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1. INTRODUCTION

This is the first part of a series of two papers (see [10]), the aim of which
is to describe the dynamics of a polynomial action of the group

(1.1) Γ∗
2 = {M ∈ PGL(2,Z) | M = Id mod(2)}

on the family of affine cubic surfaces

(1.2) x2 +y2 +z2+xyz= Ax+By+Cz+D,

whereA, B, C, andD are complex parameters. This dynamical system ap-
pears in several different mathematical areas, like the monodromy of the
sixth Painlevé differential equation, the geometry of hyperbolic threefolds,
and the spectral properties of certain discrete Schrödinger operators. One of
our main goals here is to classify parameters(A,B,C,D) for which Γ∗

2 pre-
serves a holomorphic geometric structure, and to apply thisclassification to
provide a galoisian proof of the irreducibility of the sixthPainlevé equation.
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1.1. Character variety. Let S2
4 be the four punctured sphere. Its fundamen-

tal group is isomorphic to a free group of rank 3; ifα, β, γ andδ are the four
loops which are depicted on figure 1.1, then

π1(S
2
4) = 〈α,β,γ,δ |αβγδ = 1〉.

pδ

γ

pγ

pβ

pα

α

β

δ

FIGURE 1. The four punctured sphere.

Let Rep(S2
4) be the set of representations ofπ1(S

2
4) into SL(2,C). Such

a representationρ is uniquely determined by the 3 matricesρ(α), ρ(β),
andρ(γ), so thatRep(S2

4) can be identified with the affine algebraic vari-
ety (SL(2,C))3. Let us associate the 7 following traces to any elementρ of
Rep(S2

4):

a = tr(ρ(α)) ; b = tr(ρ(β)) ; c = tr(ρ(γ)) ; d = tr(ρ(δ))
x = tr(ρ(αβ)) ; y = tr(ρ(βγ)) ; z= tr(ρ(γα)).

The polynomial mapχ : Rep(S2
4) → C7 defined by

(1.3) χ(ρ) = (a,b,c,d,x,y,z)

is invariant under conjugation, by which we mean thatχ(ρ′) = χ(ρ) if ρ′ is
conjugate toρ by an element ofSL(2,C). Moreover,

(1) the algebra of polynomial functions onRep(S2
4) which are invariant

under conjugation is generated by the components ofχ;
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(2) the components ofχ satisfy the quartic equation

(1.4) x2 +y2 +z2+xyz= Ax+By+Cz+D,

in which the variablesA, B, C, andD are given by

(1.5)
A = ab+cd, B = bc+ad, C = ac+bd,

and D = 4−a2−b2−c2−d2−abcd.

(3) the algebraic quotientRep(S2
4)//SL(2,C) of Rep(S2

4) by the action
of SL(2,C) by conjugation is isomorphic to the six-dimensional quar-
tic hypersurface ofC7 defined by equation (1.4).

The affine algebraic varietyRep(S2
4)//SL(2,C) will be denotedχ(S2

4) and
called thecharacter variety ofS2

4. For each choice of four complex parame-
tersA, B, C, andD, S(A,B,C,D) (or S if there is no obvious possible confusion)
will denote the cubic surface ofC3 defined by the equation (1.4). The family
of these surfacesS(A,B,C,D) will be denotedFam.

Remark 1.1. The mapC4 → C4;(a,b,c,d) 7→ (A,B,C,D) defined by (1.5)
is a non Galois ramified cover of degree 24. Fibers are studiedin Appendix
B. It is important to notice that a pointm∈ S(A,B,C,D) will give rise to repre-
sentations of very different nature depending on the choiceof (a,b,c,d) in
the fiber, e.g. reducible or irreducible, finite or infinite image.

Remark 1.2. As we shall see in section 2.4, if we replace the four puntured
sphere by the once puntured torus, the character variety is naturally fibered
by the family of cubic surfacesS(0,0,0,D.

1.2. Automorphisms and modular groups. The group of automorphisms
Aut(π1(S

2
4)) acts onRep(S2

4) by composition:(Φ,ρ) 7→ ρ◦Φ−1. Since inner
automorphisms act trivially onχ(S2

4), we get a morphism from the group of
outer automorphismsOut(π1(S

2
4)) into the group of polynomial diffeomor-

phisms ofχ(S2
4):

(1.6)

{
Out(π1(S

2
4)) → Aut[χ(S2

4)]
Φ 7→ fΦ

such thatfΦ(χ(ρ)) = χ(ρ◦Φ−1) for any representationρ.

The groupOut(π1(S
2
4)) is isomorphic to the extended mapping class group

MCG∗(S2
4), i.e. to the group of isotopy classes of homeomorphisms ofS2

4,
that preserve or reverse the orientation. It contains a copyof PGL(2,Z)
which is obtained as follows. LetT2 = R2/Z2 be a torus of dimension 2 and
σ be the involution ofT2 defined byσ(x,y) = (−x,−y). The fixed point set
of σ is the 2-torsion subgroupH ⊂ T2, isomorphic toZ/2Z×Z/2Z:

(1.7) H = {(0,0); (0,1/2); (1/2,0); (1/2,1/2)}.
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The quotientT2/σ is homeomorphic to the sphere,S2, and the quotient map
π : T2 → T2/σ = S2 has four ramification points, corresponding to the four
fixed points ofσ. The affine groupGL(2,Z) ⋉ H acts linearly onT2 and
commutes withσ. This yields an action ofPGL(2,Z)⋉H on the sphereS2,
that permutes ramification points ofπ. Taking these four ramification points
as the punctures ofS2

4, we get a morphism

(1.8) PGL(2,Z)⋉H → MCG∗(S2
4),

which, in fact, is an isomorphism (see [5], section 4.4). Theimage of
PGL(2,Z) is the stabilizer ofπ(0,0), freely permuting the three other points.
As a consequence,PGL(2,Z) acts by polynomial transformations onχ(S2

4).
The image ofH permutes the 4 punctures by products of disjoint transpo-
sitions and acts trivially onχ(S2

4), so that the action of the whole mapping
class groupMCG∗(S2

4) on χ(S2
4) actually reduces to that ofPGL(2,Z) (see

section 2.2).

Let Γ∗
2 be the subgroup ofPGL(2,Z) whose elements coincide with the

identity modulo 2. This group coincides with the (image inPGL(2,Z) of
the) stabilizer of the fixed points ofσ, so thatΓ∗

2 acts onS2
4 and fixes its four

punctures. Consequently,Γ∗
2 acts polynomially onχ(S2

4) and preserves the
fibers of the projection

(a,b,c,d,x,y,z) 7→ (a,b,c,d).

From this we obtain, for any choice of four complex parameters (A,B,C,D),
a morphism fromΓ∗

2 to the group of polynomial diffeomorphisms of the
surfaceS(A,B,C,D). The following result is essentially due tòEl’-Huti (see
[19], and§3.1).

Theorem A. For any choice of the parameters A, B, C, and D, the morphism

Γ∗
2 → Aut[S(A,B,C,D)]

is injective and the index of its image is bounded by24. For a generic choice
of the parameters, this morphism is an isomorphism.

As a consequence of this result, it suffices to understand theaction ofΓ∗
2

on the surfacesS(A,B,C,D) in order to get a full understanding of the action
of MCG∗(S2

4) on χ(S2
4). (see also remark 2.4 for the case of orientation

preserving transformations and an action of the pure braid group on three
strings).

Remark 1.3. If the parametersA, B, C, andD belong to a ringK, the group
Γ∗

2 acts onS(A,B,C,D)(K), i.e. on the set of points of the surface with coordi-
nates inK. In particular, when the parameters are real numbers,Γ∗

2 acts on
the real surfaceS(A,B,C,D)(R).
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There are useful symmetries of the parameter space, as well as covering
between distinct surfacesS(A,B,C,D) andS(A′,B′,C′,D′), that can be used to re-
late dynamical properties ofΓ∗

2 on different surfaces of our family. These
symmetries and covering will be described in section 2 and appendix B.

1.3. Projective structures. OnceS2
4 is endowed with a complex projective

structure, which means that we have an atlas onS2
4 made of charts intoP1(C)

with transition functions in the group of homographic transformations of
P1(C), the holonomy defines a morphism fromπ1(S

2
4) to PSL(2,C). Since

π1(S
2
4) is a free group, the holonomy can be lifted to a morphism

ρ : π1(S
2
4) → SL(2,C).

Properties of the holonomy such as discreteness, finiteness, or the presence
of parabolic elements inρ(π1(S

2
4)), are invariant by conjugation and by the

action of the mapping class groupMCG∗(S2
4). This kind of properties may

be used to construct invariant subsets ofS(A,B,C,D) for the action ofΓ∗
2, and

the dynamics of this action may be used to understand those invariant sets
and the space of projective structures. This approach has been popularized
by Goldman (see [21], [23] for example).

1.4. Painlevé VI equation. The dynamics ofΓ∗
2 on the varietiesS(A,B,C,D)

is also related to the monodromy of a famous ordinary differential equation.
The sixth Painlevé equationPVI = PVI(θα,θβ,θγ,θδ) is the second order non
linear O.D.E.

PVI





d2q
dt2

= 1
2

(
1
q + 1

q−1 + 1
q−t

)(
dq
dt

)2
−

(
1
t + 1

t−1 + 1
q−t

)(
dq
dt

)

+
q(q−1)(q−t)

t2(t−1)2

(
(θδ−1)2

2 − θ2
α
2

t
q2 +

θ2
β
2

t−1
(q−1)2 +

1−θ2
γ

2
t(t−1)
(q−t)2

)
.

the coefficients of which depend on complex parameters

θ = (θα,θβ,θγ,θδ)

. The main property of this equation is the absence of movablesingular
points, the so-called Painlevé property: All essential singularities of all solu-
tionsq(t) of the equation only appear whent ∈ {0,1,∞}; in other words, any
solutionq(t) extends analytically as a meromorphic function on the universal
cover ofP1(C)\{0,1,∞}.

Another important property, expected by Painlevé himself, is the irre-
ducibility. Roughly speaking, the general solution is moretranscendental
than solutions of linear, or first order non linear, ordinarydifferential equa-
tions with polynomial coefficients. Painlevé proved that any irreducible sec-
ond order polynomial differential equation without movable singular point
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falls after reduction into the 4-parameter familyPVI or one of its degenera-
tionsPI , . . . ,PV . The fact that Painlevé equations are actually irreducible was
proved by Nishioka and Umemura forPI (see [35, 44]) and by Watanabe in
[45] for PVI. Another notion of irreducibility, related with transcendence of
first integrals, was developped by Malgrange and Casale in [33, 11] and then
applied to the first of Painlevé equations (see 7 for more details).

A third important property, discovered by R. Fuchs, is that solutions of
PVI parametrize isomonodromic deformations of rank 2 meromorphic con-
nections over the Riemann sphere having simple poles at{0, t,1,∞}, with

respective set of local exponents(±θα
2 ,±θβ

2 ,±θγ
2 ,±θδ

2 ). From this point of
view, the good space of initial conditions at, say,t0, is the moduli space
M t0(θ) of those connections fort = t0 (see [29]); it turns to be a conve-
nient semi-compactification of the naive space of initial conditions C2 ∋
(q(t0),q′(t0)) (compare [37]). Via the Riemann-Hilbert correspondence,M t0(θ)
is analytically isomorphic to the moduli space of corresponding monodromy
representations, namely to (a desingularization of)S(A,B,C,D) with parameters

(1.9) a = 2cos(πθα), b = 2cos(πθβ), c = 2cos(πθγ), d = 2cos(πθδ).

The (non linear) monodromy ofPVI, obtained after analytic continuation
around 0 and 1 of localPVI solutions att = t0, induces a representation

π1(P
1(C)\{0,1,∞}, t0) → Aut[S(A,B,C,D)]

whose image coincides with the action ofΓ2 ⊂ PSL(2,Z) (see [17, 29]).

1.5. The Cayley cubic. One very specific choice of the parameters will
play a central role in this paper. The parameters are(0,0,0,4), and the sur-
faceS(0,0,0,4) is the unique surface in our family with four singularities.Four
is the maximal possible number of isolated singularities for a cubic surface,
andS(0,0,0,4) is therefore isomorphic to the well known Cayley cubic. From
the point of view of character varieties, this surface appears in the very spe-
cial case(a,b,c,d) = (0,0,0,0) consisting only of solvable representations
(dihedral or reducible).

I. The Cayley cubicSC ; II. S(−0.2,−0.2,−0.2,4.39) ; III. S(0,0,0,3) ; IV. S(0,0,0,4.1).
From the Painlevé point of view, it corresponds to the Picard parame-

ter (θ1,θ2,θ3,θ4) = (0,0,0,1). The singular foliation which is defined by
the corresponding Painlevé equationPVI(0,0,0,1) is transversely affine (see
[11]) and, as was shown by Picard himself, admits explicit first integrals
by means of elliptic functions (see 7). Moreover, this specific equation has
countably many agebraic solutions, that are given by finite order points on
the Legendre family of elliptic curves (see 7).

The Cayley cubic has also the “maximal number of automorphisms”: The
whole groupPGL(2,Z), in whichΓ∗

2 has index 6, stabilizes the Cayley cubic,
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II

III IV

I

FIGURE 2. Four examples. I. The Cayley cubicSC ; II.
S(−0.2,−0.2,−0.2,4.39) ; III. S(0,0,0,3) ; IV. S(0,0,0,4.1).

and there are extra symmetries coming from the permutation of coordinates
(see section 3.1), so that the maximal index 24 of theorem A isobtained in
the case of the Cayley cubic.

Moreover, the degree 2 orbifold cover

(1.10) πC : C∗×C∗ → S(0,0,0,4)

semi-conjugates the action ofPGL(2,Z) on the character surfaceS(0,0,0,4) to
the monomial action ofGL(2,Z) on C∗×C∗, which is defined by

(1.11) M

(
u
v

)
=

(
um11vm12

um21vm22

)
,
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for any elementM of GL(2,Z). On the universal coverC×C → C∗×C∗,
the lifted dynamics is the usual affine action of the groupGL(2,Z)⋉ Z2 on
the complex planeC2.

1.6. Compactification and entropy. Our first goal is to classify automor-
phisms of surfacesS(A,B,C,D) in three types, elliptic, parabolic and hyper-
bolic, and to describe the main properties of the dynamics ofeach type of
automorphisms. This classification is compatible with the description of
mapping classes, Dehn twists corresponding to parabolic transformations,
and pseudo-Anosov mappings to hyperbolic automorphisms. The most strik-
ing result in that direction is summarized in the following theorem.

Theorem B. Let A, B, C, and D be four complex numbers. Let M be an
element ofΓ∗

2, and fM be the automorphism of S(A,B,C,D) which is determined
by M. The topological entropy of fM : S(A,B,C,D)(C) → S(A,B,C,D)(C) is equal
to the logarithm of the spectral radius of M.

The proof is obtained by a deformation argument: We shall show that the
topological entropy does not depend on the parameters(A,B,C,D), and then
compute it in the case of the Cayley cubic. To do so, we first describe the
geometry of surfacesS∈ Fam (section 2), their groups of automorphisms
(section 3), and the action of automorphisms by birational transformations
on the Zariski closureSof S in P3(C) (section 4).

Another algorithm to compute the topological entropy has been obtained
by Iwasaki and Uehara for non singular cubicsSin Fam (see [32]). The case
of singular cubics is crucial for the study of the set of quasi-fuchsian defor-
mations of fuchsian representations, in connection with Bers embedding of
Teichmüller spaces (see [23] and [10]).

1.7. Bounded orbits. Section 5 is devoted to the study of parabolic ele-
ments (or Dehn twists), and bounded or periodic (i.e. finite)orbits ofΓ∗

2. For
instance, given a representationρ : S

2
4 → SU(2) ⊂ SL(2,C), theΓ∗

2-orbit of
the correponding pointχ(ρ) will be bounded, contained in the cube[−2,2]3.
If moreover the image ofρ is finite, then so will be the corresponding orbit.
Though, there are periodic orbits with complex coordinates.

First of all, fixed points ofΓ∗
2 are precisely the singular points ofS(A,B,C,D)

and have been extensively studied (see [29]). Singular points arise from
semi-stable points ofRep(S2

4), that is to say either from reducible represen-
tations, or from those representations for which one of the matricesρ(α),
ρ(β), ρ(γ) or ρ(δ) is ±I . Both type of degeneracy occur at each singular
point of S(A,B,C,D) depending on the choice of parameters(a,b,c,d) fitting
to (A,B,C,D). The Riemann-Hilbert correspondanceM t0(θ) → S(A,B,C,D)
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is a minimal resolution of singularities andPVI equation restricts to the ex-
ceptional divisor as a Riccati equation : this is the locus ofRiccati-type
solutions. We note that any point(x,y,z) is the singular point of one member
S(A,B,C,D).

Periodic orbits of length≥ 2 correspond to algebraic solutions ofPVI
equation (see [31]). In Proposition 5.4, we classify orbitsof length≤ 4 :
we find one 2-parameter family of length 2 orbits and two 1-parameter fam-
ilies of length 3 and 4 orbits. They correspond to well-known1 algebraic
solutions ofPVI equation (see [3]). For instance, the length 2 orbit arise
whenA = C = 0 ; the correspondingPVI-solution isq(t) =

√
t.

The following result shows that infinite bounded orbits are real and con-
tained in the cube[−2,2]3.

Theorem C. Let m be a point of S(A,B,C,D) with a boundedΓ∗
2-orbit of length

> 4. Then, the parameters(A,B,C,D) are real numbers and the orbit is
contained in the real part S(A,B,C,D)(R) of the surface.

If the orbit of m is finite, then both the surface and the orbit are actually
defined over a (real) number field.

If the orbit of m is infinite, then it corresponds to aSU(2)-representation
for a convenient choice of parameters(a,b,c,d), and the orbit is contained
and dense in the unique bounded connected component of the smooth part
of S(A,B,C,D)(R).

As a corollary, periodic orbits of length> 4 are rigid and we recover
the main result of [3]. Recall that Cayley cubic contains infinitely many
periodic orbits, of arbitrary large order. It is conjectured that there are finitely
many periodic orbits apart from the Cayley member, but this is still an open
problem. A classification of known periodic orbits can be found in [7].

About infinite orbits, Theorem C should be compare with results of Gold-
man and Previte and Xia, concerning the dynamics on the character variety
for representations intoSU(2) [40]. We note that an infinite bounded orbit
may also correspond toSL(2,R)-representation for an alternate choice of
parameters(a,b,c,d).

This theorem stresses the particular role played by the realcase, when all
the parametersA, B, C, andD are real numbers; in that case,Γ∗

2 preserves
the real part of the surface and we have two different, but closely related,
dynamical systems: The action on the complex surfaceS(A,B,C,D)(C) and
the action on the real surfaceS(A,B,C,D)(R). The link between those two
dynamical systems will be studied in [10].

1Although we usually find 4 families of algebraic solutions ofPVI in the litterature (see
[7, 3]), there are actually 3 up to Okamoto symmetries : degree 4 solutions 3B and 4C in
[3] are conjugated by the symmetrys1s2s1 (with notations of [36]).
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1.8. Dynamics, affine structures, and the irreducibility of PVI. The last
main result that we shall prove concerns the classification of parameters
(A,B,C,D) for which S(A,B,C,D) admits aΓ∗

2-invariant holomorphic geomet-
ric structure.

Theorem D. The groupΓ∗
2 does not preserve any holomorphic curve of fi-

nite type, any singular holomorphic foliation, or any singular holomorphic
web. The groupΓ∗

2 does not preserve any meromorphic affine structure, ex-
cept in the case of the Cayley cubic,i.e. when(A,B,C,D) = (0,0,0,4), or
equivalently when

(a,b,c,d) = (0,0,0,0) or (2,2,2,−2),

up to multiplication by−1 and permutation of the parameters.

Following [12], the same strategy shows that the Galois groupoid is the
whole symplectic pseudo-group except in the Cayley case (see section 7),
and we get

Theorem E. The sixth Painlev́e equation is irreducible in the sense of Mal-
grange and Casale except when(A,B,C,D) = (0,0,0,4), i.e. except in one
of the following cases:

• θω ∈ 1
2 +Z, ∀ω = α,β,γ,δ,

• θω ∈ Z, ∀ω = α,β,γ,δ, and∑ω θω is even.

Following [13], Malgrange-Casale irreducibility also implies Nishioka--
Umemura irreducibility, so that theorem 1.8 indeed provides a galoisian
proof of the irreducibility in the spirit of Drach and Painlevé.

1.9. Aknowledgement. This article has been written while the first author
was visiting Cornell University: Thanks to Cliff Earle, John Smillie and
Karen Vogtmann for nice discussions concerning this paper,and to the DREI
for travel expenses between Rennes and Ithaca.

We would like to kindly thank Marta Mazzocco who introduced us to
Painlevé VI equation, its geometry and dynamics. The talk she gave in
Rennes was the starting point of our work. Many thanks also toGuy Casale
who taught us about irreducibility, and to Yair Minsky who kindly explained
some aspects of character varieties to the first author.

Part of this paper was the subject of a conference held in Rennes in 2005,
which was funded by the ANR project ”Systèmes dynamiques polynomi-
aux”, and both authors are now taking part to the ANR project ”Symplexe.”
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2. THE FAMILY OF SURFACES

As explained in 1.1, we shall consider the familyFam of complex affine
surfaces which are defined by the following type of cubic equations

x2 +y2 +z2+xyz= Ax+By+Cz+D,

in which A, B, C, and D are four complex parameters. Each choice of
(A,B,C,D) gives rise to one surfaceS in our family; if necessary,S will
also be denotedS(A,B,C,D). When the parameters are real numbers,S(R) will
denote the real part ofS. Figure 1.5 presents a few pictures ofS(R) for
various choices of the parameters.

This section contains preliminary results on the geometry of the surfaces
S(A,B,C,D), and the automorphisms of these surfaces. Most of these results are
well known to algebraic geometers and specialists of Painlevé VI equations.

2.1. The Cayley cubic. In 1869, Cayley proved that, up to projective trans-
formations, there is a unique cubic surface inP

3(C) with four isolated singu-
larities. One of the nicest models of the Cayley cubic is the surfaceS(0,0,0,4),
whose equation is

x2 +y2 +z2+xyz= 4.

The four singular points ofSC are rational nodes located at

(−2,−2,−2), (−2,2,2), (2,−2,2) and (2,2,−2),

and can be seen on figure 1.5. This specific member of our familyof sur-
faces will be calledthe Cayley cubicand denotedSC. This is justified by the
following theorem (see Appendix A).

Theorem 2.1(Cayley). If S is a member of the familyFam with four singular
points, then S coincides with the Cayley cubic SC.

The Cayley cubic is isomorphic to the quotient ofC∗×C∗ by the involu-
tion η(u,v) = (u−1,v−1). The map

πC(x,y) =

(
−u− 1

u
,−v− 1

v
,−uv− 1

uv

)

gives an explicit isomorphism between(C∗×C∗)/η andSC. The four fixed
points

(1,1), (1,−1), (−1,1) and (−1,−1)

of η respectively correspond to the singular points ofSC above.
The real surfaceSC(R) contains the four singularities ofSC, and the smooth

locusSC(R)\Sing(SC) is made of five components : A bounded one, the clo-
sure of which coincides with the image ofT

2 = S
1×S

1 ⊂ C∗×C∗ by πC,
and four unbounded ones, corresponding to images ofR+×R+, R+ ×R−,
R−×R+, andR−×R− (see figure 1.5).
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As explained in section 1.5, the groupGL(2,Z) acts onC∗×C∗ by mono-
mial transformations, and this action commutes with the involution η, per-
muting its fixed points. As a consequence,PGL(2,Z) acts on the quotient
SC. Precisely, the generators

(
1 0
−1 1

)
,

(
1 1
0 1

)
and

(
1 0
0 −1

)

of PGL(2,Z) respectively send the triple(x,y,z) to

(x,−z−xy,y), (z,y,−x−yz) and (x,y,−z−xy).

As we shall see, the induced action ofPGL(2,Z) on SC coincides with the
action of the extended mapping class group ofS2

4 considered in§1.2.
The groupPGL(2,Z) preserves the real part ofSC ; for example, the prod-

uct C∗×C∗ retracts by deformation on the real 2-torusT
2 = S

1×S
1, and

the monomial action ofGL(2,Z) preserves this torus (it is the standard one
under the parametrization(s, t) 7→ (e2iπs,e2iπt)).

2.2. Mapping class group action. First, let us detail section 1.2. The ex-
tended mapping class groupMCG∗(S2

4) is the group of isotopy classes of
homeomorphisms of the four punctured sphereS2

4; the usual mapping class
groupMCG(S2

4) is the index 2 subgroup consisting only in orientation pre-
serving homeomorphisms. Those groups embed in the group of outer auto-
morphisms ofπ1(S

2
4) in the following way. Fix a base pointp0 ∈ S2

4. In any
isotopy class, one can find a homeomorphismh fixing p0 and thus inducing
an automorphism of the fundamental group

h∗ : π1(S
2
4, p0) → π1(S

2
4, p0) ; γ 7→ h◦ γ.

The class ofh∗ modulo inner automorphisms does not depend on the choice
of the representativeh in the homotopy class and we get a morphism

(2.1) MCG∗(S2
4) → Out(π1(S

2
4))

which turns out to be an isomorphism.
Now, the action ofOut(π1(S

2
4)) onχ(S2

4) gives rise to a morphism

(2.2)

{
MCG∗(S2

4) → Aut[χ(S2
4)]

[h] 7→
{

χ(ρ) 7→ χ(ρ◦h−1)
}

into the group of polynomial diffeomorphisms ofχ(S2
4). (here, we use that

ρ ◦ (h∗)−1 = ρ ◦ h∗ = ρ ◦ h−1). Our goal in this section is to give explicit
formulae for this action ofMCG∗(S2

4) onχ(S2
4), and to describe the subgroup

of MCG(S2
4) which stabilizes each surfaceS(A,B,C,D).
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2.2.1. Torus cover.Consider the two-fold ramified cover

(2.3) πT : T
2 = R2/Z2 → S

2

with Galois involutionσ : (x,y) 7→ (−x,−y) sending its ramification points
(1/2,0), (0,1/2), (1/2,1/2) and(0,0) respectively to the four puncturespα,
pβ, pγ andpδ (see figure 1.1).

ω2

α

α
1

p̃0

β

ω1

1/2

p̃′0

(0,0)

δ

1/2

γ

1

FIGURE 3. The torus cover.

The mapping class group of the torus, and also of the once punctured
torusT

2
1 = T

2 \ {(0,0)}, is isomorphic toGL(2,Z). This group acts by lin-
ear homeomorphisms on the torus, fixing(0,0), and permuting the other
three ramification points ofπT . This action provides a section of the pro-
jection Diff (T2) → MCG∗(T2). Since this action commutes with the invo-
lution σ (which generates the center ofGL(2,Z)), we get a morphism from
PGL(2,Z) to MCG∗(S2

4). This morphism is one to one and its image is con-
tained in the stabilizer ofpδ in MCG∗(S2

4).
The subsetH ⊂T2 of ramification points ofπ coincides with the 2-torsion

subgroup of(T2,+) ; H acts by translation onT2 and commutes with the
involutionσ as well. This provides an isomorphism (see section 4.4 in [5])

(2.4) PGL(2,Z)⋉H → MCG∗(S2
4).
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Lemma 2.2. The subgroup ofAut(χ(S2
4)) obtained by the action of the sub-

groupPGL(2,Z) of MCG∗(S2
4) is generated by the three polynomial auto-

morphisms B1, B2 and T3 of equations 2.7, 2.8, and 2.9 below. The4-order
translation group H acts trivially on parameters(A,B,C,D,x,y,z), permut-
ing parameters(a,b,c,d) as follows

P1 = (1/2,0) : (a,b,c,d) 7→ (d,c,b,a)(2.5)

P2 = (0,1/2) : (a,b,c,d) 7→ (b,a,d,c)(2.6)

Proof. Let p̃0 andp̃′0 be the lifts of the base pointp0 ∈ S2
4. Still denote byα,

β, γ andδ the two lifts of those loops, with respective initial pointsp̃0 and
p̃′0. The fundamental group of the four punctured torusT2

4 = T2\H based at
p̃0 may be viewed as the set of even words inα, β, γ andδ, or equivalently
of words inω1, ω2 andδ that are even inδ where

ω1 = βγ = α−1δ−1 and ω2 = γδ = β−1α−1.

(see Figure 2.2.1). The action of the linear homeomorphism

B1 =

(
1 0
−1 1

)
: T

2
4 → T

2
4,

or we should say, of a convenient isotopic homeomorphismh fixing p̃0, on
the fundamental groupsπ1(T

2
4, p̃0) andπ1(S

2
4, p0) is given by :

h∗ :





ω1 7→ δ−1ω−1
1 ω2δ−1

ω2 7→ ω2
δ 7→ δ

i.e.





α 7→ αβα−1

β 7→ α
γ 7→ γ
δ 7→ δ

This automorphism ofπ1(S
2
4, p0), which depends on the choice ofh in the

isotopy class ofB1, induces an automorphism

Rep(S2
4) → Rep(S2

4) ; ρ 7→ ρ◦ (h∗)−1.

The corresponding action on the character variety,i.e. on the corresponding
7-uples(a,b,c,d,x,y,z) ∈ C7, is independant of that choice. In order to
compute it, note that

(h∗)
−1 = h∗ :





α 7→ β
β 7→ β−1αβ
γ 7→ γ
δ 7→ δ
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We therefore obtain

(2.7) B1 =

(
1 0
−1 1

)
:





a 7→ b
b 7→ a
c 7→ c
d 7→ d

and





x 7→ x
y 7→ −z−xy+ac+bd
z 7→ y

For instance, the coordinatey′ of the image is given byy′ = tr(ρ◦h∗(βγ)) =
tr(ρ(β−1αβγ)), and its value is easily computed using standard Fricke-Klein
formulae, like

tr(M1) = tr(M−1
1 ), tr(M1M2) = tr(M2M1),

tr(M1M−1
2 )+ tr(M1M2) = tr(M1)tr(M2)

and tr(M1M2M3)+ tr(M1M3M2)+ tr(M1)tr(M2)tr(M3)

= tr(M1)tr(M2M3)+ tr(M2)tr(M1M3)+ tr(M3)tr(M1M2)

for anyM1,M2,M3 ∈ SL(2,C).
A similar computation yields

(2.8) B2 =

(
1 1
0 1

)
:





a 7→ a
b 7→ c
c 7→ b
d 7→ d

and





x 7→ z
y 7→ y
z 7→ −x−yz+ab+cd

which, together withB1, provide a system of generators for thePSL(2,Z)-
action. In order to generatePGL(2,Z), we have to add the involution

(2.9) T3 =

(
0 1
1 0

)
:





a 7→ c
b 7→ b
c 7→ a
d 7→ d

and





x 7→ y
y 7→ x
z 7→ z

The formulae for the action ofH are obtained in the same way. �

Remark 2.3. The formulae 2.7, 2.8, and 2.9 forB1, B2 andT3 specialize to
the formulae of section 2.1 when(A,B,C,D) = (0,0,0,4).

Remark 2.4. The Artin Braid GroupB3 = 〈β1,β2 | β1β2β1 = β2β1β2〉 is
isomorphic to the group of isotopy classes of the thrice punctured disk fixing
its boundary. There is therefore a morphism fromB into the subgroup of
MCG(S2

4) that stabilizespδ. This morphism gives rise to the following well
known exact sequence

I → 〈(β1β2)
3〉 → B3 → PSL(2,Z) → 1,

where generatorsβ1 andβ2 are respectively sent toB1 andB2, and the group
〈(β1β2)

3〉 coincides with the center ofB3. In particular, the action ofB3

on χ(S2
4) coincides with the action ofPSL(2,Z). We note thatPSL(2,Z)
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is the free product of the trivolutionB1B2 and the involutionB1B2B1. In
PGL(2,Z), we also have relationsT2

3 = I , T3B1T3 = B−1
2 andT3B2T3 = B−1

1 .

2.2.2. The modular groupsΓ∗
2 andΓ2. Since the action ofM ∈ GL(2,Z) on

the setH of points of order 2 depends only on the equivalence class ofM
modulo 2, we get an exact sequence

I → Γ∗
2 → PGL(2,Z)⋉H → Sym4 → 1

whereΓ∗
2 ⊂ PGL(2,Z) is the subgroup defined by those matricesM ≡ I

modulo 2. This group acts on the character variety, and sinceit preserves
the punctures, it fixesa, b, c, andd. The groupΓ∗

2 is the free product of 3
involutions,sx, sy, andsz, acting on the character variety as follows.

(2.10) sx =

(
−1 2
0 1

)
:





x 7→ −x−yz+ab+cd
y 7→ y
z 7→ z

(2.11) sy =

(
1 0
2 −1

)
:





x 7→ x
y 7→ −y−xz+bc+ad
z 7→ z

(2.12) sz =

(
1 0
0 −1

)
:





x 7→ x
y 7→ y
z 7→ −z−xy+ac+bd

We note thatsx = B2B−1
1 B−1

2 T3, sy = B2B1B−1
2 T3 andsz = B2B1B2T3. The

standard modular groupΓ2 ⊂ PSL(2,Z) is generated by




gx = szsy = B2
1 =

(
1 0
−2 1

)

gy = sxsz = B2
2 =

(
1 2
0 1

)

gz = sysx = B−2
1 B−2

2 =

(
1 −2
2 −3

)

(we havegzgygx = I ); as we shall see, this corresponds to Painlevé VI mon-
odromy (see [29] and section 7). The following proposition is now a direct
consequence of lemma 2.2.

Proposition 2.5.LetMCG∗
0(S

2
4) (resp.MCG0(S

2
4)) be the subgroup ofMCG∗(S2

4)
(resp. MCG(S2

4)) which stabilizes the four punctures ofS2
4. This group co-

incides with the stabilizer of the projectionπ : χ(S2
4) → C4 which is defined

by
π(a,b,c,d,x,y,z) = (a,b,c,d).



18 SERGE CANTAT, FRANK LORAY

Its image inAut(χ(S2
4)) coincides with the image ofΓ∗

2 (resp. Γ2) and is
therefore generated by the three involutions sx, sy and sz (resp. the three
automorphisms gx, gy, gz).

As we shall see in sections 3.1 and 3.2, this group is of finite index in
Aut(χ(S2

4).

Remark 2.6. Let us consider the exact sequence

I → Γ∗
2 → PGL(2,Z) → Sym3 → 1,

whereSym3 ⊂ Sym4 is the stabilizer ofpδ, or equivalently ofd, or D. A
splittingSym3 →֒ PGL(2,Z) is generated by the transpositionsT1 = T3B1B2
andT2 = B1B2T3. They act as follows on the character variety.

T1 =

(
−1 0
1 1

)
:





a 7→ b
b 7→ a
c 7→ c
d 7→ d

and





x 7→ x
y 7→ z
z 7→ y

and

T2 =

(
1 1
0 −1

)
:





a 7→ a
b 7→ c
c 7→ b
d 7→ d

and





x 7→ z
y 7→ y
z 7→ x

2.3. Twists. There are other symmetries between surfacesS(A,B,C,D) that do
not arise from the action of the mapping class group. Indeed,given any
4-upleε = (ε1,ε2,ε3,ε4) ∈ {±1}4 with ∏4

i=1εi = 1, theε-twist of a repre-
sentationρ ∈ Rep(S2

4) is the new representation⊗ερ generated by




ρ̃(α) = ε1ρ(α)
ρ̃(β) = ε2ρ(β)
ρ̃(γ) = ε3ρ(γ)
ρ̃(δ) = ε4ρ(δ)

This provides an action ofZ/2Z ×Z/2Z ×Z/2Z on the character variety
given by

⊗ε :





a 7→ ε1a
b 7→ ε2c
c 7→ ε3b
d 7→ ε4d





A 7→ ε1ε2A
B 7→ ε2ε3B
C 7→ ε1ε3C
D 7→ D

and





x 7→ ε1ε2x
y 7→ ε2ε3y
z 7→ ε1ε3z

The action on(A,B,C,D,x,y,z) is trivial iff ε =±(1,1,1,1). The ”Benedetto-
Goldman symmetry group” of order 192 acting on(a,b,c,d,x,y,z) which is
described in [4] (§3C) is precisely the group generated byε-twists and the
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symmetric groupSym4 = 〈T1,T2,P1,P2〉. The subgroupQ acting trivially on
(A,B,C,D,x,y,z) is of order 8 generated by

(2.13) Q = 〈P1,P2,⊗(−1,−1,−1,−1)〉.

2.4. Character variety of the once-punctured torus. Our family of sur-
facesS(A,B,C,D) also provides, for(A,B,C,D) = (0,0,0,D), the moduli space
of representations of the torusT2 = R2/Z2 with one puncture at(0,0). Pre-
cisely, if we go back to the notations of§2.2 (see figure 2.2.1), the funda-
mental groupπ1(T

2
1), T2

1 = T2 \ {(0,0)}, is the free group generated byω1

andω2. The algebraic quotientχ(T2
1) = Rep(T2

1)//SL(2,C) is given by the
map

{
Rep(T2

1) → χ(T2
1) ≃ C3

ρ 7→ (X,Y,Z) = (tr(ρ(ω1)), tr(ρ(ω2)),−tr(ρ(ω1ω2)))

(see [4]). Using that

tr([M1,M2]) = tr(M1)
2+tr(M2)

2+tr(M1M2)
2−tr(M1)tr(M2)tr(M1M2)−2,

for all M1,M2∈ SL(2,C), we note that those representations with given trace
d̃ = tr(ρ([ω1,ω2])) are parametrized by the affine cubic

X2+Y2 +Z2 +XYZ= d̃+2

which is preciselyS(0,0,0,D) with D = d̃+2. The reason is given by the two-
fold ramified coverπ : T2 → S2 used in§2.2. Consider a representationρ ∈
Rep(S2

4) corresponding to some point(x,y,z) ∈ S(0,0,0,D), with local traces
given by(a,b,c,d) = (0,0,0,d), D = 4−d2. One can lift the representation
on the 4-punctured torus, where punctures are given by the set H of 2-torsion
points. Sincea = b = c = 0, we have

ρ(α), ρ(β), ρ(γ) ∼
(

i 0
0 −i

)

and the lifted representationρ◦π has local monodromy−I around the corre-
sponding punctures(1/2,0), (0,1/2) and(1/2,1/2). After twistingρ◦π by
−I at each of the punctures, we finally deduce a representationρ̃ ∈ Rep(T2

1).
Sinceπ∗ω1 = βγ andπ∗ω2 = β−1α−1 (see§2.2), the character associated to
the lifted representatioñρ is given by





X = tr(ρ̃(ω1)) = y
Y = tr(ρ̃(ω2)) = x
Z = −tr(ρ̃(ω1ω2) = −z−xy

which satisfiesX2+Y2+Z2+XYZ= 4−d2. Note that the local monodromy
of ρ̃ at (0,0) is −ρ(δ2) and we indeed find̃d = 2−d2. We can now reverse
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the formulae and deduce that any representation(X,Y,Z) ∈ χ(T2
1) is the lift-

ing of a representation(x,y,z)∈ χ(S2
4). This is due to the hyperelliptic nature

of the once punctured torus.

3. GEOMETRY AND AUTOMORPHISMS

This section is devoted to a geometric study of the family of surfaces
S(A,B,C,D), and to the description of the groups of polynomial automorphisms
Aut[S(A,B,C,D)].

In section 3.4, we describe a special case that is famous in Teichmüller
theory. Section 3.3 introduces the concept of elliptic, parabolic, and hyper-
bolic automorphisms ofS(A,B,C,D).

3.1. The triangle at infinity and automorphisms. Let S be any member
of the familyFam. The closureSof S in P3(C) is given by a cubic homoge-
neous equation

w(x2 +y2+z2)+xyz= w2(Ax+By+Cz)+Dw3.

The intersection ofS with the plane at infinity does not depend on the pa-
rameters and coincides with the triangle∆ given by the equation

∆ : xyz= 0;

moreover, one easily checks that the surfaceS is smooth in a neighborhood
of ∆ (all the singularities ofSare contained inS).

Since the equation definingS is of degree 2 with respect to thex variable,
each point(x,y,z) of S gives rise to a unique second point(x′,y,z). This
procedure determines a holomorphic involution ofS, namely

sx(x,y,z) = (A−x−yz,y,z).

This automorphism coincides with the automorphism ofSdetermined by the
involutionsx of Γ∗

2 (see equation 2.10,§2.2.2). Geometrically, the involution
sx corresponds to the following: Ifm is a point ofS, the projective line
which joinsm and the vertexvx = [1;0;0;0] of the triangle∆ intersectsSon
a third point; this point issx(m). The same construction provides two more
involutions

sy(x,y,z) = (x,B−y−xz,z) and sz(x,y,z) = (x,y,C−z−xy),

and therefore a subgroup
A = 〈sx,sy,sz〉

of the groupAut[S] of polynomial automorphisms of the surfaceS.
From section 2.2.2, we deduce thatfor any memberSof the familyFam,

the groupA coincides with the image ofΓ∗
2 into Aut[S], which is obtained

by the action ofΓ∗
2 ⊂ MCG∗(S2

4) onχ(S2
4) (see§1.2).
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Theorem 3.1. Let S= S(A,B,C,D) be any member of the family of surfaces
Fam. Then

• there is no non-trivial relation between the three involutions sx, sy
and sz, andA is therefore isomorphic to the free product(Z/2Z) ⋆
(Z/2Z)⋆ (Z/2Z) ;

• the index ofA in Aut[S] is bounded by24 ;
• A coincides with the image ofΓ∗

2 in Aut[S].

Moreover, for a generic choice of the parameters(A,B,C,D), A coincides
with Aut[S].

This result is almost contained iǹEl’-Huti’s article [19] and is more pre-
cise than Horowitz’s main theorem (see [25], [26]).

Proof. SinceS is smooth in a neighborhood of the triangle at infinity and
the three involutions are the reflexions with respect to the vertices of that
triangle, we can apply the main theorems ofÈl’-Huti’s article:

• A is isomorphic to the free product

(Z/2Z)⋆ (Z/2Z)⋆ (Z/2Z) = 〈sx〉⋆ 〈sy〉⋆ 〈sz〉;
• A is of finite index inAut[S] ;
• Aut[S] is generated byA and the group of projective transformations

of P3(C) which preserveS and∆ (i.e., by affine transformations of
C3 that preserveS).

We already know thatA and the image ofΓ∗
2 in Aut[S] coincide. We now

need to study the index ofA in Aut[S]. Let f be an affine invertible trans-
formation ofC3, that we decompose as the composition of a linear partM
and a translation of vectorT. Let Sbe any member ofFam. If f preservesS,
then the equation ofS is multiplied by a non zero complex number when we
apply f . Looking at the cubic terms, this means thatM is a diagonal matrix
composed with a permutation of the coordinates. Looking at the quadratic
terms, this implies thatT is the nul vector, so thatf = M is linear. Coming
back to the equation ofS, we now see thatM is one of the 24 linear transfor-
mations of the typeσ◦ ε whereε either is the identity or changes the sign of
two coordinates, andσ permutes the coordinates. If(A,B,C,D) are generic,
S(A,B,C,D) is not invariant by any of these linear maps. Moreover, one easily
verifies that the subgroupA is a normal subgroup ofAut[S]: If such a linear
transformationM = σ◦ ε preservesS, then it normalizesA . This shows that
A is a normal subgroup ofAut[S], the index of which is bounded by 24. �

3.2. Consequences and notations.As a corollary of theorem 3.1 and propo-
sition 2.5, we get the following result:The mapping class groupMCG∗

0(S
2
4)

acts on the character varietyχ(S2
4), preserving each surfaceS(A,B,C,D), and its
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image inAut[S(A,B,C,D)] coincides with the image ofΓ∗
2, and therefore with

the finite index subgroupA of Aut[S(A,B,C,D)]. In other words, up to finite
index subgroups, describing the dynamics ofMCG∗(S2

4) on the character va-
riety χ(S2

4) or of the groupAut[S] on S for any memberSof the familyFam
is one and the same problem.

Let H be the Poincaré half plane. The group of isometries ofH is isomor-
phic toPGL(2,R): If M is an element ofGL(2,R), its action onH is defined
by

M(z) =
m11z+m12

m21z+m22

if the determinant ofM is positive, and by the same formula but withz re-
placed byz if the determinant is negative. In particular,Γ∗

2 acts isometrically
on H. Let jx, jy and jz be the three points on the boundary ofH with coor-
dinates−1, 0, and∞ respectively. Letrx (resp. ry andrz) be the reflection
of H around the geodesic betweenjy and jz (resp. jz and jx, resp. jx, and
jy). These isometries are respectively induced by the three matricessx, sy,
andsz given in section 2.2.2. As a consequence,Γ∗

2 coincides with the group
of symmetries of the tesselation ofH by ideal triangles, one of which has
vertices jx, jy and jz (see the left part of figure 3.3).

In the following, we shall identify the subgroupΓ∗
2 of PGL(2,Z) and the

subgroupA of Aut[S(A,B,C,D)] : If f is an element ofA , M f will denote the
associated element ofΓ∗

2 (either viewed as a matrix or an isometry ofH), and
if M is an element ofΓ∗

2, fM will denote the automorphism associated toM
(for any surfaceSof the familyFam). If f is one of the three involutionssx,
sy, or sz (resp. the three elementsgx, gy, or gz), we shall use exactly the same
letters to denote the elementf of Γ∗

2 or the corresponding automorphism
f ∈ A . The only place where this rule is not followed is when we studythe
action ofΓ∗

2 on the Poincar disk: We then use the notationrx, ry, andrz to
denote the involutive isometrys induced bysx, sy, andsz.

3.3. Elliptic, Parabolic, Hyperbolic. Non trivial isometries ofH are clas-
sified into three different species. LetM be an element ofPGL(2,R)\{Id},
viewed as an isometry ofH. Then,

• M is elliptic if M has a fixed point in the interior ofH. Ellipticity
is equivalent to det(M) = 1 and|tr(M)| < 2 (in which caseM is a
rotation around a unique fixed point) or det(M) = −1 andtr(M) = 0
(in which caseM is a reflexion around a geodesic of fixed points).

• M is parabolic ifM has a unique fixed point, which is located on
the boundary ofH; M is parabolic if and only if det(M) = 1 and
tr(M) = 2 or−2;
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• M is hyperbolic if it has exactly two fixed points which are on the
boundary ofH; this occurs if and only if det(M) = 1 and|tr(M)|> 2,
or det(M) = −1 andtr(M) 6= 0.

An elementf of A \{Id} will be termed elliptic, parabolic, or hyperbolic,
according to the type ofM f . Examples of elliptic elements are given by the
three involutionssx, sy andsz. Examples of parabolic elements are given by
the three automorphismsgx, gy andgz (see section 2.2.2). The dynamics of
these automorphisms will be described in details in§5.1. Let us just mention
the fact thatgx (resp. gy, gz) preserves the conic fibration{x = cste} (resp.
{y = cste}, {z= cste}) of any memberSof Fam.

Proposition 3.2. Let S be one of the surfaces in the familyFam (S may be
singular). An element f ofA is

• elliptic if and only if f is conjugate to one of the involutions sx, sy or
sz, if and only if f is periodic;

• parabolic if and only if f is conjugate to a non trivial power of one
of the automorphisms gx, gy or gz;

• hyperbolic if and only if f is conjugate to a cyclically reduced com-
position which involves the three involutions sx, sy, and sz.

Proof. SinceΓ∗
2 and the image ofA in Aut[S] are isomorphic for anyS in

Fam, we just need to prove the same statement forΓ∗
2. The groupΓ∗

2 is a
subgroup ofPGL(2,Z). As a consequence, any elliptic element ofΓ∗

2 is
periodic. Since

Γ∗
2 = (Z/2Z)⋆ (Z/2Z)⋆ (Z/2Z),

any periodic element ofΓ∗
2 is conjugate to one of the involutionsrx, ry, rz

(see for example [43]), and the first property is proved.

If M is a parabolic element ofΓ∗
2, its unique fixed point on the boundary

R∪{∞} of H is a rational number. The action ofΓ∗
2 on the setQ∪{∞} of

rational numbers has three distinct orbits: The orbits ofjx = −1, jy = 0 and
jz = ∞. This implies that there exists an elementF of Γ∗

2 such theFMF−1 is
parabolic and fixes one of these three points, sayjz. Any parabolic element
G of Γ∗

2 that fixes∞ is of the type

±
(

1 2k
0 1

)

wherek is an integer. This fact shows thatM is conjugate to a power ofgz
(see section 2.2.2) and concludes the proof of the second point.

Let M be a hyperbolic element ofΓ∗
2. After conjugation, we can writeM

as a cyclically reduced word in the involutive generatorsrx, ry andrz. If the
number of involutions that appear in this composition is equal to 1 or 2, then
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jx jy

jz = ∞ vx

vz

vy

c

c( jz)

c( jy)c( jx)

FIGURE 4. Conjugation for the Markov example. The
right hand part of this figure depicts the dynamics ofΓ∗

2 on
SM+(R), but viewed inP2(R) after the birational change of
variables[x : y : z : w] = [XQ : YQ : ZQ : XYZ], with Q =
X2 +Y2 +Z2. This change of variables sends the interior of
the triangle{X ≥ 0,Y ≥ 0,Z ≥ 0} ontoSM+(R).

M is an involution or a power ofgx, gy or gz. The third property follows from
this remark. �

Remark 3.3. The three verticesjx, jy and jz disconnect∂H in three seg-
ments[ jy, jz], [ jz, jx] and[ jx, jy]. Let M be a hyperbolic element ofΓ∗

2. Let
αM be the repulsive and attrating fixed points ofM on the boundary ofH.
The Fricke-Klein ping-pong lemma, as described in [15], page 25, shows
that M is a cyclically reduced composition ofrx, ry, and rz if and only if
the fixed points ofM are contained in two distinct connected components of
∂H\{ jx, jy, jz}.

3.4. The Markov surface. Let SM be the element ofFam corresponding to
the parameter(A,B,C,D) = (0,0,0,0). After a simultaneous multiplication
of each coordinate by−3, the equation ofSM is

x2 +y2 +z2 = 3xyz.

This surface has been studied by Markov in 1880 in his papers concerning
diophantine approximation. The real partSM(R) of the Markov surface has
an isolated singular point at the origin and four other connected components,
each of which is homeomorphic to a disk. One of these components is

SM+(R) = SM(R)∩ (R+)3.
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Proposition 3.4 (Markov, [14]). The action ofA = Γ∗
2 on the Markov sur-

face SM preserves each connected component of SM(R). There exists a dif-
feomorphismc : H → SM+(R) such that(i) the image of the (closed) ideal
triangle with vertices jx, jy and jz is the subset of SM+(R) defined by the
three inequalities

xy≤ 2z, yz≤ 2x, and zx≤ 2y,

and (ii) c conjugates the action ofΓ∗
2 onH with the action ofΓ∗

2 on SM+(R)
in such a way that

c◦ rx = sx◦c, c◦ ry = sy◦c, and c◦ rz = sz◦c.

Remark 3.5. We refer the reader to [14] or [22] for a proof (see figure 3.3 for
a visual argument). This result is not surprising if one notices thatSM+(R)
is a model of the Teichmüller space of the once punctured torus with a cusp
at the puncture, and finite area 2π.

3.5. An (almost) invariant area form. The monomial action of the group
GL(2,Z) onC∗×C∗ almost preserves the holomorphic 2-form

Ω =
dx
x
∧ dy

y
.

More precisely,M∗Ω = ±Ω for any elementM of GL(2,Z). This form is
invariant under the action ofη and determines a holomorphic volume form
on the Cayley cubic, that is almostAut[SC] invariant.This property is shared
by all the members ofFam (the proof is straightforward).

Proposition 3.6. Let S∈ Fam be the surface corresponding to the parame-
ters (A,B,C,D). The volume formΩ, which is globally defined by the for-
mulas

Ω =
dx∧dy

2z+xy−C
=

dy∧dz
2x+yz−A

=
dz∧dx

2y+zx−B

on S\Sing(S), is almost invariant under the action ofAut[S], by which we
mean that f∗Ω = ±Ω for any f inAut[S].

3.6. Singularities, fixed points, and an orbifold structure. The singulari-
ties of the elements ofFam will play an important role in this article. In this
section, we collect a few results regarding these singularities.

Lemma 3.7. Let S be a member ofFam. A point m of S is singular if and
only if m is a fixed point of the groupA .

Proof. This is a direct consequence of the fact thatm is a fixed point ofsx if
and only if 2x+yz= Ax, if and only if the partial derivative of the equation
of Swith respect to thex-variable vanishes. �
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Example 3.8. The family of surfaces with parameters(4+ 2d,4+ 2d,4+
2d,−(8+8d+d2)) with d∈C is a deformation of the Cayley cubic, that cor-
responds tod =−2, and any of these surfaces has 3 singular points (counted
with multiplicity).

Lemma 3.9. If m is a singular point of S, there exists a neighborhood of m
which is isomorphic to the quotient of the unit ball inC2 by a finite subgroup
of SU(2).

Proof. Any singularity of a cubic surface is a quotient singularity, except
when the singularity is isomorphic tox3+y3+z3+λxyz= 0, for at least one
parameterλ (see [8]). Since the second jet of the equation ofSnever vanishes
whenS is a member ofFam, the singularities ofSare quotient singularities.
SinceS admits a global volume formΩ, the finite group is conjugate to a
subgroup ofSU(2,C). �

As a consequence, any memberSof Fam is endowed with a well defined
orbifold structure. IfS is singular, the groupA fixes each of the singular
points and preserves the orbifold structure. We shall consider this action in
the orbifold category, but we could as well extend the actionof A to a smooth
desingularization ofS.

Lemma 3.10. The complex affine surface S is simply connected. When S is
singular, the fundamental group of the complex surface S\ Sing(S) is nor-
mally generated by the local finite fundamental groups around the singular
points.

Proof. First of all, recall that a smooth cubic surface inP3(C) may be viewed
as the blowing-up ofP2(C) at 6-points in general position. Let us be con-
crete. After a projective change of coordinates, one can assume that those 6
points lie on the triangleXYZ= 0 and are labelled as follows

pi = [0 : 1 :ui ], qi = [vi : 0 : 1] et r i = [1 : wi : 0], i = 1,2

where[X : Y : Z] are projective coordinates ofP2. One can moreover assume
that the three following products take the same valueλ:

u1u2 = v1v2 = w1w2 =: λ.

Now, consider the map

Φ : P
2
99K C3 ; (X : Y : Z) 7→

(
P

YZ
,

Q
XZ

,
R

XY

)

whereP, Q andR are degree 2 homogeneous polynomials given by



P = −X2− 1
λY2−λZ2 +( 1

w1
+ 1

w2
)XY+(v1 +v2)XZ

Q = −λX2−Y2− 1
λZ2+(w1 +w2)XY+( 1

u1
+ 1

u2
)YZ

R = −1
λX2−λY2−Z2 +( 1

v1
+ 1

v2
)XZ+(u1+u2)YZ



DYNAMICS, PAINLEVÉ VI AND CHARACTER VARIETIES. 27

Forui , vi andwi generic, the mapΦ sends the triangleXYZ= 0 to the triangle
at infinity xyz= 0 of P3 ⊃ C3 and has simple indeterminacy points exactly
at pi , qi , andr i , i = 1,2. Let S̃be the surface obtained by blowing-up the 6
indeterminacy points ofΦ. One can check that the image ofΦ : S̃→ P3(C)
is exactly the cubic surfaceS= S(A,B,C,D), with parameters





A =
(

v1
w1

+ v2
w2

+ v1
w2

+ v2
w1

)
−

(
u1λ+ 1

u1λ +u2λ+ 1
u2λ

)

B =
(

u1
w1

+ u2
w2

+ u1
w2

+ u2
w1

)
−

(
v1λ+ 1

v1λ +v2λ+ 1
v2λ

)

C =
(

u1
v1

+ u2
v2

+ u1
v2

+ u2
v1

)
−

(
w1λ+ 1

w1λ +w2λ+ 1
w2λ

)

D = ∑i, j ,k∈{1,2}
(

uiv jwk + 1
uiv jwk

)

−
(

u1
u2

+ u2
u1

+ v1
v2

+ v2
v1

+ w1
w2

+ w2
w1

+λ3+ 1
λ3 +4

)

Singular cubics arise when 3 of the 6 points lie on a line, or all of them lie
on a conic. In this case, the corresponding line(s) and/or conic have negative
self-intersection iñS, and are blown-down byΦ to singular point(s) ofS. A
smooth resolution ofS is therefore given bỹS.

Our claim is that the quasi-projective surfaceS̃′ obtained by deleting the
strict transform of the triangleXYZ= 0 from S̃ is simply connected. Indeed,
the fundamental group ofP2−{XYZ= 0} is isomorphic toZ2, generated
by two loops, say one turning aroundX = 0, and the other one aroundY = 0.
After blowing-up one point lying onX = 0, and adding the exceptional divi-
sor (minusX = 0), the first loop becomes homotopic to 0; after blowing-up
the 6 points and adding all exceptional divisors, the two generators become
trivial and the resulting surfacẽS′ is simply connected. The affine surface
S is obtained after blowing-down some rational curves inS̃and is therefore
simply connected as well.

The second assertion of the lemma directly follows from Van Kampen
Theorem. �

4. BIRATIONAL EXTENSION AND DYNAMICS

4.1. Birational transformations of surfaces. Let f be a birational trans-
formation of a complex projective surfaceX and Ind( f ) be its indeterminacy
set. The critical set off is the union of all the curvesC in S such that
f (C\ Ind( f )) is a point (in fact a point of Ind( f−1)). One says thatf is
not algebraically stable if there is a curveC in the critical set and a pos-
itive integerk such thatf k(C\ Ind( f )) is contained in Ind( f ). Otherwise,
f is said to be algebraically stable (see [16]). LetH2(X,Z) be the sec-
ond cohomology group ofX and f ∗ : H2(X,Z) → H2(X,Z) be the linear
transformation induced byf . It turns out thatf is algebraically stable if and
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only if ( f k)∗ = ( f ∗)k for any positive integerk (see [16]). More generally,
( f ◦ g)∗ = g∗ ◦ f ∗ if and only if g does not blow down any curve onto an
element of Ind( f ).

The (first) dynamical degreeλ( f ) of f is the spectral radius of the se-
quence of linear operators( f k)∗. If f is algebraically stable,λ( f ) is therefore
the largest eigenvalue off ∗. It follows from Hodge theory that

limsup
1
k

log‖( f k)∗[v]‖ = logλ( f ).

for any class[v] that is obtained through a hyperplane section ofX. The
dynamical degree off is invariant under birational conjugation (see [16,
24]), and provides an upper bound for the topological entropy of f (see [16,
24]).

Example 4.1. If M is an element ofGL(2,Z), M acts onC∗×C∗ monomi-
ally (see equation 1.11). The dynamical degree of this monomial transfor-
mation is equal to the spectral radiusρ(M) of M. If fM is the automorphism
of the Cayley cubicSC which is induced byM, the dynamical degree offM
coincides also withρ(M) (see [20], or the survey article [24]).

4.2. Birational extension. Let Sbe a member of the familyFam. The group
A acts by polynomial automorphisms onSand also by birational transforma-
tions of the compactificationSof Sin P3(C). Let ∆ be the triangle at infinity,
∆ = S\S. The three sides of this triangle are the linesDx = {x = 0,w = 0},
Dy = {y= 0,w= 0} andDz = {z= 0,w= 0}; the vertices arevx = [1 : 0 : 0 :
0], vy = [0 : 1 : 0 : 0] andvz = [0 : 0 : 1 : 0]. The “middle points” of the sides
are respectively

mx = [0 : 1 : 1 : 0], my = [1 : 0 : 1 : 0], andmz = [1 : 1 : 0 : 0]

(see figure 3.3 in§3.4). LetV be the subspace ofH2(S,Z) defined by

V = Z[Dx]+Z[Dy]+Z[Dz],

where[Dx] denotes either the homology class ofDx in H2(S,Z) or its dual
in H2(S,Z). Since∆ is A -invariant, the action of any elementf in A on
H2(S,Z) preserves the subspaceV.

Lemma 4.2(see [19] or [32]). The involution sx acts on the triangle∆ in the
following way.

• The image of the side Dx is the vertex vx and the vertex vx is blown
up onto the side Dx.

• the sides Dy and Dz are invariant and sx permutes the vertices and
fixes the middle point of each of these sides.
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Of course, we have the same result forsy andsz, with the obvious required
modifications. In the following, we shall denote bys∗x (resp. s∗y or s∗z) the
restriction of(sx)

∗ (resp.(sy)
∗ or (sz)

∗) on the subspaceV of H2(S,Z).

Remark 4.3. The “action” ofA on the triangle∆ does not depend on the
choice of the parameters(A,B,C,D). Let f = w(sx,sy,sz) be an element of
A , given by a reduced word in the letterssx, sy andsz. Sincesx (resp. sy,
sz) does not blow down any curve on indeterminacy points of the other two
involutions, the linear transformationf ∗ : V → V is the compositionf ∗ =
wt(s∗x,s

∗
y,s

∗
z), wherewt is the transpose ofw (see section 4.1). Ifw ends with

sx (resp.sy or sz), then f contracts the sideDx (resp.Dy or Dz). If w starts
with sx (resp.sy or sz), the image of the critical set off is the vertexvx (resp.
vy or vz). In particular, Ind( f ) and Ind( f−1) are not empty iff is different
from the identity.

Example 4.4. The elementgx = sz◦ sy preserves the coordinate variablex.
Its action on∆ is the following: gx contracts bothDy andDz\ {vy} on vz,
and preservesDx; its inverse contractsDy andDz\ {vz} on vy. In particular
Ind(gx) = vy and Ind(g−1

x ) = vz. The elementsgy andgz act in a similar way.
In particular,gx, gy andgz are algebraically stable.

Let us now present a nice way of describing the “action” ofA , i.e. of Γ∗
2,

on the triangle∆. Since this action does not depend on the parameters, we
choose(A,B,C,D) = (0,0,0,0) and use what we know about the Markov
surfaceSM (see§3.4). The closure ofSM+(R) in SM contains a part of the
triangle at infinity, namely the set∆+(R) of points [x : y : z : 0] such that
xyz= 0, andx, y, z≥ 0. This provides a compactification ofSM+(R) by the
triangle∆+(R). The conjugation

c : H → SM+(R)

between the Poincaré half plane andSM+(R) described in§3.4 does not
extend up to the boundary of this compactification. Nevertheless, one can
“extend” the map in the following way (see figure 3.3):

• the three segments( jy, jz), ( jz, jx) and( jx, jy) of ∂H are sent to the
three verticesvx, vy andvz of ∆;

• the three pointsjx, jy, and jz are “sent” to the three sidesDx, Dy and
Dz of ∆+(R) by c (or equivalently to the middle pointsmx, my and
mz);

Then, if M is a hyperbolic element ofΓ∗
2, the two fixed points ofM on the

boundary ofH are sent to the indeterminacy points offM and f−1
M : If M is

hyperbolic, with one attractive fixed pointωM and one repulsive fixed point
αM, then

Ind( fM) = c(αM), Ind( f−1
M ) = c(ωM).
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Remark 4.5. Let us consider the surface obtained by blowing up the vertices
of the triangle∆. This is a new compactification of the affine cubicSM by
a cycle of six rational curves. Then we blow up the six vertices of this
hexagon, and so on : This defines a sequence of rational surfacesSi . Let S∞

be the projective limit of these surfaces. The groupΓ∗
2 acts continously on

this space, and we can extendc−1 so as to obtain a semi-conjugation between
the action onS∞

M \SM and the action ofΓ∗
2 on the circle. Such a construction

is presented in details in a similar context in [27], chapter4 (see also [9] for
a related approach).

The following proposition reformulates and makes more precise, section
7 of [32].

Proposition 4.6. Let S be any member of the familyFam and f an element
of A .

• The birational transformation f: S→S is algebraically stable if, and
only if f is a cyclically reduced composition of the three involutions
sx, sy and sz of length at least2.

• Every hyperbolic element f ofA is conjugate to an algebraically
stable element ofA .

• If f is algebraically stable and hyperbolic, Ind( f ) and Ind( f−1) are
two distinct vertices of∆, and fn contracts the whole triangle∆ \
Ind( f ) onto Ind( f−1) as soon as n is a positive integer.

Proof. If Ind( f ) = Ind( f−1) 6= /0, f is not algebraically stable. This shows,
for example, that an involution with a non empty indeterminacy set is not
algebraically stable.

Let M be an element ofΓ∗
2\{Id} and fM the corresponding element ofA ,

viewed as a birational transformation ofS. From remark 4.3, we know that
Ind( fM) is non empty, and from proposition 3.2 that any elliptic element of
Γ∗

2 is an involution. This shows thatfM is not algebraically stable ifM is
elliptic.

Let us now fix a non elliptic elementM of Γ∗
2, which we write as a reduced

word w(rx, ry, rz) in the generatorsrx, ry andrz of Γ∗
2 (see§3.3).

Let us first assume thatM is parabolic. If fM is a non trivial iterate ofgx
(resp. gy or gz), we know from example 4.4 thatM is algebraically stable.
If not, the unique fixed point ofM on ∂H is different from jx, jy and jz and
its image byc is a vertex of∆. This vertexv coincides with Ind( fM) and
Ind( f−1

M ), and fM is not algebraically stable. SinceM is cyclically reduced
if, and only if M is an iterate ofgx, gy, or gz, the result is proved in the
parabolic case.

Let us now suppose thatM is hyperbolic : The fixed pointsαM andωM
define two distinct elements of∂H \ { jx, jy, jz} and the indeterminacy sets
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of fM and f−1
M are the vertices Ind( fM) = c(αM) and Ind( f−1

M ) = c(ωM) of
∆. These vertices are distinct if, and only ifαM and ωM are contained in
two distinct components of∂H\{ jx, jy, jz}, if, and only if fM is a cyclically
reduced composition of the three involutionssx, sy, sz (see remark 3.3). This
shows thatfM is not algebraically stable ifw is not cyclically reduced. In the
other direction, ifw is cyclically reduced, thenc(ωM) is not an indeterminacy
point of fM, fM fixes this point, and contracts the three sides of∆ on this
vertex. As a consequence, the positive orbit of Ind( f−1

M ) does not intersect
Ind( fM), and fM is algebraically stable. �

Theorem 4.7. Let f be an element ofA and Mf the element ofPGL(2,Z)
which is associated to f. The dynamical degreeλ( f ) is equal to the spectral
radius of Mf .

This result is different from, but similar to, the main theorem of [32],
which provides another algorithm to computeλ( f ).

Proof. Let f be an element ofA . After conjugation insideA (this does not
change the dynamical degree and the spectral radius ofM f ), we can assume
that f = w(sx,sy,sz) is a cyclically reduced word. Iff is periodic, thenf is
one of the involutive generators and the theorem is proved. If f is parabolic,
then f is conjugate to an iterate ofgx, gy or gz, f preserves a fibration ofS
into rational curves, andλ( f ) = 1. If f is hyperbolic, proposition 4.6 shows
that f is algebraically stable. Let[v] = [Dx] + [Dy] + [Dz] be the class of
the hyperplane section ofSwhich is obtained by cuttingSwith the plane at
infinity. We know that

limsup
k→∞

(
1
k

log‖( f k)∗[v]‖
)

= log(λ( f )).

Since the action off ∗ on the subspaceV of H2(X,Z) does not depend on
the parameters(A,B,C,D), and since[v] is contained inV, λ( f ) does not
depend on(A,B,C,D). Consequently, to calculateλ( f ), we can choose the
parameters(0,0,0,4) and work on the Cayley cubic. The conclusion now
follows from example 4.1. �

4.3. Entropy of birational transformations. Let f be a hyperbolic ele-
ment ofA (see section 3.3). Up to conjugation, the birational transformation
f : S→ S is algebraically stable, Ind( f ) is a fixed point off−1 and Ind( f−1)
is a fixed point off . As remarked in [32], this enables us to apply the main
results from [2] and [18].

Theorem 4.8. (Bedford, Diller, Dujardin, Iwasaki, Uehara) Let f be an el-
ement of the groupA and S be an element ofFam. The topological entropy
of fM : S→ S is equal to the logarithm of the spectral radiusλ( f ) of Mf ,
the number of periodic (saddle) points of f of period n grows likeλ( f )n and
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these points equidistribute toward an ergodic measure of maximal entropy
for f .

In [10], we shall explain how the dynamics off is related to the dynamics
of Hénon mappings, and deduce a much more precise description of the
dynamics.

Example 4.9. Let M be an element ofGL(2,Z). Let U be the unit circle in
C∗ andT2 be the subgroupU ×U of C∗×C∗. The monomial automorphism
M of C∗×C∗ preservesT and induces a “linear” automorphism on this real
torus. The entropy ofM : T2 → T2 is equal to the logarithm of the spectral
radius ofM. If (x,y) is a point ofC∗×C∗, the orbitMn(x,y), n ≥ 0, con-
verges towardT2 or goes to infinity. The same property remains true for the
dynamics offM on the Cayley cubicSC; the role played byT2 is now played
by T2/η = SC(R)∩ [−2,2]3.

5. BOUNDED ORBITS

5.1. Dynamics of parabolic elements.Parabolic elements will play an im-
portant role in the proof of theorem 1.8. In this section, we describe the
dynamics of these automorphisms, on any memberSof our family of cubic
surfaces. Since any parabolic element is conjugate to a power of gx, gy or gz,
we just need to study one of these examples.

Once the parametersA, B, C, andD have been fixed, the automorphismgz
is given by

gz




x
y
z


 =




A−x−zy
B−Az+zx+(z2−1)y

z


 .

This defines a global polynomial diffeomorphism ofC3, that preserves each
horizontal planeΠz0 = {(x,y,z0), x∈ C, y∈ C}. On each of these planes,gz
induces an affine transformation(

x
y

)
7→

(
−1 −z0

z0 z2
0−1

)(
x
y

)
+

(
A

B−Az0

)
,

which preserves the conicSz0 = S∩Πz0. The trace of the linear part of this
affine transformation isz2

0−2 while the determinant is 1.

Proposition 5.1. Let S be any member of the family of cubic surfacesFam.
Let gz be the automorphism of S defined by the composition sy◦sx. On each
fiber Sz0 of the fibration

πz : S→ C, πz(x,y,z) = z,

gz induces a homographic transformationgz0, and
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• gz0 is an elliptic homography if and only if z0 ∈ (−2,2); this ho-
mography is periodic if and only if z0 is of type±2cos(πθ) with θ
rational;

• gz0 is parabolic (or the identity) if and only if z0 = ±2;
• gz0 is loxodromic if and only if z0 is not in the interval[−2,2].

If z0 is different from 2 and−2, gz has a unique fixed point insideΠz0, the
coordinate of which are(x0,y0,z0) where

x0 =
Bz0−2A
z0

2−4
, y0 =

Az0−2B
z0

2−4
.

This fixed point is contained in the surfaceS if and only if z0 satisfies the
quartic equationPz(z0) = 0 where

(5.1) Pz = z4−Cz3− (D+4)z2+(4C−AB)z+4D+A2+B2.

In that case, the union of the twogz-invariant lines ofΠz0 which go through
the fixed point coincides withSz0; moreover, the involutionssx andsy per-
mute those two lines. If the fixed point is not contained inS, the conicSz0 is
smooth, and the two fixed points of the (elliptic or loxodromic) homography
gz0 are at infinity.

If z0 = 2, the affine transformation induced bygz onΠz0 is

gz0

(
x
y

)
=

(
−1 −2
2 3

)(
x
y

)
+

(
A

B−2A

)
.

Either gz0 has no fixed point, orA = B and there is a line of fixed points,
given byx+y = A/2. This line of fixed points intersects the surfaceS if and
only if Sz0 coincides with this (double) line. In that case the involutionssx
andsy also fix the line pointwise. When the line does not intersectS, the
conicSz0 is smooth, with a unique point at infinity; this point is the unique
fixed point of the parabolic transformationgz0. In particular, any point ofSz0

goes to infinity under the action ofgz.

If z0 = −2, then

gz0

(
x
y

)
=

(
−1 2
−2 3

)(
x
y

)
+

(
A

B+2A

)
.

Eithergz does not have any fixed point inΠz0, or A = −B andgz0 has a line
of fixed points given byx−y = A/2. This line intersectsS if and only if Sz0

coincides with this (double) line. In that case the involutionssx andsy fixe
the line pointwise.

Lemma 5.2. With the notation that have just been introduced, the homo-
graphic transformationgz0 induced by gz on Sz0 has a fixed point in Sz0 if
and only if z0 satisfies equation (5.1). Moreover
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• when z0 6= 2,−2, Sz0 is a singular conic, namely a union of two lines
that are permuted by sx and sy, and the unique fixed point ofgz0 is
the point of intersection of these two lines, with coordinates

x0 =
Bz0−2A
z0

2−4
, y0 =

Az0−2B
z0

2−4
;

• when z0 = 2, then A= B, Sz0 is the double line x+y = A/2, and this
line is pointwise fixed bygz0, sx and sy;

• when z0 = −2, then A= −B, Sz0 is the double line x−y = A/2, and
this line is pointwise fixed bygz0, sx and sy;

The dynamics ofgz on S is now easily described. Letp0 = (x0,y0,z0)
be a point ofS. If z0 is in the interval(−2,2), the orbit of p0 undergz is
bounded, and it is periodic if, and only if, eitherp0 is a fixed point, orz0 is
of type±2cos(πθ), whereθ is a rational number. Ifz0 = ±2, and if p0 is
not a fixed point,gn(p0) goes to infinity whenn goes to+∞ and−∞. If z0
is not contained in the interval[−2,2], for instance if the imaginary part of
z0 is not 0, eitherp0 is fixed orgn(p0) goes to infinity whenn goes to−∞
or +∞. Of course, the same kind of results are valid forgx andgy, with the
appropriate permutation of variables and parameters.

5.2. Bounded Orbits. There is a huge literature on the classification of al-
gebraic solutions of Painlevé VI equation (see [7] and references therein).
Such solutions give rise to periodic orbits for the action ofA on the cubic
surfaceS(A,B,C,D), where the parameters are defined in terms of the coef-
ficients of the Painlevé equation (see§9). Of course, periodic orbits are
bounded. Here, we study infinite bounded orbits.

Theorem 5.3. Let S= S(A,B,C,D) be a surface in the familyFam, and p be a
point with an infinite and boundedΓ∗

2 orbit Orb(p). Then A, B, C, and D are
real numbers, the orbit is contained in[−2,2]3 and it forms a dense subset
of the unique bounded component of S(R)\Sing(S).

We fix a pointp in one of the surfacesS and denote itsΓ∗(2)-orbit by
Orb(p). Let us first study orbits of small finite length. Recall that orbits of
length 1 are singular points of the cubicS.

Proposition 5.4. Modulo Benedetto-Goldman symmetries (see§2.3), Γ∗
2-

orbits of length2 are equivalent to

{(0,0,z1),(0,0,z2)} ∈ S(0,0,C,D), C2+4D 6= 0

where z1 and z2 are the two roots of z2 = Cz+D, Γ∗
2-orbits of length3 are

equivalent to

{(0,0,1),(A,0,1),(0,A,1)}∈ S(A,A,2,−1),
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andΓ∗
2-orbits of length4 are equivalent to

{(1,1,1),(A−2,1,1),(1,A−2,1),(1,1,A−2)}∈ S(A,A,A,4−3A).

Example 5.5. An orbit of length 2 is for instance provided by the represen-
tationρ defined by

ρ : (α,β,γ,δ) 7→ (M,N,M,−N)

whereM,N∈ SL(2,C) are any element satisfyingTr(MN) = 0 i.e. (MN)2 =
−I . Trace parameters are given by(a,b,a,−b) wherea = Tr(M) andb =
Tr(N) : we getC = a2−b2, D = (a2−2)(b2−2) andz= a2−2. The other
representation in the orbit, given byz′ = 2−b2, is defined by

ρ′ : (α,β,γ,δ) 7→ (M,M−1NM,NMN−1,−N).

To this length 2 orbit corresponds a two-sheeted algebraic solution of PVI-
equation, namely

q(t) = 1+
√

1− t, for parametersθ = (θ0,θ1,θ0,−θ1),

with a = 2cos(πθ0) andb = 2cos(πθ1). This representation was already
considered in [39] : for convenient choice of parametersa andb, the image
of the representation is a dense subgroup ofSU(2).

Other choice of the trace parameters are provided by

(a′,b′,a′,−b′) with a′ =
√

4−b2 andb′ =
√

4−a2,

giving rise to a representation of the same kind, and

(a′′,0,c′′,0) with a′′,c′′ =
a
2

√
4−b2± b

2

√
4−a2.

The later one corresponds to a dihedral representation of the form

(α,β,γ,δ) 7→
(

λ 0
0 λ−1

)
,

(
0 µ

−µ−1 0

)
,

(
τ−1 0
0 τ

)
,

(
0 −ν−1

ν 0

)
)

with λµντ = 1.

Proof. Let p = (x0,y0,z0) be a point ofS(A,B,C,D). Recall thatp is fixed if,
and only if, p is a singular point ofS. On the other hand,p is periodic of
ordern > 1 for gz if, and only if,

z0 = 2cos(π
k
n
), k∧n = 1

and at least one of the equalitiesPz(z0) = 0, 2x0 +y0z0 = A, 2y0 +x0z0 = B
does not hold. In particular, denoting by Orbgz(p) the orbit of p under the
action ofgz, we have:

#Orbgz(p) = 2 ⇒ z0 = 0,

#Orbgz(p) = 3 ⇒ z0 = ±1,
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#Orbgz(p) = 4 ⇒ z0 = ±
√

2,

#Orbgz(p) = 6 ⇒ z0 = ±
√

3.

Up to permutation of variablesx, y andz (and correspondingly of the pa-
rametersA, B andC), an orbit of length 2 takes the form Orb(p)= {p,sz(p)}.
In this case,p andp′ = sz(p) = (x0,y0,z′0) are permuted bysz, and thus by
gx = sz◦ sy andgy = sx ◦ sz ; this impliesx0 = y0 = 0. On the other hand,
p andp′ are fixed bysx, sy, and thereforeA = B = 0. Sincep = (0,0,z0) is
contained inS, we deduce thatz0 andz′0 are the roots ofz2 = Cz+D.

Up to permutation of the variablesx, y andz, an orbit of length 3 takes the
form

Orb(p) = {p0, p1 = sx(p0), p2 = sy(p0)}
with p0 = (x0,y0,z0), p1 = (x′0,y0,z0), andp2 = (x0,y′0,z0). Sincegx (resp.
gy) permutesp0 andp2 (resp.p0 andp1), we getx0 = y0 = 0. On the other
hand,gz permutes cyclicallyp0 → p2 → p1, so thatz0 =±1. Changing signs
if necessary by a twist (see 2.3), we can assumez0 = 1. Now, studying the
fixed points ofsx, sy andsz, amongstp0, p1 andp2, we obtain:

2z0+x0y0 = C,

{
2y0+x′0z0 = B
2z0+x′0y0 = C

and

{
2x0+y′0z0 = A
2z0+x0y′0 = C

and thusC = 2, x′0 = B andy′0 = A. We also have

x′0 = A−x0−y0z0 and y′0 = B−y0−x0z0

(action ofsx andsy) yielding A = B. Finally, the fact thatp0 is contained in
Sgives 1= C+D, whence the result.

Up to symmetry, an orbit of length 4 consists inp0, p1 andp2 like before
(p1 = sx(p0) and p2 = sy(p0)) and there are 4 possibilities for the fourth
point p3:

(1) p3 = (x′0,y
′
0,z0) = sy(p1) = sx(p2),

(2) p3 = (x′0,y
′′
0,z0) = sy(p1) 6= sx(p2),

(3) p3 = (x′0,y0,z′0) = sz(p1),
(4) p3 = (x0,y0,z′0) = sz(p0).

The first case is impossible: Sincegx andgy have order 2 for eachpi , the
coordinatesx andy vanish for each pointpi , and thereforep0 = p1 = p2 =
p3, a contradiction. The second case is impossible for the samereason since
gx andgy have order 2 forp0 andp1, so thatp0 = p1, a contradiction. The
same argument applies in third case:gx has order 2 forp0 andp1 implying
p0 = p1, contradiction.

For the fourth case, sincegx, gy andgz have order 3 forp0, we getp0 =
(±1,±1,±1). Up to symmetry, there are two subcases:p0 = (1,1,1) or
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p0 = (−1,−1,−1). In the first sub-case, conditions given by the fixed points
of sx, sy andsz yield

A = B = C = 2+x′0 = 2+y′0 = 2+z′0,

and the fact thatpi is contained inS gives 4= 3A+ D. Proceeding in the
same way with the second sub-case, conditions given by the fixed points of
sx, sy andsz yield

A = B = C = −2−x′0 = −2−y′0 = −2−z′0

and the fact thatpi is in Sgives

2 = −3A+D and x′0 = A

implying x′0 = A = −1 andp1 = p0, a contradiction. �

Lemma 5.6. If Orb(p) is bounded and#Orb(p) > 4, then A, B, C, and D
are real and p∈ S(R).

Proof. Let p0 = (x0,y0,z0) be a point of the orbit. If the third coordinate
z0 6∈ (−2,2), the homography induced bygz on the conicSz0 is parabolic or
hyperbolic. Since the orbit ofp0 is bounded, this implies thatp0 is a fixed
point ofgz, sx andsy (see lemma 5.2). Since Orb(p0) has length> 4, sz(p0) is
different fromp0, so thatp0 is not fixed bygx, nor bygy either ; this implies
that x0,y0 ∈ (−2,2). Moreover, the pointp1 := sz(p0) = (x0,y0,z1) is not
fixed bygz, otherwise the orbit would have length 2, so thatz1 ∈ (−2,2) and
p1 ∈ (−2,2)3. This argument shows the following: If one of the coordinates
of p0 is not contained in(−2,2), thenp0 is fixed by two of the involutions
sx, sy andsz while the third one mapsp0 into (−2,2)3.

Let now p be a point of the orbit with coordinates in(−2,2)3; if the three
pointssx(p), sy(p) andsz(p) either escape from(−2,2)3 or coincide withp,
then the orbit reduces to{p, sx(p), sy(p), sz(p)}, and has length≤ 4. From
this we deduce that the orbit contains at least two distinct points p1, p2 ∈
(−2,2)3, which are, say, permuted bysx. Let (xi ,y1,z1) be the coordinates
of pi , i = 1,2. Then,A= x1+x2+y1z1 ∈ R. If B andC are also real, thenp1
is real and satisfies the equation ofS, so thatD is real as well and Orb(m) =
Orb(p1) ⊂ S(R).

Now, assume by contradiction thatB 6∈ R. Then,qi := sy(pi) = (xi,B−
y1−xiz1,z1) 6∈ (−2,2) and is therefore fixed bysx (otherwise the orbit would
not be bounded): We thus have

2xi +(B−y1−xiz1)z1 = A.

SinceB is the unique imaginary number of this equation,z1 must vanish, and
we getx1 = x2(=

A
2), a contradiction. A similar argument shows thatC must

be real as well. �
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Proposition 5.7. If Orb(p) is finite and#Orb(p) > 4, then A, B, C, and D
are real algebraic numbers and p∈ S(R) has algebraic coordinates as well.

The proof is exactly the same, replacing(−2,2) by (−2,2)∩2cos(πQ)
and thusR by R∩Q.

Lemma 5.8. Let S be an element of the familyFam and p a point of S. There
exists a positive integer N such that, if p′ is a point of the orbit of p with a
coordinate of the form

2cos(π
k
n
), k∧n = 1,

then n divides N.

Proof. The point p is an element of the character varietyχ(S2
4). Let us

choose a representationρ : π1(S
2
4) → SL(2,C) in the conjugacy class that

is determined byp. Sinceπ1(S
2
4) is finitely generated, Selberg’s lemma

(see [1]) implies the existence of a torsion free, finite index subgroupG of
ρ(π1(S

2
4)). If we defineN to be the cardinal of the quotientρ(π1(S

2
4))/G,

then the order of any torsion element inρ(π1(S
2
4)) dividesN.

If p′ is a point of the orbit ofp, the coordinates ofp′ are traces of elements
of ρ(π1(S

2
4)). Assume that the trace of an elementM in ρ(π1(S

2
4)) is of type

2cos(πθ). If θ = k
n andk andn are relatively prime integers, thenM is a

cyclic element ofρ(π1(S
2
4)) of ordern, so thatn dividesN. �

The subset ofSU(2)-representations always form a connected component
of S\Sing(S) contained into[−2,2]3; the corresponding orbits are bounded,
generally infinite. A bounded component can also consist inSL(2,R)-repre-
sentations, depending on the choice of(a,b,c,d); for instance, in the Cay-
ley case, the bounded component consists inSL(2,R)-representations (resp.
SU(2)-representations) when(a,b,c,d) = (2,2,2,−2) (resp.(0,0,0,0)).

Proposition 5.9 (Benedetto-Goldman [4]). When A, B, C and D are real,
then S(R) \ {Sing(S)} has at most one bounded connected component. In
this case, a, b, c and d lie in[−2,2], whatever the choice of(a,b,c,d) cor-
responding to(A,B,C,D).

When S(R) is smooth, the converse is true: Whena, b, c and d lie in
[−2,2], S(R) has a “bounded component” maybe degenerating to a singu-
lar point, like in the Markov case. It is proved in Apendix B,§9.3, that a
bounded component always correponds toSU(2)-representations for a con-
venient choice of parameters(a,b,c,d).

Proof of theorem 5.3.Let Orb(p) be an infinite and boundedΓ∗
2-orbit in S=

S(A,B,C,D). Following Lemma 5.6,A, B, C andD are real and Orb(p)⊂ S(R).
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We want to prove that the closureOrb(p) is open inS(R) \ {Sing(S(R))};
sinceOrb(p) is closed, it will therefore coincide with the (unique) bounded
connected component ofS\{Sing(S)}, thus proving the theorem.

We first claim that there exists an element (actually infinitely many) p0 =
(x0,y0,z0) of the orbit which is contained in(−2,2)3 and for which at least
one of the Möbius transformationsgx0, gy0 or gz0 is (elliptic) non periodic.
Indeed, if a pointp0 of the orbit is such thatgz0 is not of the form above,
then we are in one of the following cases

• Pz(z0) = 0 andp0 is a fixed point ofgz0,
• z0 = 2cos(π k

n) with k∧n = 1, n|N andgz0 is periodic of periodn

(whereN is given by Lemma 5.8). This gives us finitely many possibilities
for z0; we also get finitely many possibilities forx0 andy0 and the claim
follows.

Let p0 be a point of Orb(p), with, say, gx0 elliptic and non periodic,
so that the closureOrb(p) contains the ”circle”Orbgx(p0) = Sx0(R). Let
us first prove thatOrb(p) contains an open neighborhood ofp0 in S(R) \
{Sing(S(R))}.

Since the pointp0 is not fixed bygx = sz◦ sy, then eithersy or sz does
not fix p0, saysz; this means that the pointp0 is not a critical point of the
projection

πx×πy : S(R) → R2 ; (x,y,z) 7→ (x,y).

Therefore, there exists someε > 0 and a neighborhoodVε of p0 in S(R) such
that πx × πy mapsVε diffeomorphically onto the square(x0 − ε,x0 + ε)×
(y0− ε,y0+ ε). By construction, we have

πx×πy(Orb(p)) ⊃ πx×πy(Orbgx(p0)) ⊃ {x0}× (y0− ε,y0 + ε).

For eachy1 ∈ (y0− ε,y0 + ε) of irrational type, that is to say not of the form
2cos(πθ) with θ rational, there existsp1 = (x0,y1,z1)∈ Orb(p) (namely, the
preimage of(x0,y1) by πx×πy) and

Orb(p) ⊃ Orbgy(p1) = Sy1(R);

in other words, for eachy1 ∈ (y0− ε,y0 + ε) of irrational type, we have

πx×πy(Orb(p)) ⊃ πx×πy(Orbgy(p1)) ⊃ (x0− ε,x0+ ε)×{y0}.
Since those coordinatesy1 of irrational type are dense in(y0− ε,y0+ ε), we
deduce thatVε ⊂ Orb(p), andOrb(p) is open atp0.

It remains to prove thatOrb(p) is open at any pointq∈ Orb(p) which is
not a singular point ofS(R). Let q = (x0,y0,z0) be such a point and assume
thatq 6∈ Orb(p) (otherwise we have already proved the assertion).
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Sinceq is not a singular point ofS(R), one of the projections, sayπx×πy :
S(R) → R2, is regular atq and we consider a neighborhoodVε like above,
πx×πy(Vε) = (x0− ε,x0+ ε)× (y0− ε,y0+ ε). By assumption, Orb(p)∩Vε
is infinite (accumulatingq) and, applying once again Lemma 5.8, one can
find one such pointp1 = (x1,y1,z1) ∈ Orb(p)∩Vε such that eitherx1 or y1
has irrational type, sayx1. Now, reasonning withp1 like we did above with
p0, we eventually conclude thatVε ⊃ Orb(p), andOrb(p) is open atq. �

6. INVARIANT GEOMETRIC STRUCTURES

In this section, we study the existence ofA -invariant geometric structures
on surfacesSof the familyFam. An example of such an invariant structure
is given by the area formΩ, defined in Proposition 3.6. Another example
occurs for the Cayley cubic:SC is covered byC∗×C∗ and the action ofA
onSC is covered by the monomial action ofGL(2,Z), that is also covered by
the linear action ofGL(2,Z) on C×C if we use the covering mapping

π : C×C → C∗×C∗, π(θ,φ) = (exp(θ),exp(φ));

as a consequence, there is an obviousA -invariant affine structure onSC.

Remark 6.1. The surfaceSC is endowed with a natural orbifold structure,
the analytic structure near its singular points being locally isomorphic to
the quotient ofC2 near the origin by the involutionσ(x,y) = (−x,−y). The
affine structure can be understood either in the orbifold language, or as an
affine structure defined only outside the singularities (seebelow).

6.1. Invariant curves, foliations and webs. We start with

Lemma 6.2. Whatever the choice of S in the familyFam, the groupA does
not preserve any (affine) algebraic curve on S.

Of course, invariant curves appear if we blow up singularities. This is
important for the study of special (Riccati) solutions of Painlevé VI equation
(see section 7).

Proof. Let C be an algebraic curve onS. Either C is contained in a fiber
of πz, or the projectionπz(C) coversC minus at most finitely many points.
If C is not contained in a fiber, we can choosem0 = (x0,y0,z0) in C and
a neighborhoodU of m0 such thatz0 is contained in(0,2) and, inU, C
intersects each fiberSz of the projectionπz in exactly one point. Letm′ =
(x′,y′,z′) be any element ofC∩U such thatz′ is an element of(0,2). Thengz
is an elliptic transformation ofSz′ that preservesC∩Sz′; since the intersection
of C andSz′ contains an isolated pointm′, this point isgz periodic. As a
consequence,z′ is of the form 2cos(πp/q) (see proposition 5.1). Since any
z′ ∈ (0,2) sufficiently close toz0 should satisfy an equation of this type, we
obtain a contradiction.
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Since no curve can be simultaneously contained in fibers ofπx, πy andπz,
the lemma is proved. �

A (singular) web on a surfaceX is given by a hypersurface in the pro-
jectivized tangent bundlePTX; for each point, the web determines a finite
collection of directions tangent toX through that point. The number of di-
rections is constant on an open subset ofX but it may vary along the singular
locus of the web. Foliations are particular cases of webs, and any web is
locally made of a finite collection of foliations in the complement of its sin-
gular locus.

Proposition 6.3. Whatever the choice of S in the familyFam, the groupA
does not preserve any web on S.

Proof. Let us suppose that there exists an invariant webW on one of the
surfacesS. Let k and l be coprime positive integers andm = (x,y,z) be a
periodic point ofgz of periodl , with

z= 2cos(πk/l).

Let L1, ..., Ld be the directions determined byW through the pointm, and
C1, ..., Cd the local leaves ofW which are tangent to these directions. The
automorphismgs

z, with s= l(d!), fixesm, preserves the web and fixes each
of the directionsLi ; it therefore preserves each of theCi . The proof of lemma
6.2 now shows thatd = 1 and that the curvesCi are contained in the fiber of
πz throughm. Since the set of pointsmwhich aregz-periodic is Zariski dense
in S, this argument shows that the web is the foliation by fibers ofπz. The
same argument shows that the web should also coincide with the foliations
by fibers ofπx or πy, a contradiction. �

Corollary 6.4. Whatever the choice of S in the familyFam, the groupA does
not preserve any holomorphic riemannian metric on S.

Proof. Let g be an invariant holomorphic riemannian metric. At each point
m of S, g has two isotropic lines. This determines anA -invariant web, and
we get a contradiction with the previous proposition. �

6.2. Invariant Affine Structures. A holomorphic affine structure on a com-
plex surfaceM is given by an atlas of chartsΦi : Ui → C2 for which the
transition functionsΦi ◦Φ−1

j are affine transformations of the planeC2. A

local chartΦ : U → C2 is said to be affine if, for alli, Φ ◦Φ−1
i is the re-

striction of an affine transformation ofC2 to Φi(Ui)∩Φ(U). A subgroupG
of Aut(M) preserves the affine structure if elements ofG are given by affine
transformations in local affine charts.
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Theorem 6.5. Let S be an element ofFam. Let G be a finite index subgroup
of Aut(S). The group G preserves an affine structure on S\Sing(S), if, and
only if S is the Cayley cubic SC.

In what follows,Sis a cubic of the familyFam andG will be a finite index
subgroup ofA preserving an affine structure onS.

Before giving the proof of this statement, we collect a few basic results
concerning affine structures. LetX be a complex surface with a holomorphic
affine structure. Letπ : X̃ → X be the universal cover ofX; the group of
deck transformations of this covering is isomorphic to the fundamental group
π1(X). Gluing together the affine local charts ofX, we get a developping map

dev : X̃ → C2,

and a monodromy representationMon : π1(X) → Aff (C2) such that

dev(γ(m)) = Mon(γ)(dev(m))

for all γ in π1(X) and allm in X̃. The mapdev is a local diffeomorphism but,
a priori, it is neither surjective, nor a covering onto its image.

Let f be an element ofAut(X) that preserves the affine structure ofX. Let
m0 be a fixed point off , let m̃0 be an element of the fiberπ−1(m0), and let
f̃ : X̃ → X̃ be the lift of f that fixesm̃0. Sincef is affine, there exists a unique
affine automorphismAff ( f ) of C2 such that

dev◦ f̃ = Aff ( f )◦dev.

6.3. Proof of theorem 6.5; step 1.In this first step, we show thatS\
Sing(S) cannot be simply connected, and deduce from this fact thatS is
singular. Then we study the singularities ofSand the fundamental group of
S\Sing(S).

6.3.1. Simple connectedness.Assume thatS\Sing(S) is simply connected.
The developping mapdev is therefore defined onS\Sing(S) → C2. Let N
be a positive integer for whichgN

x is contained inG. Choose a fixed pointm0
of gx as a base point. SincegN

x preserves the affine structure, there exists an
affine transformationAff (gN

x ) such that

dev◦gN
x = Aff (gN

x )◦dev.

In particular,dev sends periodic points ofgN
x to periodic points ofAff (gN

x ).
Let m be a nonsingular point ofS with its first coordinate in the interval
(−2,2), and letU be an open neighborhood ofm. Section 5.1 shows that
periodic points ofgN

x form a Zariski-dense subset ofU, by which we mean
that any holomorphic functionsΨ :U → C which vanishes on the set of peri-
odic points ofgN

x vanishes everywhere. Sincedev is a local diffeomorphism,
periodic points ofAff (gN

x ) are Zariski-dense in a neighborhood ofdev(m),
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and thereforeAff (gN
x ) = Id. This provides a contradiction, and shows that

S\Sing(S) is not simply connected.
Consequently, lemma 3.10 implies thatS is singular and that the funda-

mental group ofS\Sing(S) is generated, as a normal subgroup, by the local
fundamental groups around the singularities.

6.3.2. Orbifold structure.We already explained in section 3.6 that the sin-
gularities ofS are quotient singularities. Ifq is a singular point ofS, S is
locally isomorphic to the quotient of the unit ballB in C2 by a finite sub-
groupH of SU(2).

The local affine structure aroundqcan therefore be lifted into aH-invariant
affine structure onB\{(0,0)}, and then extended up to the origin by Hartogs
theorem. In particular,dev lifts to a local diffeomorphism betweenB and an
open subset ofC2. This remark shows that the affine structure is compatible
with the orbifold structure ofSdefined in section 3.6.

Let h be an element of the local fundamental groupH. Let us lift the affine
structure onB and assume that the monodromy action ofh is trivial, i.e. dev◦
h = dev. Sincedev is a local diffeomorphism, the singularity is isomorphic
to a quotient ofB by a proper quotient ofH, namely the quotient ofH by the
smallest normal subgroup containingh. This provides a contradiction and
shows that(i) H embeds in the global fundamental group ofS\Sing(S) and
(ii) the universal cover ofS in the orbifold sense is smooth (it is obtained by
adding points to the universal cover ofS\Sing(S) above singularities ofS).

In what follows, we denote the orbifold universal cover byπ : S̃→ S, and
the developing map bydev : S̃→ C2.

6.3.3. Singularities.Let q be a singular point ofS. Let q̃ be a point of the
fiber π−1(q). Since the groupA fixes all the singularities ofS, it fixes q and
one can lift the action ofA onS to an action ofA on S̃ that fixesq̃. If f is an
element ofA , f̃ will denote the corresponding holomorphic diffeomorphism
of S̃. Then we composedev by a translation of the affine planeC2 in order
to assume that

dev(q̃) = (0,0).

By assumption,dev◦ g̃ = Aff (g) ◦dev for any elementg in G, from which
we deduce that the affine transformationAff (g) are in fact linear. SinceA
almost preserves an area form,Aff (g) is an element ofGL(2,C) with deter-
minant+1 or −1; passing to a subgroup of index 2 inG, we shall assume
that the determinant is 1. Sincedev realizes a local conjugation between the
action ofG nearq̃ and the action ofAff (G) near the origin, the morphism

{
G → SL(2,C)
g 7→ Aff (g)
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is injective.

SinceG is a finite index subgroup ofAut(S), G contains a non abelian free
group of finite index and is not virtually solvable. LetH be the finite sub-
group ofπ1(S\Sing(S)) that fixes the point̃q. This group is normalized by
the action ofA on S̃. Consequently, using the local affine chart determined
by dev, the groupAff (G) normalizes the monodromy groupMon(H). If
Mon(H) is not contained in the center ofSL(2,C), the eigenlines of the ele-
ments ofMon(H) determine a finite, non empty, andAff (G)-invariant set of
lines inC2, so thatAff (G) is virtually solvable. This would contradict the in-
jectivity of g 7→Aff (g). From this we deduce that any element ofMon(H) is
a homothety with determinant 1. Since the monodromy representation is in-
jective onH, we conclude thatH ”coincides” with the subgroup{+Id,−Id}
of SU(2).

6.3.4. Linear part of the monodromy.By lemma 3.10, the fundamental group
of S\Sing(S) is generated, as a normal subgroup, by the finite fundamental
groups around the singularities ofS. Since±Id is in the center ofGL(2,C),
the linear part of the monodromyMon(γ) of any elementγ in π1(S\Sing(S))
is equal to+Id or−Id.

6.4. Proof of theorem 6.5; step 2.We now study the dynamics of the par-
abolic elements ofG near the fixed pointq.

6.4.1. Linear part of automorphisms.Let g be an element of the groupG.
Let m be a fixed point ofg andm̃ a point of the fiberπ−1(m). Let g̃m̃ be the
unique lift ofg to S̃fixing m̃ (with the notation used in step 1,g̃q̃ = g̃). Since
g preserves the affine structure, there exists an affine transformationAff (g̃m̃)
such that

dev◦ g̃m̃ = Aff (g̃m̃)◦dev.

Note thatAff (g̃m̃) depends on the choice ofm andm̃, but thatAff (g̃m̃) is
uniquely determined byg up to composition by an element of the mon-
odromy groupMon(π1(S\Sing(S)). Since the linear parts of the monodromy
are equal to+Id or−Id, we get a well defined morphism

{
G → PSL(2,C)
g 7→ Lin (g)

that determines the linear part ofAff (g̃m̃) modulo±Id for any choice ofm
andm̃.
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6.4.2. Parabolic elements.Since the linear partLin (g) does not depend on
the fixed pointm, it turns out thatLin preserves the type ofg: We now prove
and use this fact in the particular case of the parabolic elementsgx, gy and
gz.

Let N be a positive integer such thatgN
x is contained inG. For m, we

choose a regular point ofS which is periodic of periodl for gN
x and which

is not a critical point of the projectionπx. ThengNl
x fixes the fiberSx of πx

throughm pointwise. Sincegx is not periodic and preserves the fibers ofπx,
this implies that the differential ofgNl

x at m is parabolic. Letm̃ be a point

of π−1(m) and(g̃Nl
x )m̃ the lift of gNl

x fixing that point. The universal cover

π provides a local conjugation betweengNl
x and (g̃Nl

x )m̃ aroundm and m̃,

and the developping map provides a local conjugation between (g̃Nl
x )m̃ and

Lin (gNl
x ). As a consequence,Lin (gNl

x ) is a parabolic element ofPSL(2,C).
Since a power ofLin (gN

x ) is parabolic,Lin (gN
x ) itself is parabolic. In

particular, the dynamics of̃gN
x nearq̃ is conjugate to a linear upper triangular

transformation ofC2 with diagonal entries equal to 1.
As a consequence, the lift̃gx is locally conjugate near̃q to a linear para-

bolic transformation with eigenvalues±1. The eigenline of this transforma-
tion corresponds to the fiberSz throughq. Since the local fundamental group
H coincides with±Id, this eigenline is mapped to a curve a fixed point by
the coveringπ. In particular, the fiberSz throughq is a curve of fixed points
for gx.

Of course, a similar study holds forgy andgz.

6.4.3. Fixed points and coordinates of the singular point.The study of fixed
points ofgx, gy andgz (see lemma 5.2) now shows that the coordinates of
the singular pointq are equal to±2. Let εx, εy and εz be the sign of the
coordinates ofq, so that

q = (2εx,2εy,2εz).

Recall from section 3.6 that the coefficientsA, B, C, and D are uniquely
determined by the coordinates of any singular point ofS. If the productεxεyεz
is positive, then, up to symmetry,q = (2,2,2) andS is the surface

x2 +y2+z2 +xyz= 8x+8y+8z−28;

in this case,q is the unique singular point ofS, and this singular point is
not a node: The second jet of the equation nearq is (x+ y+ z)2 = 0. This
contradicts the fact thatq has to be a node (see section 6.3.3). From this we
deduce that the productεxεyεz is equal to−1, and thatS is the Cayley cubic.



46 SERGE CANTAT, FRANK LORAY

7. IRREDUCIBILITY OF PAINLEV É VI EQUATION.

The goal of this section is to apply the previous section to the irreducibility
of Painlevé VI equation.

7.1. Phase space and space of initial conditions.The naive phase space
of Painlevé VI equation is parametrized by coordinates(t,q(t),q′(t))∈ (P1\
{0,1,∞})×C2; the “good” phase space is a convenient semi-compactification
still fibering over the three punctured sphere

M (θ) → P
1\{0,1,∞}

whose fibreM t0(θ), at any pointt0 ∈ P1 \ {0,1,∞}, is the Hirzebruch sur-
face F2 blown-up at 8-points minus some divisor, a union of 5 rational
curves (see [37]). The analytic type of the fibre, namely the position of
the 8 centers and the 5 rational curves, only depends on Painlevé parameters
θ = (θα,θβ,θγ,θδ) ∈ C4 andt0. This fibre bundle is analytically (but not al-
gebraically!) locally trivial: The local trivialization is given by the Painlevé
foliation (see [41]) which is transversal to the fibration. The monodromy of
Painlevé equation is given by a representation

π1(P
1\{0,1,∞}, t0) → Diff (M t0(θ))

into the group of analytic diffeomorphisms of the fibre.

7.2. The Riemann-Hilbert correspondance andPVI-monodromy. On the
other hand, the space of initial conditionsM t0(θ) may be interpreted as the
moduli space of rank 2, trace free meromorphic connections over P1 hav-
ing simple poles at(pα, pβ, pγ, pδ) = (0, t0,1,∞) with prescribed residual

eigenvalues±θα
2 , ±θβ

2 , ±θγ
2 and±θδ

2 . The Riemann-Hilbert correspondance
therefore provides an analytic diffeomorphism

M t0(θ) → Ŝ(A,B,C,D)

whereŜ(A,B,C,D) is the minimal desingularization ofS= S(A,B,C,D), the pa-
rameters(A,B,C,D) being given by formulae (1.9) and (1.5). From this
point of view, the Painlevé VI foliation coincides with theisomonodromic
foliation: Leaves correspond to universal isomonodromic deformations of
those connections. The monodromy of Painlevé VI equation correspond to
a morphism

π1(P
1\{0,1,∞}, t0) → Aut(S(A,B,C,D))

and coincides with theΓ2-action described in section 2.2.2. For instance,gx
(resp.gy) is the Painlevé VI monodromy whent0 turns around 0 (resp. 1) in
the obvious simplest way. All this is described with much detail in [29].
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7.3. Riccati solutions and singular points. WhenS(A,B,C,D) is singular, the
exceptional divisor in̂S(A,B,C,D) is a finite union of rational curves in restric-
tion to whichΓ2 acts by Möbius transformations. To each such rational curve
corresponds a rational hypersurfaceH of the phase spaceM (θ) invariant by
the Painlevé VI foliation. OnH , the projectionM (θ) → P

1 \ {0,1,∞} re-
stricts to a regular rational fibration and the Painlevé equation restricts to a
Riccati equation of hypergeometric type: We get a one parameter family of
Riccati solutions. See [45, 42, 29] for a classification of singular points of
S(A,B,C,D) and their link with Riccati solutions; they occur preciselywhen
either one of theθ-parameter is an integer, or when the sum∑θi is an inte-
ger. SinceS(A,B,C,D) is affine, there are obviously no other complete curve in
M t0(θ) (see section 6.1).

7.4. Algebraic solutions and periodic orbits. A complete list of algebraic
solutions of Painlevé VI equation is still unknown. Apart from those solu-
tions arising as special cases of Riccati solutions, that are well known, they
correspond to periodicΓ2-orbits on the smooth part ofS(A,B,C,D) (see [31]).
Following section 5.2, apart from the three well-known families of 2, 3 and
4-sheeted algebraic solutions, other algebraic solutionsare countable and
the cosines of the correspondingθ-parameters are real algebraic numbers.
In the particular Cayley caseSC = S(0,0,0,4), periodicΓ2-orbits arise from
pairs of roots of unity(u,v) on the two-fold cover(C∗)2 (see 2.1); there
are infinitely many periodic orbits in this case and they are dense in the real
bounded component ofSC \ {Sing(SC)}. The corresponding algebraic so-
lutions were discovered by Picard in 1889 (before Painlevédiscovered the
generalPVI-equation !); see [34] and below. All algebraic solutions (resp.
periodicΓ2-orbits) have been classified in the particular caseθ = (0,0,0,∗)
(resp. (A,B,C,D) = (0,0,0,∗)) in [17, 34]: Apart from Riccati and Picard
algebraic solutions, there are 5 extra solutions up to symmetry (see also [6]
for finite orbit coming from finite subgroups ofSU(2)).

BoundedΓ2-orbits correspond to what Iwasaki calls “tame solutions” in
[30].

7.5. Nishioka-Umemura irreducibility. In 1998, Watanabe proved in [45]
the irreducibility of Painlevé VI equation in the sense of Nishioka-Umemura
for any parameterθ: The generic solution ofPVI(θ) is non classical, and
classical solutions are

• Riccati solutions (like above),
• algebraic solutions.

Non classical roughly means “very transcendental” with regards to the XIXth
century special functions: The general solution cannot be expressed in an
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algebraic way by means of solutions of linear, or first order non linear dif-
ferential equations. A precise definition can be found in [13].

7.6. Malgrange irreducibility. Another notion of irreducibility was intro-
duced by Malgrange in [33]: He defines the Galois groupoid of an algebraic
foliation to be the smallest algebraic Lie-pseudo-group that contains the
tangent pseudo-group of the foliation (hereafter referredto as the ”pseudo-
group”); this may be viewed as a kind of Zariski closure for the pseudo-group
of the foliation. Larger Galois groupoids correspond to more complicated fo-
liations. From this point of view, it is natural to call irreducible any foliation
whose Galois groupoid is as large as possible,i.e. coincides with the basic
pseudo-group.

For Painlevé equations, a small restriction has to be takeninto account: It
has been known since Malmquist that Painlevé foliations may be defined as
kernels of closed meromorphic 2-forms. The pseudo-group, and the Galois
groupoid, both preserve the closed 2-form. The irreducibility conjectured by
Malgrange is that the Galois groupoid of Painlevé equations coincide with
the algebraic Lie-pseudo-group of those transformations on the phase space
preservingω. This was proved for Painlevé I equation by Casale in [12].

For a second order polynomial differential equationP(t,y,y′,y′′) = 0, like
Painlevé equations, Casale proved in [13] that Malgrange-irreducibility im-
plies Nishioka-Umemura-irreducibility; the converse is not true as we shall
see.

7.7. Invariant geometric structures. Restricting to a transversal, e.g. the
space of initial conditionsM t0(θ) for Painlevé VI equations, the Galois grou-
poid defines an algebraic geometric structure which is invariant under mon-
odromy transformations; reducibility would imply the existence of an extra
geometric structure onM t0(θ), additional to the volume formω, preserved
by all monodromy transformations. In that case, a well knownresult of
Cartan, adapted to our algebraic setting by Casale in [12], asserts that mon-
odromy transformations

• either preserve an algebraic foliation,
• or preserve an algebraic affine structure.

Here, “algebraic” means that the object is defined over an algebraic exten-
sion of the field of rational functions, or equivalently, becomes well-defined
over the field of rational functions after some finite ramifiedcover. For
instance, “algebraic foliation” means polynomial web. As acorollary of
proposition 6.3 and Theorem 6.5, we shall prove the following

Theorem 7.1.The sixth Painlev́e equation is irreducible in the sense of Mal-
grange, except in one of the following cases:

• θω ∈ 1
2 +Z, ω = α,β,γ,δ,
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• θω ∈ Z, ω = α,β,γ,δ, and∑ω θω is even.
All these special parameters are equivalent, modulo Okamoto symmetries,
to the caseθ = (0,0,0,1). The corresponding cubic surface is the Cayley
cubic.

Of course, in the Cayley case, the existence of an invariant affine structure
shows that the Painlevé foliation is Malgrange-reducible(see [11]). This will
be made more precise in section 7.9.

Before proving the theorem, we need a stronger version of Lemma 6.2

Lemma 7.2. Let S be an element of the familyFam. There is noA -invariant
curve of finite type in S.

By ”curve of finite type” we mean a complex analytic curve inS with a
finite number of irreducible componentsCi , such that the desingularization
of eachCi is a Riemann surface of finite type.

Proof. Let C ⊂ S be a complex analytic curve of finite type. SinceS is
embedded inC3, C is not compact. In particular,C is not isomorphic to
the projective line and the group of holomorphic diffeomorphisms ofC is
virtually solvable. SinceA contains a non abelian free subgroup, there exists
an elementf in A \{Id} which fixesC pointwise. From this we deduce that
C is contained in the algebraic curve of fixed points off . This shows that the
Zariski closure ofC is anA -invariant algebraic curve, and we conclude by
Lemma 6.2. �

7.8. Proof of theorem 7.1. In order to prove that Painlevé VI equation,
for a given parameterθ ∈ C4 is irreducible, it suffices, due to [12] and
the discussion above, to prove that the space of initial conditions M t0(θ)
does not admit any monodromy-invariant web or algebraic affine structure.
Via the Riemann-Hilbert correspondance, such a geometric structure will in-
duce a similarΓ2-invariant structure on the corresponding character variety
S(A,B,C,D). But we have to be carefull: The Riemann-Hilbert map is not alge-
braic but analytic. As a consequence, the geometric structures we have now
to deal with onS(A,B,C,D) are not rational anymore, but meromorphic (on a
finite ramified cover). Anyway, the proof of proposition 6.3 is still valid in
this context and exclude the possibility ofΓ2-invariant analytic web.

7.8.1. Multivalued affine structures.We now explain more precisely what is
a Γ2-invariant multivalued meromorphic affine structure in theabove sense.
First of all, a meromorphic affine structure is an affine structure in the sense
of section 6.2 defined on the complement of a proper analytic subsetZ, hav-
ing moderate growth alongZ in a sense that we do not need to consider here.
This structure is said to beΓ2-invariant if bothZ, and the regular affine struc-
ture induced on the complement ofZ, areΓ2-invariant. Now, a multivalued
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meromorphic affine structure is a meromorphic structure (with polar locus
Z′) defined on a finite analytic ramified coverπ′ : S′ → S; the ramification
locusX is an analytic set. This structure is said to beΓ2-invariant if bothX
andZ = π′(Z′) are invariant and, over the complement ofX∪Z, Γ2 permutes
the various regular affine structures induced by the variousbranches ofπ′.

Let us prove that the multivalued meromorphic affine structure induced on
S by a reduction of Painlevé VI Galois groupoid has actually no pole, and
no ramification apart from singular points ofS. Indeed, letC be the union
of Z andR; thenC is analytic inS but comes from an algebraic curve in
M t0(θ) (the initial geometric structure is algebraic inM t0(θ)), so that the 1-
dimensional part ofC is a curve of finite type. Lemma 7.2 then show thatC
is indeed a finite set. In other words,C is contained inSing(S), R itself is
contained inSing(S) andZ is empty.

7.8.2. Singularities of S.Since the ramification setR is contained inSing(S),
the coverπ′ is an étale cover in the orbifold sense (singularities ofS′ are also
quotient singularities). Changing the coverπ′ : S′ → S if necessary, we may
assume thatπ′ is a Galois cover.

If S is simply connected, then of courseπ′ is trivial, the affine structure
is univalued, and theorem 6.5 provides a contradiction. We can therefore
choose a singularityq of S, and a pointq′ in the fiber (π′)−1(q). Since
π1(S;q) is finitely generated, the number of subgroups of index deg(π′) in
π1(S;q) is finite. As a consequence, there is a finite index subgroupG in Γ2
which lifts toS′ and preserves the univalued affine structure defined onS′.

We now follow the proof of theorem 6.5 forG, S′ and its affine structure.
First, we denoteπ : S̃→ S′ the universal cover ofS′, we choose a point ˜q
in the fiberπ−1(q′), and we lift the action ofG to an action on the universal
coverS̃fixing q̃. Then we fix a developping mapdev: S̃→C2 with dev(q̃) =
0; these choices imply thatAff (g) is linear for anyg in G. Section 6.3.3
shows that the singularities ofSandS′ are simple nodes.

Now comes the main difference with sections 6.3.4 and 6.4: A priori,
the fundamental group ofS′ is not generated, as a normal subgroup, by the
local fundamental groups around the singularities ofSing(S′). It could be
the case thatS′ is smooth, with an infinite fundamental group. So, we need
a new argument to prove thatgx (resp.gy andgz) has a curve of fixed points
through the singularityq.

7.8.3. Parabolic dynamics.Let g = gn
x be a non trivial iterate ofgx that is

contained inG. The affine transformationAff (g) is linear, with determinant
1 ; we want to show that this transformation is parabolic.

Let Ũ be an open subset ofS̃on which bothdev and the universal cover
π′ ◦π are local diffeomorphisms, and letU be the projection ofŨ on S by
π′ ◦π. We chooseŨ in such a way thatU contains pointsm= (x,y,z) with
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x in the interval[−2,2]. The fibration ofU by fibers of the projectionπx is
mapped onto a fibrationF of dev(Ũ) by the local diffeomorphismdev◦(π′◦
π)−1. Let us prove, first, thatF is a foliation by parallel lines.

Let m be a point ofU which isg-periodic, of periodl . Then, the fiber of
πx throughm is a curve of fixed point forgl . If m̃ is a lift of m in S̃, one
can find a liftγ◦ g̃l of g to S̃(γ in π1(S,q) = Aut(π)) that fixes pointwise the
fiber throughm̃. As a consequence, the fiber ofF throughdev(m̃) coincides
locally with the set of fixed points of the affine transformation Aff (gl) ◦
Mon(γ). As such, the fiber ofF throughdev(m̃) is an affine line.

This argument shows that an infinite number of leaves ofF are affine
lines, or more precisely coincide with the intersection of affine lines with
dev(Ũ). Sincegpreserves each fiber ofπx, the foliationF is leafwise(Aff (gl )◦
Mon(γ))-invariant. Assume now thatL is a line which coincides with a leaf
of F on dev(Ũ). If L is not parallel to the line of fixed points ofAff (gl) ◦
Mon(γ), then the affine transformationAff (gl ) ◦Mon(γ) is a linear map
(since it has a fixed point), with determinant±1, and with two eigenlines,
one of them, the line of fixed points, corresponding to the eigenvalue 1. This
implies thatAff (gl) ◦Mon(γ) has finiter order. Sinceg is not periodic, we
conclude thatL is parallel to the line of fixed points ofAff (gl) ◦Mon(γ),
and that the foliationF is a foliation by parallel lines.

By holomorphic continuation, we get that the image bydevof the fibration
πx◦π is a foliation of the plane by parallel lines.

Let us now study the dynamics of ˜g near the fixed point ˜q. Using the
local chartdev, g̃ is conjugate to the linear transformationAff (g). Sinceg
preserves each fiber ofπx, Aff (g) preserves each leaf of the foliationF .
Sinceg is not periodic,Aff (g) is not periodic either, andAff (g) is a linear
parabolic transformation. As a consequence,g has a curve of fixed points
throughq.

7.8.4. Conclusion.We can now apply the arguments of section 6.4.3 word
by word to conclude thatS is the Cayley cubic.

7.9. Picard parameters of Painlev́e VI equation and the Cayley cubic.
Let us now explain in more details why the Cayley case is so special with
respect to Painlevé equations. Consider the universal cover

πt : C →{y2 = x(x−1)(x− t)} ; z 7→ (x(t,z),y(t,z))

of the Legendre elliptic curve with periodsZ +τZ - this makes sense at least
on a neighborhood oft0 ∈ P

1 \ {0,1,∞}. The functionsτ = τ(t) andπt are
analytic int.
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The following theorem, obtained by Picard in 1889, shows that the Painlevé
equations corresponding to the Cayley cubic have (almost) classical solu-
tions.

Theorem 7.3 (Picard, see [11] for example). The general solution of the
Painlev́e sixth differential equation PVI(0,0,0,1) is given by

t 7→ x(t,c1+c2 · τ(t)), c1,c2 ∈ C.

Moreover, the solution is algebraic if, and only if c1 and c2 are rational
numbers.

Note thatc1,c2 ∈ Q exactly means thatπt(c1 +c2 · τ(t)) is a torsion point
of the elliptic curve.

Finally, PVI(0,0,0,1)-equation can actually be integrated by means of el-
liptic functions, but in a way that is non classical with respect to Nishioka-
Umemura definition. Coming back to Malgrange’s point of view, the cor-
responding polynomial affine structure on the phase spaceM (0,0,0,1) has
been computed by Casale in [11], thus proving the reducibility of PVI(0,0,0,1)
equation (and all its birational Okamoto symmetrics) in thesense of Mal-
grange.

8. APPENDIX A

This section is devoted to the proof of theorem 2.1, according to which the
unique surface in the familyFam with four singularities is the Cayley cubic
SC.

Proof. I. The pointq = (x,y,z) is a singular point ofS(A,B,C,D) if, and only if
q is contained inS(A,B,C,D) and

2x+yz= A, 2y+zx= B, and 2z+xy= C.

In particular, any pair of two coordinates ofq determines the third coordi-
nate.

II. If (u,v) is a couple of complex numbers,κuv(X) will denote the fol-
lowing quadratic polynomial

κuv(X) = X2−uvX+(u2 +v2−4).

This polynomial has a double root, namelyα = uv/2, if and only if κuv(X) =
(X−uv/2)2, if and only if (u2−4)(v2−4) = 0.

Let us now fix a set of(a,b,c,d) parameters that determines(A,B,C,D). It
is proved in [4] that the coordinates of a singular pointq satisfy the following
properties:

(i) Thex coordinate satisfy one of the following conditions
– x is a double root ofκab(X),
– x is a double root ofκcd(X),
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– x is a common root ofκab andκcd(X) ;
(i) y satisfies the same kind of conditions with respect toκad andκbc;
(i) z also, with respect toκac andκbd.

This shows that the number of possiblex (resp.y, z)-coordinates forq is
bounded from above by 2. Together with stepI , this shows thatS(A,B,C,D) has
at most four singularities.

WhenS(A,B,C,D) has four singuarities, there are two possibilities for thex
coordinate, and eitherκab andκcd both have a double root, ofκab andκcd
coincide and have two simple roots.

III. Let us assume thatκab andκcd have a double root. After a symmetry
(see§2.3), we may assume thata = c = 2. Then,κac, κad andκbc all have
a double root. In particular, sinceS(A,B,C,D) has four singularities, the two
choices for thez-coordinate of singular points are two double roots, the root
of κac, and, necessarily, the double root ofκbd. This implies thatb or d is
equal to±2. Applying a symmetry of the parameters, we may assume that
b = 2, so that(a,b,c,d) is now of type(2,2,2,d).

Under this assumption, thex, y andz coordinates of singular points are
contained in{2,d} (these are the possible double roots). Ifd2 6= 4, the equa-
tions of stepI show that two of the coordinates are equal to 2, when one is
equal tod. This gives at most three singularities. As a consequence,d = 2
or d = −2, and the conclusion follows from the fact that whend = 2, there
is only one singularity, namely(2,2,2).

IV. The last case that we need to consider is when all polynomialsκuv,
u, v∈ {a,b,c,d}, coincide. In that case, up to symmetries,a = b = c = d.
Then, a similar argument shows thata= 0 if Shas four singularities (another
way to see it is to apply the covering Quad◦Quad from section 9.4). �

9. APPENDIX B

9.1. Painlevé VI parameters (θα,θβ,θγ,θδ) and Okamoto symmetries.
Many kinds of conjugacy classes of representationsρ with

χ(ρ) = (a,b,c,d,x,y,z)

give rise to the same(A,B,C,D,x,y,z)-point ; in order to underline this phe-
nomenon, we would like to understand the ramified cover

Π :

{
C4 → C4

(a,b,c,d) 7→ (A,B,C,D)

defined by equation (1.5).

9.1.1. Degree ofΠ.
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Lemma 9.1. The degree of the covering mapΠ, that is the number of points
(a,b,c,d) giving rise to a given generic(A,B,C,D)-point, is24.

Proof. We firstly assumeB 6=±C so thata 6=±b. Then, solvingB= bc+ad
andC = ac+bd in c andd yields

c =
aC−bB
a2−b2 and d =

aB−bC
a2−b2 .

Subsituting inA = ab+cd andD = 4−a2−b2−c2−d2−abcdgives{P =
Q = 0} with

P = −ab(a2−b2)2+A(a2−b2)2+(B2+C2)ab−BC(a2+b2)

andQ = (a2+b2)(a2−b2)2+(D−4)(a2−b2)2

+(B2+C2)(a2−a2b2+b2)+BCab(a2+b2−4).

These two polynomials have both degree 6 in(a,b) and the corresponding
curves must intersect in 36 points. However, one easily check that they in-
tersect along the line at infinity with multiplicity 4 at eachof the two points
(a : b) = (1 : 1) and(1 : −1); moreover, they also intersect along the for-
bidden linesa = ±b at (a,b) = (0,0) with multiplicity 4 as well, provided
thatBC 6= 0. As a consequence, the number of preimages of(A,B,C,D) is
36−4−4−4 = 24 (counted with multiplicity). �

Remark 9.2. Π is not a Galois cover: The group of deck transformations is
the order 8 groupQ = 〈P1,P2,⊗(−1,−1,−1,−1)〉 (see§2.3).

9.1.2. Okamoto symmetries.To understand the previous remark, it is conve-
nient to introduce the Painlevé VI parameters, which are related to(a,b,c,d)
by the map

C4 → C4

(θα,θβ,θγ,θδ) 7→ (a,b,c,d)
with





a = 2cos(πθα)
b = 2cos(πθβ)
c = 2cos(πθγ)
d = 2cos(πθδ)

The composite map(θα,θβ,θγ,θδ) 7→ (A,B,C,D) has been studied in [28]:
It is an infinite Galois ramified cover whose deck transformations coincide
with the groupG of so called Okamoto symmetries. Those symmetries are
”birational transformations” of Painlevé VI equation; they have been com-
puted directly on the equation by Okamoto in [38] (see [36] for a modern pre-
sentation). LetBir(PVI) be the group of all birational symmetries of Painlevé
sixth equation. The Galois groupG is the subgroup ofBir(PVI) generated by
the following four kind of affine transformations.
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(1) Even translations by integers

⊕n :





θα 7→ θα +n1
θβ 7→ θβ +n2
θγ 7→ θγ +n3
θδ 7→ θδ +n4

with

{
n = (n1,n2,n3,n4) ∈ Z4,
n1+n2+n3 +n4 ∈ 2Z.

Those symmetries also act on the space of initial conditionsof PVI
in a non trivial way, but the corresponding action on(x,y,z) is very
simple: We recover the twist symmetries⊗ε of section 2.3 by con-
sideringn modulo 2Z4.

(2) An action ofSym4 permuting(θα,θβ,θγ,θδ). This corresponds to the
action ofSym4 on (a,b,c,d,x,y,z) permuting(a,b,c,d) in the same
way. This group is generated by the four permutationsT1, T2, P1 and
P2 (see sections 2.2.1 and 2.2.2).

(3) Twist symmetries on Painlevé parameters

⊗ε :





θα 7→ ε1θα
θβ 7→ ε2θβ
θγ 7→ ε3θγ
θδ 7→ ε4θδ

with ε = (ε1,ε2,ε3,ε4) ∈ {±1}4.

The corresponding action on(a,b,c,d,x,y,z) is trivial.
(4) The special Okamoto symmetry (calleds2 in [36])

Ok :





θα 7→ θα−θβ−θγ−θδ
2 +1

θβ 7→ −θα+θβ−θγ−θδ
2 +1

θγ 7→ −θα−θβ+θγ−θδ
2 +1

θδ 7→ −θα−θβ−θγ+θδ
2 +1

The corresponding action on(A,B,C,D,x,y,z) is trivial (see [28]),
but the action on(a,b,c,d) is rather subbtle, as we shall see.

The ramified cover(θα,θβ,θγ,θδ) 7→ (a,b,c,d) is also a Galois cover: Its
Galois groupK is the subgroup ofG generated by those translations⊕n with
n ∈ (2Z)4 and the twists⊗ε. One can check that[G : K] = 24 butK is not
a normal subgroup ofG: It is not Ok-invariant. In fact,K is normal in the
subgroupG′ ⊂ G where we omit the generator Ok andQ = G′/K coincides
with the order 8 group of symmetries fixing(A,B,C,D). Therefore,G/K
may be viewed as the disjoint union of left cosets

G/K = Q∪Ok·Q∪ Õk·Q
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whereÕk is the following symmetry (calleds1s2s1 in [36])

Õk :





θα 7→ θα−θβ−θγ+θδ
2

θβ 7→ −θα+θβ−θγ+θδ
2

θγ 7→ −θα−θβ+θγ+θδ
2

θδ 7→ θα+θβ+θγ+θδ
2

9.1.3. From (A,B,C,D) to (a,b,c,d). Now, given a(a,b,c,d)-point, we
would like to describe explicitly all other parameters(a′,b′,c′,d′) in the
sameΠ-fibre, i.e. giving rise to the same parameter(A,B,C,D). We already
know that theQ-orbit

{
(a,b,c,d) (−a,−b,−c,−d) (d,c,b,a) (−d,−c,−b,−a)
(b,a,d,c) (−b,−a,−d,−c) (c,d,a,b) (−c,−d,−a,−b)

}
,

, which generically is of length 8, is contained in the fibre. In order to
describe the remaining part of the fibre, let us choose(aε,bε,cε,dε) ∈ C4,
ε = 0,1, such that





a0 =
√

2+a
2

b0 =
√

2+b
2

c0 =
√

2+c
2

d0 =
√

2+d
2

and





a1 =
√

2−a
2

b1 =
√

2−b
2

c1 =
√

2−c
2

d1 =
√

2−d
2

If θα is such that(a0,a1) = (cos(πθα
2 ),sin(πθα

2 )), thena= 2cos(πθα); there-
fore, the choice of(a0,a1) is equivalent to the choice of aPVI-parameterθα
modulo 2Z, i.e. of θα

2 moduloZ. Then, looking at the action of the special
Okamoto symmetry Ok on Painlevé parameters(θα,θβ,θγ,θδ), we derive
the following new point(a′,b′,c′,d′) in theΠ-fibre





a′ = −2∑(−1)
∑εi
2 +ε1aε1bε2cε3dε4

b′ = −2∑(−1)
∑εi
2 +ε2aε1bε2cε3dε4

c′ = −2∑(−1)
∑εi
2 +ε3aε1bε2cε3dε4

d′ = −2∑(−1)
∑εi
2 +ε4aε1bε2cε3dε4

where the sum is taken over allε = (ε1,ε2,ε3,ε4) ∈ ({0,1})4 for which
∑4

i=1 εi is even. One can check that the different choices for(a0,b0,c0,d0)
and (a1,b1,c1,d1) lead to 16 distinct possible(a′,b′,c′,d′), namely 2 dis-
tinct Q-orbits, which together with theQ-orbit of (a,b,c,d) above provide
the wholeΠ-fibre.
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Example 9.3.When(a,b,c,d) = (0,0,0,d), we have(A,B,C,D) = (0,0,0,D)
with D = 4−d2. TheΠ-fibre is given by theQ-orbits of the 3 points

(0,0,0,d) and (d̃, d̃, d̃,−d̃) where d̃ =

√
2±

√
4−d2

(only the sign of the square root inside is relevant up toQ). The fibre has
length 24 except in the Cayley cased = 0 where it has length 9, consisting
of the twoQ-orbits of

(0,0,0,0) and (2,2,2,−2)

(note that(0,0,0,0) is Q-invariant) and in the Markov cased = 2 where it
has length 16, consisting of the twoQ-orbits of

(0,0,0,2) and (
√

2,
√

2,
√

2,−
√

2).

9.2. Reducible representations versus singularities.

Theorem 9.4([4, 29]). The surface S(A,B,C,D) is singular if, and only if, we
are in one of the following cases

• ∆(a,b,c,d) = 0 where

∆ = (2(a2+b2+c2+d2)−abcd−16)2− (4−a2)(4−b2)(4−c2)(4−d2),

• at least one of the parameters a, b, c or d equals±2.
More precisely, a representationρ is sent to a singular point if, and only if,
we are in one of the following cases :

• the representationρ is reducible and then∆ = 0,
• one of the generatorsρ(α), ρ(β), ρ(γ) or ρ(δ) equals±I (the corre-

sponding trace parameter is then equal to±2).

In fact, it is proved in [4] that the setZ of parameters(A,B,C,D) for which
S(A,B,C,D) is singular is defined byδ = 0 whereδ is the discriminant of the
polynomial

Pz = z4−Cz3− (D+4)z2+(4C−AB)z+4D+A2+B2

defined in section 5.1:Pz has a multiple root at each singular point. Now,
consider the ramified cover

Π : C4 → C4;(a,b,c,d) 7→ (A,B,C,D)

defined by (1.5). One can check by direct computation that

δ◦Π =
1
16

(a2−4)(b2−4)(c2−4)(d2−4)∆2.

One also easily verifies that the locus of reducible representations is also the
ramification locus ofΠ:

Jac(Π) = −1
2

∆.
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It is a well known fact (see [29]) that Okamoto symmetries permute the
two kinds of degenerate representations given by Theorem 9.4. For instance,
a singular point is defined by the following equations:

A = 2x+yz, B = 2y+xz, C = 2z+xy

and x2 +y2 +z2 +xyz= Ax+By+Cz+D.

Now, a compatible choice of parameters(a,b,c,d) is provided by

(a,b,c,d) = (y,z,x,2)

and one easily check that the corresponding representations satisfyρ(δ) = I .

9.3. SU(2)-representations versus bounded components.Whena, b, c,
andd are real numbers,A, B, C, andD are real as well. In that case, the
real partS(A,B,C,D)(R) stands forSU(2) andSL(2,R)-representations; pre-
cisely, each connected component of the smooth part ofS(A,B,C,D)(R) is ei-
ther purelySU(2), or purelySL(2,R), depending on the choice of(a,b,c,d)
fitting to (A,B,C,D).

Moving into the parameter space{(a,b,c,d)}, when we pass fromSU(2)
to SL(2,R)-representations, we must go through a representation of the
groupSU(2)∩ SL(2,R) = SO(2,R). Since representations intoSO(2,R)
are reducible, they correspond to singular points of the cubic surface (see
§9.2). In other words, any bifurcation betweenSU(2) andSL(2,R)-represen-
tations creates a real singular point ofS(A,B,C,D).

SinceSU(2)-representations are contained in the cube[−2,2]3, they al-
ways form a bounded component of the smooth part ofS(A,B,C,D)(R): Un-
bounded components always correspond toSL(2,R)-representations, what-
ever the choice of parameters(a,b,c,d) is.

The topology ofS(A,B,C,D)(R) is studied in [4] when(a,b,c,d) are real
numbers. There are at most four singular points, and the smooth part has at
most one bounded and at most four unbounded components. On the other
hand, ifA, B, C, andD are real numbers, thena, b, c, andd are not necessar-
ily real.

Example 9.5. If a, b, c, andd are purely imaginary numbers, thenA, B, C,
andD are real numbers. In this specific example, there are representations
ρ : π1(S

2
4) → SL(2,C) with trace parameters

(a,b,c,d,x,y,z)∈ (iR)4× (R)3,

the image of which are Zariski dense in the (real) Lie groupSL(2,C). Such
a representation correspond to a point(x,y,z) on §(A,B,C,D)(R) which is not
realized by a representation intoSL(2,R).

The goal of this section is to prove the following theorem, which partly
extends the above mentionned results of Benedetto and Goldman [4].
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Theorem 9.6.Let A, B, C, and D be real numbers, for which the smooth part
of S(A,B,C,D)(R) has a bounded component. Then for any choice of parame-
ters(a,b,c,d) fitting to(A,B,C,D), the numbers a, b, c, and d are real, con-
tained in(−2,2) and the bounded component stands forSU(2) or SL(2,R)-
representations. Moreover, for any such parameter(A,B,C,D), we can
choose betweenSU(2) and SL(2,R) by conveniently choosing(a,b,c,d):
The two cases both occur.

In particular, bounded components of real surfacesS(A,B,C,D)(R) always

arise fromSU(2)-representations2.
Denote byZ⊂R4 the subset of those parameters(A,B,C,D) for which the

corresponding surfaceS(A,B,C,D)(R) is singular (see section 9.2). Over each
connected component ofR4\Z, the surfaceS(A,B,C,D)(R) is smooth and has
constant topological type. LetB be the union of connected components of
R4\Z over which the smooth surface has a bounded component.

The ramified coverΠ : C4 → C4;(a,b,c,d) 7→ (A,B,C,D) has degree 24;
Okamoto correspondences, defined in section 9.1, “act” transitively on fibers
(recall thatΠ is not Galois). Because of their real nature, these correspon-
dences permute real parameters(a,b,c,d): Therefore,Π restricts as a degree
24 ramified coverΠ|R4 : R4 → Π(R4). Following [4], we have

Π−1(B )∩R
4 = (−2,2)4\{∆ = 0}.

Using again thatSU(2)∩SL(2,R) = SO(2) is abelian, and therefore corre-
sponds to reducible representations, we promptly deduce that, along each
connected component of(−2,2)4 \ {∆ = 0}, the bounded component of
the corresponding surfaceS(A,B,C,D)(R) constantly stands either forSU(2)-

representations, or forSL(2,R)-representations. We shall denote byB SU(2)

andB SL(2,R) the corresponding components ofB . Theorem 9.6 may now be
rephrased as the following equalities:

B = B SU(2) = B SL(2,R).

To prove these equalities, we first note that tB SU(2)∪B SL (2,R) ⊂Π([−2,2]4)
is obviously bounded by−8≤ A,B,C≤ 8 and−20≤ D ≤ 28 (this bound is
not sharp !).

Lemma 9.7. The setB is bounded, contained into−8 ≤ A,B,C ≤ 8 and
−56≤ D ≤ 68.

Proof. The orbit of any pointpbelonging to a bounded component ofS(A,B,C,D)(R)
is bounded. Applying the tools involved in section 5, we deduce that the

2This strengthens the results of [40] where the bounded component was assumed to arise
from SU (2)-representations.
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bounded component is contained into[−2,2]3. Therefore, for anyp=(x,y,z)
andsx(p) = (x′,y,z) belonging to the bounded component, we getA = x+
x′ +yzand then−8≤ A≤ 8. Usingsy andsz, we get the same bounds forB
andC. Sincep is in the surface, we also getD = x2 +y2 +z2 +xyz−Ax−
By−Cz. �

The order 24 group of Benedetto-Goldman symmetries act on the parame-
ters(A,B,C,D) by freely permutting the triple(A,B,C), and freely changing
sign for two of them. This group acts on the set of connected components of
R4\Z, B , B SU(2) andB SL(2,R). The crucial Lemma is

Lemma 9.8. Up to Benedetto-Goldman symmetries,R4 \Z has only one
bounded component.

Proof. Up to Benedetto-Goldman symmetries, one can always assume 0≤
A≤B≤C. This fact is easily checked by looking at the action of symmetries
on the projective coordinates[A : B : C] = [X : Y : 1]: the triangleT = {0≤
X ≤Y ≤ 1} happens to be a fundamental domain for this group action. We
shall show thatR4\Z has at most one bounded component over the cone

C = {(A,B,C) ; 0≤ A≤ B≤C}
with respect to the projection(A,B,C,D) 7→ (A,B,C).

The discriminant ofδ with respect toD reads

disc(δ) = −65536(B−C)2(B+C)2(A−C)2(A+C)2(A−B)2(A+B)2δ3
1

whereδ1 is the following polynomial (with(X,Y) = (A
C, B

C))

δ1 =−C9X3Y3+
(
27Y4 +27X4Y4−6X2Y4−6X4Y2+27X4−6X2Y2)C8

+
(
−768X5Y +192Y3X−768XY+192X3Y−768Y5X +192X3Y3

)
C7

+
(

4096Y6−1536Y2+4096+23808X2Y2−1536X4−1536X2Y4

−1536X4Y2+4096X6−1536X2−1536Y4
)

C6

+
(
−86016X3Y−86016Y3X−86016XY

)
C5+

(
712704X2Y2

−196608Y4−196608−196608X4+712704X2+712704Y2)C4

−5505024C3XY+
(
3145728X2+3145728+3145728Y2)C2−16777216

First, we want to show thatC \ {disc(δ) = 0} has 5 connected components,
only two of which are bounded. The polynomialδ1 has degree 9 inC in
restriction to any lineLX,Y = {A = XC,B = YC} ⊂ C with 0 < X < Y < 1;
we claim that it has constantly 3 simple real roots (and 6 non real ones)

c1(X,Y) < 0 < c2(X,Y) < c3(X,Y).
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In order to check this, let us verify that the discriminant ofδ1 with respect to
C does not vanish in the interior of the triangleT. After computations, we
find

disc(δ1) = k(X2−Y2)8(X2−1)8(Y2−1)8(Yδ2)
2

wherek is a huge constant andδ2 is given, settingX = tY, by

δ2 =
(

22272t8+40337t6+16384t10+16384t2+22272t4
)

Y10

+
(
−59233t4+16384t10−59233t6+40448t8+16384+40448t2

)
Y8

+
(

22272+22272t8−59233t2−59233t6−118893t4
)

Y6

+
(

40337t6+40337−59233t2−59233t4
)

Y4

+
(
22272+22272t4+40448t2)Y2+16384+16384t2.

This later polynomial has non vanishing discriminant with respect toY for
0 < t < 1 and has a non real root, for instance, whent = 1/2: Thus disc(δ1)
does not vanish in the interior of the triangleT. Therefore, the polynomial
δ1 has always the same number of real roots when(X,Y) lie inside the tri-
angleT and one can easily check that 0 is never a root, and by specializing
(X,Y), that there are indeed 3 roots, one of them being negative. The claim
is proved.

The coneC is cutted off by disc(δ) = 0 into 5 components, namely

C1 = {C< c1(X,Y)}, C2 = {c1(X,Y) <C< 0}, C3 = {0<C< c2(X,Y)},
C4 = {c2(X,Y) < C < c3(X,Y)} and C5 = {c3(X,Y) < C}.

But δ1 has degree 8 whenX = 0 and one of the rootsci(X,Y) tends to infinity
whenX → 0. One can check thatc3 → ∞ and onlyC2 andC3 are bounded.

We now study the possible bounded components ofR4\Z over the conaC ;
they necessarily project ontoC2, C3 or the union (together with(A,B,C) =
0). The polynomialδ definingZ has degree 5 inD. After several numerical
specializations, we obtain the following picture:

• the polynomialδ has 5 real rootsd1 < d2 < d3 < d4 < d5 overC2 and
C3, di = di(A,B,C) for i = 1, . . . ,5,

• overC = c1 or C = c2, 0 < A < B < C, the 5 roots extend continu-
ously, satisfyingd1 = d2 < d3 < d4 < d5

• over(A,B,C) = 0, the 5 roots extend continuously as 0= d1 < d2 =
d3 = d4 = 4.

Among the 6 connected components ofR4\Z overC2 (resp.C3), only that
one defined by{d1(A,B,C) < D < d2(A,B,C)} does not “extend” over the
unbounded componentC1 (resp. C4). The unique bounded component of
R4\Z over the conaC is therefore defined overC2∪{A = B = C = 0}∪C3
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by {d1(A,B,C) < D < d2(A,B,C)}. The corresponding connected compo-
nent ofR4 \Z must be bounded as well, since there is at least one bounded
component, given byB SU(2), orB SL(2,R. �

We thus conclude thatB = B SU(2) = B SL(2,R and Theorem 9.6 is proved
in the case the real surfaceS(A,B,C,D)(R) is smooth. The general case follows
from the following lemma, the proof of which is left to the reader.

Lemma 9.9. Let (A,B,C,D) be real parameters such that the smooth part
of the surface S(A,B,C,D)(R) has a bounded component. Then, there exist an
arbitrary small real perturbation of(A,B,C,D) such that the corresponding
surface is smooth and has a bounded component.

We would like now to show that there is actually only one bounded com-
ponent inR4\Z (up to nothing).

Inside[−2,2]4, the equation∆ splits into the following two equations

2(a2+b2+c2 +d2)−abcd−16= ±
√

(4−a2)(4−b2)(4−c2)(4−d2).

Those two equations cut-off the parameter space[−2,2]4 into many con-
nected components and we have3

Theorem 9.10(Benedetto-Goldman [4]). When a, b, c and d are real and
S(A,B,C,D)(R) is smooth, then S(A,B,C,D)(R) has a bounded component if, and
only if, a, b, c and d both lie in(−2,2). In this case, the bounded component
corresponds toSL(2,R)-representations if, and only if,

2(a2+b2+c2 +d2)−abcd−16>
√

(4−a2)(4−b2)(4−c2)(4−d2).

When we cross the boundary

2(a2+b2 +c2 +d2)−abcd−16=
√

(4−a2)(4−b2)(4−c2)(4−d2)

inside (−2,2)4, we pass fromSL(2,R) to SU(2)-representations: At the
boundary, the bounded component must degenerate down to a singular point.

We now prove the

Proposition 9.11.The set(−2,2)4\{∆ = 0} has24connected components,
8 of them corresponding toSL(2,R)-representations. Okamoto correspon-
dence permute transitively those components.

Recall that the group of cover transformationsQ has order 8 and does
not change the nature of the representation: The imageρ(π1(S

2
4)) remains

3In [4], the connected components of[−2,2]4 standing forSL(2,R)-representations are
equivalently defined by∆ > 0 and 2(a2+b2+c2+d2)−abcd−16> 0.
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unchanged inPGL(2,C). Therefore, up to this tame action, Okamoto corre-
spondence provides, to any smooth point(A,B,C,D,x,y,z) of the character
variety, exactly 3 essentially distinct representations,two of them inSU(2),
and the third one inSL(2,R). It may happens (see [39]) that one of the two
SU(2)-representations is dihedral, while the other one is dense!

Proof. We shall prove that theSL(2,R)-locus, i.e. the real semi-algebraic
setX of [−2,2]4 defined by

2(a2+b2 +c2+d2)−abcd−16>
√

(4−a2)(4−b2)(4−c2)(4−d2),

consist in connected neighborhoods of those 8 vertices corresponding to the
Cayley surface

(a,b,c,d) = (ε1 ·2,ε2 ·2,ε3 ·2,ε4 ·2), εi = ±1, ε1ε2ε3ε4 = 1.

Benedetto-Goldman symmetries act transitively on those components. On
the other hand, the Cayley surface also arise for(a,b,c,d) = (0,0,0,0),
which is in theSU(2)-locus: the Okamoto correspondence therefore sends
any of the 8 components above into theSU(2)-locus, thus proving the theo-
rem.

By abuse of notation, still denote byZ the discriminant locus defined by
{∆ = 0} ⊂ (−2,2)4. The restrictionZa,b of Z to the slice

Πa,b = {(a,b,c,d) ; c,d ∈ (−2,2)}, (a,b) ∈ (−2,2)2,

is the union of two ellipses, namely those defined by

c2 +d2−δcd+δ2−4 = 0, whereδ =
1
2

(
ab±

√
(4−a2)(4−b2)

)
.

Those two ellipses are circumscribed into the squareΠa,b (see figure 9.3)
and, for generic parametersa andb, cut the square into 13 connected compo-
nents. One easily verify thatSL(2,R)-components (namely those connected
components ofXa,b = X∩Πa,b defined by the inequality of the previous the-
orem) are those 4 neighborhoods of the vertices of the square.

This picture degenerates precisely whena = ±2, b = ±2 or a = ±b. We
do not need to consider the first two cases, since they are on the boudary of
(−2,2)4. Anyway, in these cases, the two ellipses coincide; they moreover
degenerate to a double line whena = ±b.

In the last casea = ±b, the picture bifurcates. Whena = b, one of the
ellipses degenerates to the double linec = d, and the two components of
Xa,b near the vertices(2,2) and(−2,−2) collapse. Whena = −b, the com-
ponents ofXa,b near the two other vertices collapse as well. This means that
each component ofXa,b stands for exactly two components ofX: We finally
obtain 8 connected components for theSL(2,R)-locusX ⊂ (−2,2)4. One
easily verify that there are sixteenSU(2)-components in(−2,2)4\Z. �
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2a2 +2b2+2c2+2d2−abcd−16= 0

(−2,−2)

(−2,2)

(2,−2)

(2,2)

Πa,b Za,b = {∆ = 0}

Xa,b

FIGURE 5. Z restricted to the slice Πa,b.

9.4. Ramified covers. Here, we would like to describe other kinds of cor-
respondences between surfacesS(A,B,C,D), that arise by lifting representa-
tions along a ramified cover ofS2

4. Let ρ ∈ Rep(S2
4) be a representation with

a = d = 0, so thatρ(α)2 = ρ(β)2 = −I , and consider the two-fold cover
π : S2 → S2 ramifying overpα andpδ.

The four punctures lift-up as six punctures labelled in the obvious way

π :





p̃α 7→ pα
p̃β, p̃′β 7→ pβ
p̃γ, p̃′γ 7→ pγ

p̃δ 7→ pδ
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α

p̃′γ β

γ
βγ

p̃γ

α

α β γ

pα pβ pγ

p0

p̃0

p̃α p̃β

p̃′0

p̃′β

FIGURE 6. The two-fold cover. (the pointpδ is at infinity)

After twisting the lifted representationρ ◦ π by −I at p̃α and p̃δ, we get a
new representatioñρ ∈ Rep(S2

4) ; the new punctures are respectively ˜p′γ, p̃γ,
p̃β and p̃′β and the new generators for the fundamental group are given by

αβγβ−1α−1, αβα−1, β, andγ. After computation, we get a map




0 7→ c
b 7→ b
c 7→ b
0 7→ c

and





x 7→ y
y 7→ 2−x2

z 7→ x2y+xz−y+bc

defining a two-fold cover

Quad : S(0,B,0,D) → S(2B,4−D,2B,2D−B2−4)

whereB = bc andD = 4−b2− c2. This map corresponds to the so-called
“quadratic transformation” of Painlevé VI equation.



66 SERGE CANTAT, FRANK LORAY

When moreoverc = 0, we can iterate twice this transformation and we
deduce a 4-fold cover

Quad◦Quad : S(0,0,0,D) → S(8−2D,8−2D,8−2D,−28+12D−D2)





0 7→ b
b 7→ b
0 7→ b
0 7→ b

and





x 7→ 2−x2

y 7→ 2−y2

z 7→ 2−z2

For instance, whenD = 0, we get a coveringS(0,0,0,0) →S(8,8,8,−28). Another
particular case arise whenD = 4 where Quad defines an endomorphism of
the Cayley cubic surfaceS(0,0,0,4) → S(0,0,0,4), namely that one induced by
the regular cover

C∗×C∗ → C∗×C∗ : (u,v) 7→ (v,u2).

Example 9.12.By the way, we note that, up to the action ofQ, the following
traces data are related :

(0,0,0,d) ↔ (d′′,d′′,d′′,−d′′) → S(0,0,0,4−d2)

↓ ↓
(0,0,d,d) ↔ (2,2,d′,−d′) → S(d2,0,0,4−2d2)

↓ ↓
(d,d,d,d) ↔ (2,2,2,d2−2) → S(2d2,2d2,2d2,4−4d2−d4)

whered′ =
√

4−d2 andd′′ =
√

2+d′. In the previous diagram, horizon-
tal correspondences arise from Okamoto symmetries, while vertical arrows,
from quadratic transformationQ.

More generally, we have related

(0,0,c,d) ↔ (c′′,c′′,d′′,−d′′) → S(cd,0,0,4−c2−d2)

↓ ↓
(c,c,d,d) ↔ (2,2,c′,d′) → S(c2+d2,2cd,2cd,4−2c2−2d2−c2d2)

wherec′ = cd+
√

(c2−4)(d2−4)
2 , d′ = cd−

√
(c2−4)(d2−4)

2 , c′′ =
√

2+c′ andd′′ =√
2−c′.

Remark 9.13.One can check by direct computations that the quadratic tran-
formation Quad is equivariant, up to finite index, with respect to theΓ∗

2-
actions. Precisely, we have





Quad◦B2
1 = B−1

2 ◦Quad,
Quad◦B2 = B−2

1 ◦Quad,
Quad◦sz = sz◦Quad.
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The group generated byB2
1, B2 andsz, acting on both sides, containsΓ∗

2 as
an index 2 subgroup (recall thatB2

1 = gx = sz◦ sy andB2
2 = gy = sx ◦ sz).

Therefore, ifq = Quad(p) (for some parameters(0,B,0,D)), thenp is Γ∗
2-

periodic (resp. bounded) if, and only if,q is.
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1977. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass,
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the sixth Painlevé equation.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27(3-4):379–
425 (1999), 1998.
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