S (A,B,C,D) has four singuarities, there are two possibilities for the x coordinate, and either κ ab and κ cd both have a double root, of κ ab and κ cd coincide and have two simple roots.

III.

Let us assume that κ ab and κ cd have a double root. After a symmetry (see §2.3), we may assume that a = c = 2. Then, κ ac , κ ad and κ bc all have a double root. In particular, since S (A,B,C,D) has four singularities, the two choices for the z-coordinate of singular points are two double roots, the root of κ ac , and, necessarily, the double root of κ bd . This implies that b or d is equal to ±2. Applying a symmetry of the parameters, we may assume that b = 2, so that (a, b, c, d) is now of type (2, 2, 2, d).

Under this assumption, the x, y and z coordinates of singular points are contained in {2, d} (these are the possible double roots). If d 2 = 4, the equations of step I show that two of the coordinates are equal to 2, when one is equal to d. This gives at most three singularities. As a consequence, d = 2 or d = -2, and the conclusion follows from the fact that when d = 2, there is only one singularity, namely (2, 2, 2).

IV. The last case that we need to consider is when all polynomials κ uv , u, v ∈ {a, b, c, d}, coincide. In that case, up to symmetries, a = b = c = d. Then, a similar argument shows that a = 0 if S has four singularities (another way to see it is to apply the covering Quad • Quad from section 9.4). 

Subsituting in

A = ab + cd and D = 4 -a 2 -b 2 -c 2 -d 2 -abcd gives {P = Q = 0} with P = -ab(a 2 -b 2 ) 2 + A(a 2 -b 2 ) 2 + (B 2 +C 2 )ab -BC(a 2 + b 2 ) and Q = (a 2 + b 2 )(a 2 -b 2 ) 2 + (D -4)(a 2 -b 2 ) 2 +(B 2 +C 2 )(a 2 -a 2 b 2 + b 2 ) + BCab(a 2 + b 2 -4).
These two polynomials have both degree 6 in (a, b) and the corresponding curves must intersect in 36 points. However, one easily check that they intersect along the line at infinity with multiplicity 4 at each of the two points (a : b) = (1 : 1) and (1 : -1); moreover, they also intersect along the forbidden lines a = ±b at (a, b) = (0, 0) with multiplicity 4 as well, provided that BC = 0. As a consequence, the number of preimages of (A, B,C, D) is 36 -4 -4 -4 = 24 (counted with multiplicity).

Remark 9.2. Π is not a Galois cover: The group of deck transformations is the order 8 group Q = P 1 , P 2 , ⊗ (-1,-1,-1,-1) (see §2.3).

Okamoto symmetries.

To understand the previous remark, it is convenient to introduce the Painlevé VI parameters, which are related to (a, b, c, d) by the map

C 4 → C 4 (θ α , θ β , θ γ , θ δ ) → (a, b, c, d) with        a = 2 cos(πθ α ) b = 2 cos(πθ β ) c = 2 cos(πθ γ ) d = 2 cos(πθ δ )
The composite map (θ α , θ β , θ γ , θ δ ) → (A, B,C, D) has been studied in [START_REF] Inaba | Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert correspondence[END_REF]:

It is an infinite Galois ramified cover whose deck transformations coincide with the group G of so called Okamoto symmetries. Those symmetries are "birational transformations" of Painlevé VI equation; they have been computed directly on the equation by Okamoto in [START_REF] Okamoto | Studies on the Painlevé equations. I. Sixth Painlevé equation P VI[END_REF] (see [START_REF] Noumi | A new Lax pair for the sixth Painlevé equation associated with so(8)[END_REF] for a modern presentation). Let Bir(P V I ) be the group of all birational symmetries of Painlevé sixth equation. The Galois group G is the subgroup of Bir(P V I ) generated by the following four kind of affine transformations.

If θ α is such that (a 0 , a 1 ) = (cos(π θ α 2 ), sin(π θ α 2 )), then a = 2 cos(πθ α ); therefore, the choice of (a 0 , a 1 ) is equivalent to the choice of a P V I -parameter θ α modulo 2Z, i.e. of θ α 2 modulo Z. Then, looking at the action of the special Okamoto symmetry Ok on Painlevé parameters (θ α , θ β , θ γ , θ δ ), we derive the following new point

(a ′ , b ′ , c ′ , d ′ ) in the Π-fibre            a ′ = -2 ∑(-1) ∑ ε i 2 +ε 1 a ε 1 b ε 2 c ε 3 d ε 4 b ′ = -2 ∑(-1) ∑ ε i 2 +ε 2 a ε 1 b ε 2 c ε 3 d ε 4 c ′ = -2 ∑(-1) ∑ ε i 2 +ε 3 a ε 1 b ε 2 c ε 3 d ε 4 d ′ = -2 ∑(-1) ∑ ε i 2 +ε 4 a ε 1 b ε 2 c ε 3 d ε 4
where the sum is taken over all ε = (ε 1 , ε 2 , ε 3 , ε 4 ) ∈ ({0, 1}) 4 for which ∑ 4 i=1 ε i is even. One can check that the different choices for (a 0 , b 0 , c 0 , d 0 ) and (a 1 , b 1 , c 1 , d 1 ) lead to 16 distinct possible (a ′ , b ′ , c ′ , d ′ ), namely 2 distinct Q-orbits, which together with the Q-orbit of (a, b, c, d) above provide the whole Π-fibre.

It is a well known fact (see [START_REF] Inaba | Dynamics of the sixth Painlevé equation, in théories asymptotiques et équations de Painlevé[END_REF]) that Okamoto symmetries permute the two kinds of degenerate representations given by Theorem 9.4. For instance, a singular point is defined by the following equations: The goal of this section is to prove the following theorem, which partly extends the above mentionned results of Benedetto and Goldman [START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF]. Okamoto correspondences, defined in section 9.1, "act" transitively on fibers (recall that Π is not Galois). Because of their real nature, these correspondences permute real parameters (a, b, c, d): Therefore, Π restricts as a degree 24 ramified cover Π| R 4 : R 4 → Π(R 4 ). Following [START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF], we have

Π -1 (B ) ∩ R 4 = (-2, 2) 4 \ {∆ = 0}.
Using again that SU (2) ∩ SL (2, R) = SO(2) is abelian, and therefore corresponds to reducible representations, we promptly deduce that, along each connected component of (-2, 2) 4 \ {∆ = 0}, the bounded component of the corresponding surface S (A,B,C,D) (R) constantly stands either for SU (2)representations, or for SL (2, R)-representations. We shall denote by B SU (2) and B SL (2,R) the corresponding components of B . Theorem 9.6 may now be rephrased as the following equalities:

B = B SU (2) = B SL (2,R) .
To prove these equalities, we first note that t B SU

(2) ∪B SL (2,R) ⊂ Π([-2, 2] 4 )
is obviously bounded by -8 ≤ A, B,C ≤ 8 and -20 ≤ D ≤ 28 (this bound is not sharp !). where δ 1 is the following polynomial (with (X ,Y ) = ( A C , B C )) In order to check this, let us verify that the discriminant of δ 1 with respect to C does not vanish in the interior of the triangle T . After computations, we find disc(δ 1 ) = k(X 2 -Y 2 ) 8 (X This later polynomial has non vanishing discriminant with respect to Y for 0 < t < 1 and has a non real root, for instance, when t = 1/2: Thus disc(δ 1 ) does not vanish in the interior of the triangle T . Therefore, the polynomial δ 1 has always the same number of real roots when (X ,Y ) lie inside the triangle T and one can easily check that 0 is never a root, and by specializing (X ,Y ), that there are indeed 3 roots, one of them being negative. The claim is proved. Those two equations cut-off the parameter space [-2, 2]4 into many connected components and we have 4 Recall that the group of cover transformations Q has order 8 and does not change the nature of the representation: The image ρ(π 1 (S 2 4 )) remains unchanged in PGL (2, C). Therefore, up to this tame action, Okamoto correspondence provides, to any smooth point (A, B,C, D, x, y, z) of the character variety, exactly 3 essentially distinct representations, two of them in SU (2), and the third one in SL (2, R). It may happens (see [START_REF] Previte | Exceptional discrete mapping class group orbits in moduli spaces[END_REF]) that one of the two SU (2)-representations is dihedral, while the other one is dense! Proof. We shall prove that the SL Those two ellipses are circumscribed into the square Π a,b (see figure 9.3) and, for generic parameters a and b, cut the square into 13 connected components. One easily verify that SL (2, R)-components (namely those connected components of X a,b = X ∩ Π a,b defined by the inequality of the previous theorem) are those 4 neighborhoods of the vertices of the square.

δ 1 = -C 9 X 3 Y 3 + 27Y 4 + 27 X 4 Y 4 -6 X 2 Y 4 -6 X 4 Y 2 + 27 X 4 -6 X 2 Y 2 C 8 + -768 X 5 Y + 192Y 3 X -768 XY + 192 X 3 Y -768Y 5 X + 192 X 3 Y 3 C 7 + 4096Y 6 -1536Y 2 + 4096 + 23808 X 2 Y 2 -1536 X 4 -1536 X 2 Y 4 -1536 X 4 Y 2 + 4096 X 6 -1536 X 2 -1536Y 4 C 6 + -86016 X 3 Y -86016Y 3 X -86016 XY C 5 + 712704 X 2 Y 2 -196608Y 4 -196608 -196608 X 4 + 712704 X 2 + 712704Y 2 C 4 -5505024C 3 XY + 3145728 X 2 + 3145728 + 3145728Y 2 C 2 -16777216
This picture degenerates precisely when a = ±2, b = ±2 or a = ±b. We do not need to consider the first two cases, since they are on the boudary of (-2, 2) 4 . Anyway, in these cases, the two ellipses coincide; they moreover degenerate to a double line when a = ±b.

In the last case a = ±b, the picture bifurcates. When a = b, one of the ellipses degenerates to the double line c = d, and the two components of X a,b near the vertices (2, 2) and (-2, -2) collapse. When a = -b, the components of X a,b near the two other vertices collapse as well. This means that each component of X a,b stands for exactly two components of X : We finally obtain 8 connected components for the SL (2, R)-locus X ⊂ (-2, 2) 4 . One easily verify that there are sixteen SU (2)-components in (-2, 2) 4 \ Z. For instance, when D = 0, we get a covering S (0,0,0,0) → S (8,8,8,-28) . Another particular case arise when D = 4 where Quad defines an endomorphism of the Cayley cubic surface S (0,0,0,4) → S (0,0,0,4) , namely that one induced by the regular cover

C * × C * → C * × C * : (u, v) → (v, u 2 ).
Example 9.12. By the way, we note that, up to the action of Q, the following traces data are related : 

2 =

 2 {M ∈ PGL (2, Z) | M = Id mod(2)} on the family of affine cubic surfaces (1.2)x 2 + y 2 + z 2 + xyz = Ax + By +Cz + D,
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 1 FIGURE 1. The four punctured sphere.

(1. 4 ) x 2 + y 2 + z 2 +

 4222 xyz = Ax + By +Cz + D, in which the variables A, B, C, and D are given by (1.5) A = ab + cd, B = bc + ad, C = ac + bd, and D = 4a 2b 2c 2d 2abcd.

Remark 1 . 1 .

 11 The map C 4 → C 4 ;

1. 4 .

 4 Painlevé VI equation. The dynamics of Γ * 2 on the varieties S (A,B,C,D) is also related to the monodromy of a famous ordinary differential equation. The sixth Painlevé equation P V I = P V I (θ α , θ β , θ γ , θ δ ) is the second order non linear O.D.E.

FIGURE 2 .

 2 FIGURE 2. Four examples. I. The Cayley cubic S C ; II. S (-0.2,-0.2,-0.2,4.39) ; III. S (0,0,0,3) ; IV. S (0,0,0,4.1) .

Theorem B .

 . Let A, B, C, and D be four complex numbers. Let M be an element of Γ * 2 , and f M be the automorphism of S (A,B,C,D) which is determined by M. The topological entropy of f M : S (A,B,C,D) (C) → S (A,B,C,D) (C) is equal to the logarithm of the spectral radius of M.

  (A,B,C,D) with a bounded Γ * 2 -orbit of length > 4. Then, the parameters (A, B,C, D) are real numbers and the orbit is contained in the real part S (A,B,C,D) (R) of the surface.

4 )

 4 corresponding to some point (x, y, z) ∈ S (0,0,0,D) , with local traces given by (a, b, c, d) = (0, 0, 0, d), D = 4d 2 . One can lift the representation on the 4-punctured torus, where punctures are given by the set H of 2-torsion points. Since a = b = c = 0, we have ρ(α), ρ(β), ρ(γ) ∼ i 0 0 -i and the lifted representation ρ • π has local monodromy -I around the corresponding punctures (1/2, 0), (0, 1/2) and (1/2, 1/2). After twisting ρ • π by -I at each of the punctures, we finally deduce a representation ρ ∈ Rep(T 2 1

3. 2 .

 2 Consequences and notations. As a corollary of theorem 3.1 and proposition 2.5, we get the following result: The mapping class group MCG * 0 (S 2 4 ) acts on the character variety χ(S 2 4 ), preserving each surface S (A,B,C,D) , and its image in Aut[S (A,B,C,D) ] coincides with the image of Γ * 2 , and therefore with the finite index subgroup A of Aut[S (A,B,C,D) ]. In other words, up to finite index subgroups, describing the dynamics of MCG * (S 2 4 ) on the character variety χ(S 2 4 ) or of the group Aut[S] on S for any member S of the family Fam is one and the same problem.

3. 3 .

 3 Elliptic, Parabolic, Hyperbolic. Non trivial isometries of H are classified into three different species. Let M be an element of PGL (2, R) \ {Id}, viewed as an isometry of H. Then, • M is elliptic if M has a fixed point in the interior of H. Ellipticity is equivalent to det(M) = 1 and |tr(M)| < 2 (in which case M is a rotation around a unique fixed point) or det(M) = -1 and tr(M) = 0 (in which case M is a reflexion around a geodesic of fixed points). • M is parabolic if M has a unique fixed point, which is located on the boundary of H; M is parabolic if and only if det(M) = 1 and tr(M) = 2 or -2; • M is hyperbolic if it has exactly two fixed points which are on the boundary of H; this occurs if and only if det(M) = 1 and |tr(M)| > 2, or det(M) = -1 and tr(M) = 0.

FIGURE 4 .

 4 FIGURE 4. Conjugation for the Markov example. The right hand part of this figure depicts the dynamics of Γ * 2 on S M + (R), but viewed in P 2 (R) after the birational change of variables [x : y : z: w] = [X Q : Y Q : ZQ : XY Z], with Q = X 2 +Y 2 + Z 2 .This change of variables sends the interior of the triangle {X ≥ 0,Y ≥ 0, Z ≥ 0} onto S M + (R).

3. 5 .Proposition 3 . 6 .

 536 An (almost) invariant area form. The monomial action of the group GL (2, Z) on C * × C * almost preserves the holomorphic 2-form Ω = dx x ∧ dy y . More precisely, M * Ω = ±Ω for any element M of GL (2, Z). This form is invariant under the action of η and determines a holomorphic volume form on the Cayley cubic, that is almost Aut[S C ] invariant.This property is shared by all the members of Fam (the proof is straightforward). Let S ∈ Fam be the surface corresponding to the parameters (A, B,C, D). The volume form Ω, which is globally defined by the formulas Ω = dx ∧ dy 2z + xy -C = dy ∧ dz 2x + yz -A = dz ∧ dx 2y + zx -B on S \ Sing(S), is almost invariant under the action of Aut[S], by which we mean that f * Ω = ±Ω for any f in Aut[S].

Example 3 . 8 .Lemma 3 . 9 .

 3839 The family of surfaces with parameters (4 + 2d, 4 + 2d, 4 + 2d, -(8+8d +d 2 )) with d ∈ C is a deformation of the Cayley cubic, that corresponds to d = -2, and any of these surfaces has 3 singular points (counted with multiplicity). If m is a singular point of S, there exists a neighborhood of m which is isomorphic to the quotient of the unit ball in C 2 by a finite subgroup of SU (2).

Example 4 . 1 .

 41 If M is an element of GL (2, Z), M acts on C * × C * monomially (see equation 1.11

4. 2 .

 2 Birational extension. Let S be a member of the family Fam. The group A acts by polynomial automorphisms on S and also by birational transformations of the compactification S of S in P 3 (C). Let ∆ be the triangle at infinity, ∆ = S \ S. The three sides of this triangle are the lines D x = {x = 0, w = 0}, D y = {y = 0, w = 0} and D z = {z = 0, w = 0}; the vertices are v x = [1 : 0 : 0 : 0], v y = [0 : 1 : 0 : 0] and v z = [0 : 0 : 1 : 0]. The "middle points" of the sides are respectively m x = [0 : 1 : 1 : 0], m y = [1 : 0 : 1 : 0], and m z = [1 : 1 : 0 : 0] (see figure 3.3 in §3.4

2 ,

 2 on the triangle ∆. Since this action does not depend on the parameters, we choose (A, B,C, D) = (0, 0, 0, 0) and use what we know about the Markov surface S M (see §3.4). The closure of S M+ (R) in S M contains a part of the triangle at infinity, namely the set ∆ + (R) of points [x : y : z : 0] such that xyz = 0, and x, y, z ≥ 0. This provides a compactification of S M+ (R) by the triangle ∆ + (R). The conjugation c : H → S M+ (R)

Theorem 4 . 7 .

 47 Let f be an element of A and M f the element of PGL (2, Z)

Theorem 4 . 8 .

 48 (Bedford, Diller, Dujardin, Iwasaki, Uehara) Let f be an element of the group A and S be an element of Fam. The topological entropy of f M : S → S is equal to the logarithm of the spectral radius λ( f ) of M f , the number of periodic (saddle) points of f of period n grows like λ( f ) n and these points equidistribute toward an ergodic measure of maximal entropy for f .

Theorem 5 . 3 .

 53 Let S = S (A,B,C,D) be a surface in the family Fam, and p be a point with an infinite and bounded Γ * 2 orbit Orb(p). Then A, B, C, and D are real numbers, the orbit is contained in [-2, 2] 3 and it forms a dense subset of the unique bounded component of S(R) \ Sing(S).

Proposition 5 . 4 .Example 5 . 5 .

 5455 Modulo Benedetto-Goldman symmetries (see §2.3), Γ * 2orbits of length 2 are equivalent to {(0, 0, z 1 ), (0, 0, z 2 )} ∈ S (0,0,C,D) , C 2 + 4D = 0 where z 1 and z 2 are the two roots of z 2 = Cz + D, Γ * 2 -orbits of length 3 are equivalent to {(0, 0, 1), (A, 0, 1), (0, A, 1)} ∈ S (A,A,2,-1) , and Γ * 2 -orbits of length 4 are equivalent to {(1, 1, 1), (A -2, 1, 1), (1, A -2, 1), (1, 1, A -2)} ∈ S (A,A,A,4-3A) . An orbit of length 2 is for instance provided by the representation ρ defined by ρ : (α, β, γ, δ) → (M, N, M, -N) where M, N ∈ SL (2, C) are any element satisfying Tr(MN) = 0 i.e. (MN) 2 = -I. Trace parameters are given by (a, b, a, -b) where a = Tr(M) and b = Tr(N) : we get C = a 2b 2 , D = (a 2 -2)(b 2 -2) and z = a 2 -2. The other representation in the orbit, given by z ′ = 2b 2 , is defined by ρ

0 and the fact that p i is in S gives 2 =

 2 -3A + D and x ′ 0 = A implying x ′ 0 = A = -1 and p 1 = p 0 , a contradiction. Lemma 5.6. If Orb(p) is bounded and #Orb(p) > 4, then A, B, C, and D are real and p ∈ S(R).

  [-2, 2], whatever the choice of (a, b, c, d) corresponding to (A, B,C, D). When S(R) is smooth, the converse is true: When a, b, c and d lie in [-2, 2], S(R) has a "bounded component" maybe degenerating to a singular point, like in the Markov case. It is proved in Apendix B, §9.3, that a bounded component always correponds to SU (2)-representations for a convenient choice of parameters (a, b, c, d). Proof of theorem 5.3. Let Orb(p) be an infinite and bounded Γ * 2 -orbit in S = S (A,B,C,D) . Following Lemma 5.6, A, B, C and D are real and Orb(p) ⊂ S(R).

  6. Another example occurs for the Cayley cubic: S C is covered by C * × C * and the action of A on S C is covered by the monomial action of GL (2, Z), that is also covered by the linear action of GL (2, Z) on C × C if we use the covering mapping π : C × C → C * × C * , π(θ, φ) = (exp(θ), exp(φ)); as a consequence, there is an obvious A -invariant affine structure on S C .

9. APPENDIX B 9 . 1 .Lemma 9 . 1 .

 9191 Painlevé VI parameters (θ α , θ β , θ γ , θ δ ) and Okamoto symmetries. Many kinds of conjugacy classes of representations ρ with χ(ρ) = (a, b, c, d, x, y, z) give rise to the same (A, B,C, D, x, y, z)-point ; in order to underline this phenomenon, we would like to understand the ramified cover b, c, d) → (A, B,C, D) defined by equation (1.5). 9.1.1. Degree of Π. The degree of the covering map Π, that is the number of points (a, b, c, d) giving rise to a given generic (A, B,C, D)-point, is 24. Proof. We firstly assume B = ±C so that a = ±b. Then, solving B = bc + ad and C = ac + bd in c and d yields c = aC -bB a 2b 2 and d = aB -bC a 2b 2 .

AExample 9 . 5 .

 95 = 2x + yz, B = 2y + xz, C = 2z + xy and x 2 + y 2 + z 2 + xyz = Ax + By +Cz + D. Now, a compatible choice of parameters (a, b, c, d) is provided by (a, b, c, d) = (y, z, x, 2) and one easily check that the corresponding representations satisfy ρ(δ) = I. 9.3. SU (2)-representations versus bounded components. When a, b, c, and d are real numbers, A, B, C, and D are real as well. In that case, the real part S (A,B,C,D) (R) stands for SU (2) and SL (2, R)-representations; precisely, each connected component of the smooth part of S (A,B,C,D) (R) is either purely SU (2), or purely SL (2, R), depending on the choice of (a, b, c, d) fitting to (A, B,C, D). Moving into the parameter space {(a, b, c, d)}, when we pass from SU (2) to SL (2, R)-representations, we must go through a representation of the group SU (2) ∩ SL (2, R) = SO (2, R). Since representations into SO (2, R) are reducible, they correspond to singular points of the cubic surface (see §9.2). In other words, any bifurcation between SU (2) and SL (2, R)-representations creates a real singular point of S (A,B,C,D) . Since SU (2)-representations are contained in the cube [-2, 2] 3 , they always form a bounded component of the smooth part of S (A,B,C,D) (R): Unbounded components always correspond to SL (2, R)-representations, whatever the choice of parameters (a, b, c, d) is. The topology of S (A,B,C,D) (R) is studied in [4] when (a, b, c, d) are real numbers. There are at most four singular points, and the smooth part has at most one bounded and at most four unbounded components. On the other hand, if A, B, C, and D are real numbers, then a, b, c, and d are not necessarily real. If a, b, c, and d are purely imaginary numbers, then A, B, C, and D are real numbers. In this specific example, there are representations ρ : π 1 (S 2 4 ) → SL (2, C) with trace parameters (a, b, c, d, x, y, z) ∈ (iR) 4 × (R) 3 , the image of which are Zariski dense in the (real) Lie group SL (2, C). Such a representation correspond to a point (x, y, z) on § (A,B,C,D)(R) which is not realized by a representation into SL (2, R).

Theorem 9 . 6 .

 96 Let A, B, C, and D be real numbers, for which the smooth part of S (A,B,C,D) (R) has a bounded component. Then for any choice of parameters (a, b, c, d) fitting to (A, B,C, D), the numbers a, b, c, and d are real, contained in (-2, 2) and the bounded component stands for SU (2) or SL (2, R)representations. Moreover, for any such parameter (A, B,C, D), we can choose between SU (2) and SL (2, R) by conveniently choosing (a, b, c, d): The two cases both occur. In particular, bounded components of real surfaces S (A,B,C,D) (R) always arise from SU (2)-representations 3 . Denote by Z ⊂ R 4 the subset of those parameters (A, B,C, D) for which the corresponding surface S (A,B,C,D) (R) is singular (see section 9.2). Over each connected component of R 4 \ Z, the surface S (A,B,C,D) (R) is smooth and has constant topological type. Let B be the union of connected components of R 4 \ Z over which the smooth surface has a bounded component. The ramified cover Π : C 4 → C 4 ; (a, b, c, d) → (A, B,C, D) has degree 24;

Lemma 9 . 7 . 9 . 8 .

 9798 The set B is bounded, contained into -8 ≤ A, B,C ≤ 8 and -56 ≤ D ≤ 68.Proof. The orbit of any point p belonging to a bounded component of S (A,B,C,D) (R) is bounded. Applying the tools involved in section 5, we deduce that the bounded component is contained into [-2, 2] 3 . Therefore, for any p = (x, y, z) and s x (p) = (x ′ , y, z) belonging to the bounded component, we get A = x + x ′ + yz and then -8 ≤ A ≤ 8. Using s y and s z , we get the same bounds for B and C. Since p is in the surface, we also getD = x 2 + y 2 + z 2 + xyz -Ax -By -Cz.The order 24 group of Benedetto-Goldman symmetries act on the parameters (A, B,C, D) by freely permutting the triple (A, B,C), and freely changing sign for two of them. This group acts on the set of connected components of R 4 \ Z, B , B SU (2) and B SL (2,R) . The crucial Lemma is Lemma Up to Benedetto-Goldman symmetries, R 4 \ Z has only one bounded component. Proof. Up to Benedetto-Goldman symmetries, one can always assume 0 ≤ A ≤ B ≤ C. This fact is easily checked by looking at the action of symmetries on the projective coordinates [A : B : C] = [X : Y : 1]: the triangle T = {0 ≤ X ≤ Y ≤ 1} happens to be a fundamental domain for this group action. We shall show that R 4 \ Z has at most one bounded component over the cone C = {(A, B,C) ; 0 ≤ A ≤ B ≤ C} with respect to the projection (A, B,C, D) → (A, B,C). The discriminant of δ with respect to D reads disc(δ) = -65536 (B -C) 2 (B +C) 2 (A -C) 2 (A +C) 2 (A -B) 2 (A + B) 2 δ 3 1

First, we want

  to show that C \ {disc(δ) = 0} has 5 connected components, only two of which are bounded. The polynomial δ 1 has degree 9 in C in restriction to any line L X,Y = {A = XC, B = YC} ⊂ C with 0 < X < Y < 1;we claim that it has constantly 3 simple real roots (and 6 non real ones)c 1 (X ,Y ) < 0 < c 2 (X ,Y ) < c 3 (X ,Y ).

Lemma 9 . 9 .

 99 The cone C is cutted off by disc(δ) = 0 into 5 components, namelyC 1 = {C < c 1 (X ,Y )}, C 2 = {c 1 (X ,Y ) < C < 0}, C 3 = {0 < C < c 2 (X ,Y )}, C 4 = {c 2 (X ,Y ) < C < c 3 (X ,Y )} and C 5 = {c 3 (X ,Y ) < C}.But δ 1 has degree 8 when X = 0 and one of the roots c i (X ,Y ) tends to infinity when X → 0. One can check that c 3 → ∞ and only C 2 and C 3 are bounded. We now study the possible bounded components of R 4 \Z over the cona C ; they necessarily project onto C 2 , C 3 or the union (together with (A, B,C) = 0). The polynomial δ defining Z has degree 5 in D. After several numerical specializations, we obtain the following picture:• the polynomial δ has 5 real roots d 1 < d 2 < d 3 < d 4 < d 5 over C 2 and C 3 , d i = d i (A, B,C) for i = 1, . . . , 5, • over C = c 1 or C = c 2 , 0 < A < B < C, the 5 roots extend continuously, satisfying d 1 = d 2 < d 3 < d 4 < d 5 • over (A, B,C) = 0,the 5 roots extend continuously as 0 = d 1 < d 2 = d 3 = d 4 = 4. Among the 6 connected components of R 4 \ Z over C 2 (resp. C 3 ), only that one defined by {d 1 (A, B,C) < D < d 2 (A, B,C)} does not "extend" over the unbounded component C 1 (resp. C 4 ). The unique bounded component of R 4 \ Z over the cona C is therefore defined over C 2 ∪ {A = B = C = 0} ∪ C 3 by {d 1 (A, B,C) < D < d 2 (A, B,C)}. The corresponding connected component of R 4 \ Z must be bounded as well, since there is at least one bounded component, given by B SU (2) , or B SL (2,R . We thus conclude that B = B SU (2) = B SL (2,R and Theorem 9.6 is proved in the case the real surface S (A,B,C,D) (R) is smooth. The general case follows from the following lemma, the proof of which is left to the reader. Let (A, B,C, D) be real parameters such that the smooth part of the surface S (A,B,C,D) (R) has a bounded component. Then, there exist an arbitrary small real perturbation of (A, B,C, D) such that the corresponding surface is smooth and has a bounded component. We would like now to show that there is actually only one bounded component in R 4 \ Z (up to nothing). Inside [-2, 2] 4 , the equation ∆ splits into the following two equations 2(a 2 + b 2 + c 2 + d 2 )abcd -16 = ± (4a 2 )(4b 2 )(4c 2 )(4d 2 ).

Theorem 9 . 10 (Proposition 9 . 11 .

 910911 Benedetto-Goldman[START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF]). When a, b, c and d are real and S (A,B,C,D) (R) is smooth, then S (A,B,C,D) (R) has a bounded component if, and only if, a, b, c and d both lie in (-2, 2). In this case, the bounded component corresponds to SL (2, R)-representations if, and only if,2(a 2 + b 2 + c 2 + d 2 )abcd -16 > (4a 2 )(4b 2 )(4c 2 )(4d 2 ).When we cross the boundary2(a 2 + b 2 + c 2 + d 2 )abcd -16 = (4a 2 )(4b 2 )(4c 2 )(4d 2 )inside (-2, 2)4 , we pass from SL (2, R) to SU (2)-representations: At the boundary, the bounded component must degenerate down to a singular point.We now prove the The set (-2, 2) 4 \ {∆ = 0} has 24 connected components, 8 of them corresponding to SL (2, R)-representations. Okamoto correspondence permute transitively those components.

( 2 ,

 2 R)-locus, i.e. the real semi-algebraic set X of [-2, 2] 4 defined by2(a 2 + b 2 + c 2 + d 2 )abcd -16 > (4a 2 )(4b 2 )(4c 2 )(4d 2 ),consist in connected neighborhoods of those 8 vertices corresponding to the Cayley surface(a, b, c, d) = (ε 1 • 2, ε 2 • 2, ε 3 • 2, ε 4 • 2), ε i = ±1, ε 1 ε 2 ε 3 ε 4 = 1.Benedetto-Goldman symmetries act transitively on those components. On the other hand, the Cayley surface also arise for (a, b, c, d) = (0, 0, 0, 0), which is in the SU (2)-locus: the Okamoto correspondence therefore sends any of the 8 components above into the SU (2)-locus, thus proving the theorem. By abuse of notation, still denote by Z the discriminant locus defined by{∆ = 0} ⊂ (-2, 2) 4 . The restriction Z a,b of Z to the slice Π a,b = {(a, b, c, d) ; c, d ∈ (-2, 2)}, (a, b) ∈ (-2, 2) 2 ,is the union of two ellipses, namely those defined by c 2 + d 2 -δcd + δ 2 -4 = 0, where δ = 1 2 ab ± (4a 2 )(4b 2 ) .

2a 2 +(FIGURE 5 . 9 . 4 . 4 .FIGURE 6 .x 2 zx → 2

 25944622 FIGURE 5. Z restricted to the slice Π a,b .

(c 2 - 4 )(d 2 - 4 ) 2 , 2 , c ′′ = √ 2 +Remark 9 . 13 .Quad • B 2 1 = B -1 2 •

 24422291312 (0, 0, 0, d) ↔ (d ′′ , d ′′ , d ′′ , -d ′′ ) → S (0,0,0,4-d 2 ) ↓ ↓ (0, 0, d, d) ↔ (2, 2, d ′ , -d ′ ) → S (d 2 ,0,0,4-2d 2 ) ↓ ↓ (d, d, d, d) ↔ (2, 2, 2, d 2 -2) → S (2d 2 ,2d 2 ,2d 2 ,4-4d 2 -d 4 )whered ′ = √ 4d 2 and d ′′ = √ 2 + d ′ .In the previous diagram, horizontal correspondences arise from Okamoto symmetries, while vertical arrows, from quadratic transformation Q.More generally, we have related(0, 0, c, d) ↔ (c ′′ , c ′′ , d ′′ , -d ′′ ) → S (cd,0,0,4-c 2 -d 2 ) ↓ ↓ (c, c, d, d) ↔ (2, 2, c ′ , d ′ ) → S (c 2 +d 2 ,2cd,2cd,4-2c 2 -2d 2 -c 2 d 2 )wherec ′ = cd+ √ c ′ and d ′′ = √ 2c ′ .One can check by direct computations that the quadratic tranformation Quad is equivariant, up to finite index, with respect to the Γ * 2actions. Precisely, we have  Quad, Quad • B 2 = B -2 1 • Quad, Quad • s z = s z • Quad.

  The group PGL (2, Z) preserves the real part of S C ; for example, the product C * × C * retracts by deformation on the real 2-torus T 2 = S 1 × S 1 , and the monomial action of GL (2, Z) preserves this torus (it is the standard one under the parametrization (s,t) → (e 2iπs , e 2iπt )).

		1 0 1	and	1 0 0 -1
	of PGL (2, Z) respectively send the triple (x, y, z) to
		(x, -z -xy, y), (z, y, -x -yz) and (x, y, -z -xy).
	As we shall see, the induced action of PGL (2, Z) on S C coincides with the
	action of the extended mapping class group of S 2 4 considered in §1.2.
	2.2. Mapping class group action. First, let us detail section 1.2. The ex-tended mapping class group MCG * (S 2 4 ) is the group of isotopy classes of homeomorphisms of the four punctured sphere S 2 4 ; the usual mapping class group MCG(S 2 4 ) is the index 2 subgroup consisting only in orientation pre-serving homeomorphisms. Those groups embed in the group of outer auto-morphisms of π 1 (S 2 4 ) in the following way. Fix a base point p 0 ∈ S 2 4 . In any isotopy class, one can find a homeomorphism h fixing p 0 and thus inducing
	an automorphism of the fundamental group
		h * : π 1 (S 2 4 , p 0 ) → π 1 (S 2 4 , p 0 ) ; γ → h • γ.
	The class of h * modulo inner automorphisms does not depend on the choice of the representative h in the homotopy class and we get a morphism
	(2.1)	MCG * (S 2 4 ) → Out(π 1 (S 2 4 ))
	which turns out to be an isomorphism. Now, the action of Out(π 1 (S 2 4 )) on χ(S 2 4 ) gives rise to a morphism
	(2.2)		

  [START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF] ).

	Lemma 2.2. The subgroup of Aut(χ(S 2 4 )) obtained by the action of the sub-group PGL (2, Z) of MCG * (S 2 4

Character variety of the once-punctured torus. Our

  

	symmetric group Sym 4 = T 1 , T 2 , P 1 , P 2 . The subgroup Q acting trivially on (A, B,C, D, x, y, z) is of order 8 generated by
	(2.13)	Q = P 1 , P 2 , ⊗ (-1,-1,-1,-1) .
	2.4. family of sur-
	faces S (A,B,C,D) also provides, for (A, B,C, D) = (0, 0, 0, D), the moduli space
	of representations of the torus T 2 = R 2 /Z 2 with one puncture at (0, 0). Pre-
	cisely, if we go back to the notations of §2.2 (see figure 2.2.1), the funda-mental group π 1 (T 2 1 ), T 2 1 = T 2 \ {(0, 0)}, is the free group generated by ω 1 and ω 2 . The algebraic quotient χ(T 2 1 ) = Rep(T 2 1 )//SL (2, C) is given by the map
		). The "Benedetto-
	Goldman symmetry group" of order 192 acting on (a, b, c, d, x, y, z) which is described in [4] ( §3C) is precisely the group generated by ε-twists and the

  • g z 0 is an elliptic homography if and only if z 0 ∈ (-2, 2); this homography is periodic if and only if z 0 is of type ±2 cos(πθ) with θ rational; • g z 0 is parabolic (or the identity) if and only if z 0

  2 -1)8 (Y 2 -1)8 (Y δ 2 )2 where k is a huge constant and δ 2 is given, setting X = tY , byδ 2 = 22272t 8 + 40337t 6 + 16384t 10 + 16384t 2 + 22272t 4 Y 10 + -59233t 4 + 16384t 10 -59233t 6 + 40448t 8 + 16384 + 40448t 2 Y 8 + 22272 + 22272t 8 -59233t 2 -59233t 6 -118893t 4 Y 6 + 40337t 6 + 40337 -59233t 2 -59233t 4 Y 4 + 22272 + 22272t 4 + 40448t 2 Y 2 + 16384 + 16384t 2 .

This strengthens the results of[START_REF] Previte | Dynamics of the mapping class group on the moduli of a punctured sphere with rational holonomy[END_REF] where the bounded component was assumed to arise from SU (2)-representations.

In[START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF], the connected components of [-2, 2] 4 standing for SL (2, R)-representations are equivalently defined by ∆ > 0 and 2(a 2 + b 2 + c 2 + d 2 )abcd -16 > 0.

(1) Even translations by integers

with n = (n 1 , n 2 , n 3 , n 4 ) ∈ Z 4 ,

Those symmetries also act on the space of initial conditions of P V I in a non trivial way, but the corresponding action on (x, y, z) is very simple: We recover the twist symmetries ⊗ ε of section 2. 

The corresponding action on (a, b, c, d, x, y, z) is trivial. (4) The special Okamoto symmetry (called s 2 in [START_REF] Noumi | A new Lax pair for the sixth Painlevé equation associated with so(8)[END_REF]) Ok :

The corresponding action on (A, B,C, D, x, y, z) is trivial (see [START_REF] Inaba | Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert correspondence[END_REF]), but the action on (a, b, c, d) is rather subbtle, as we shall see.

The ramified cover c,d) is also a Galois cover: Its Galois group K is the subgroup of G generated by those translations ⊕ n with n ∈ (2Z) 4 and the twists ⊗ ε . One can check that [G : K] = 24 but K is not a normal subgroup of G: It is not Ok-invariant. In fact, K is normal in the subgroup G ′ ⊂ G where we omit the generator Ok and Q = G ′ /K coincides with the order 8 group of symmetries fixing (A, B,C, D). Therefore, G/K may be viewed as the disjoint union of left cosets

The Π-fibre is given by the Q-orbits of the 3 points (0, 0, 0, d) and ( d,d,d,) where d = 2 ± 4d 2 (only the sign of the square root inside is relevant up to Q). The fibre has length 24 except in the Cayley case d = 0 where it has length 9, consisting of the two Q-orbits of (0, 0, 0, 0) and (2, 2, 2, -2) 

• at least one of the parameters a, b, c or d equals ±2. More precisely, a representation ρ is sent to a singular point if, and only if, we are in one of the following cases :

• the representation ρ is reducible and then ∆ = 0,

• one of the generators ρ(α), ρ(β), ρ(γ) or ρ(δ) equals ±I (the corresponding trace parameter is then equal to ±2).

In fact, it is proved in [START_REF] Benedetto | The topology of the relative character varieties of a quadruply-punctured sphere[END_REF] that the set Z of parameters (A, B,C, D) for which S (A,B,C,D) is singular is defined by δ = 0 where δ is the discriminant of the polynomial

defined in section 5.1: P z has a multiple root at each singular point. Now, consider the ramified cover

defined by (1.5). One can check by direct computation that

One also easily verifies that the locus of reducible representations is also the ramification locus of Π:

The group generated by B 2 1 , B 2 and s z , acting on both sides, contains Γ * 2 as an index 2 subgroup (recall that B 2 1 = g x = s z • s y and B 2 2 = g y = s x • s z ). Therefore, if q = Quad(p) (for some parameters (0, B, 0, D)), then p is Γ * 2periodic (resp. bounded) if, and only if, q is.