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1. INTRODUCTION

This is the first part of a series of two papers (4e¢ [10]), thread which
is to describe the dynamics of a polynomial action of the grou

(1.1) ={MePGL(2,Z)] M=Idmod?2)}
on the family of affine cubic surfaces
(1.2) X2 +Y? + 22 + xyz= Ax+By+Cz+D,

whereA, B, C, andD are complex parameters. This dynamical system ap-
pears in several different mathematical areas, like theadkmmy of the
sixth Painlevé differential equation, the geometry of éigolic threefolds,
and the spectral properties of certain discrete Schr@&diogerators. One of
our main goals here is to classify parametgksB,C, D) for which I'; pre-
serves a holomorphic geometric structure, and to applycthssification to
provide a galoisian proof of the irreducibility of the siXx@ainlevé equation.
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1.1. Character variety. LetSE1 be the four punctured sphere. Its fundamen-
tal group is isomorphic to a free group of rank 3¢iff3, y andd are the four
loops which are depicted on figyre]1.1, then

T0(S3) = (0, B,v, 5| apyd = 1).

FIGURE 1. The four punctured sphere.

Let Rep(S3) be the set of representationsmf(S3) into SL(2,C). Such
a representatiop is uniquely determined by the 3 matricpéa), p(B),
andp(y), so thatRep(S3) can be identified with the affine algebraic vari-
ety (SI5 (2,C))3. Let us associate the 7 following traces to any elenpewit
Rep(Sy):

a=tr(p(a)) ; b=tr(p(B)) ; c=tr(p(y) ; d=tr(p(d))
x=tr(p(aB)) ; y=tr(p(By)) ; z=tr(p(ya)).
The polynomial mag : Rep(S3) — C’ defined by
(1.3) X(p) = (a,b,c,d,x,y,2)
is invariant under conjugation, by which we mean thgt’) = x(p) if p’ is
conjugate t@ by an element ofL (2,C). Moreover,

(1) the algebra of polynomial functions dihp(Sﬁ) which are invariant
under conjugation is generated by the componenys of
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(2) the components ¢f satisfy the quartic equation
(1.4) X2 +y? + 22 + xyz= Ax+ By+Cz+D,
in which the variable#, B, C, andD are given by

A=ab+cd, B=bc+ad, C=ac+bd,
and D=4—a?—b?2—c?2—d?—abcd

(3) the algebraic quotierRep(S3)//SL(2,C) of Rep(S2) by the action
of SL (2, C) by conjugation is isomorphic to the six-dimensional quar-
tic hypersurface o€’ defined by equatior (1.4).
The affine algebraic varietiRep(S3)//SL (2,C) will be denotedy(S2) and
called thecharacter variety cﬁﬁ. For each choice of four complex parame-
tersA, B, C, andD, S c p) (or Sif there is no obvious possible confusion)

will denote the cubic surface @ defined by the equatiofi (1.4). The family
of these surfaceSa g c p) will be denotedram.

Remark 1.1. The mapC* — C%;(a,b,c,d) — (A,B,C,D) defined by [I]5)
is a non Galois ramified cover of degree 24. Fibers are studidgpendix
B. It is important to notice that a poim € S g ¢ p) Will give rise to repre-
sentations of very different nature depending on the choida, b, c,d) in
the fiber, e.g. reducible or irreducible, finite or infiniteage.

Remark 1.2. As we shall see in sectidn .4, if we replace the four puntured
sphere by the once puntured torus, the character varietisaily fibered
by the family of cubic surfaceS§q g op-

(1.5)

1.2. Automorphisms and modular groups. The group of automorphisms
Aut(Ty(S%)) acts orRep(S3) by composition{®, p) — po®~1. Since inner
automorphisms act trivially om(Sﬁ), we get a morphism from the group of
outer automorphisrr@ut(nl(Sﬁ)) into the group of polynomial diffeomor-
phisms ofx (S3):

(1.6) {out(rcré(gg)) : Aut[]Z(ngﬁ)]

such thatfe (x(p)) = X(p o ®~1) for any representatiop.

The group()ut(nl(Sﬁ)) is isomorphic to the extended mapping class group
MCG*(SE), i.e. to the group of isotopy classes of homeomorphismSﬁof
that preserve or reverse the orientation. It contains a @dGL (2,Z)
which is obtained as follows. L&t?> = R?/Z? be a torus of dimension 2 and
o be the involution ofT? defined byo(x,y) = (—x, —y). The fixed point set
of o is the 2-torsion subgroud C T2, isomorphic taZ /2Z x Z /2Z:

(1.7) H ={(0,0); (0,1/2); (1/2,0); (1/2,1/2)}.
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The quotientl’? /a is homeomorphic to the sphef#, and the quotient map
m: T? — T? /0 = S? has four ramification points, corresponding to the four
fixed points ofo. The affine grougGL (2,Z) x H acts linearly orll? and
commutes witho. This yields an action dPGL (2,Z) x H on the spher&?,
that permutes ramification points af Taking these four ramification points
as the punctures (ﬁ;{, we get a morphism

(1.8) PGL(2,Z) x H — MCG*(S3),

which, in fact, is an isomorphism (seB [5], section 4.4). Timage of
PGL(2,2) is the stabilizer oft(0,0), freely permuting the three other points.
As a consequenc@GL (2,Z) acts by polynomial transformations w(]Sﬁ).

The image ofH permutes the 4 punctures by products of disjoint transpo-
sitions and acts trivially oi(S2), so that the action of the whole mapping
class groupMCG*(S3) on x(S3) actually reduces to that &GL (2,Z) (see
sectiorZpR).

Let I'; be the subgroup dPGL (2,Z) whose elements coincide with the
identity modulo 2. This group coincides with the (imagePiGL (2,Z) of
the) stabilizer of the fixed points @f, so that™} acts orSZ and fixes its four
punctures. Consequently; acts polynomially or)((Sﬁ) and preserves the
fibers of the projection

(a,b,c,d,x,y,2) — (a,b,c,d).
From this we obtain, for any choice of four complex paranmstarB,C, D),
a morphism fromr'; to the group of polynomial diffeomorphisms of the
surfaceSapcp)- The following result is essentially due t'-Huti (see

[L9], and$B.1).

Theorem A. For any choice of the parameters A, B, C, and D, the morphism

M5 — Aut[Sagcp))

is injective and the index of its image is bounde@®ByFor a generic choice
of the parameters, this morphism is an isomorphism.

As a consequence of this result, it suffices to understanddtien ofl’;
on the surface§apc p) in order to get a full understanding of the action

of MCG*(S2) on X(S3). (see also remark 2.4 for the case of orientation
preserving transformations and an action of the pure breodmon three
strings).

Remark 1.3. If the parameters, B, C, andD belong to a ringK, the group
5 acts onSa g c p)(K), i.e. on the set of points of the surface with coordi-
nates inK. In particular, when the parameters are real numberscts on
the real surfac&agcp)(R).
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There are useful symmetries of the parameter space, as svedivaring
between distinct surface3a g c p) and S g ¢/ o), that can be used to re-
late dynamical properties d¢f; on different surfaces of our family. These
symmetries and covering will be described in secfion 2 ameagix B.

1.3. Projective structures. OnceSf1 is endowed with a complex projective
structure, which means that we have an atlaSomade of charts int®*(C)
with transition functions in the group of homographic tfamshations of
P1(C), the holonomy defines a morphism framy(S3) to PSL (2,C). Since
nl(Sﬁ) is a free group, the holonomy can be lifted to a morphism

p:T(S7) — SL(2,C).

Properties of the holonomy such as discreteness, finiteaefise presence
of parabolic elements ip(1u(S3)), are invariant by conjugation and by the
action of the mapping class grobpCG*(S3). This kind of properties may
be used to construct invariant subsetsSgfg ¢ p) for the action ofl 3, and
the dynamics of this action may be used to understand thoaeant sets
and the space of projective structures. This approach hexs foepularized
by Goldman (sed[21][]23] for example).

1.4. Painlevé VI equation. The dynamics of 3 on the varietieSagc p)

is also related to the monodromy of a famous ordinary diffea¢ equation.
The sixth Painlevé equatid®y| = R/|(8q, 63, 6y, 65) is the second order non
linear O.D.E.

d’g 1(1, 1 1 dq) 2 1, 1 1 dg
@ = z(a+ﬂ+ﬁ>(m> —(f+m+ﬁ>(m
a 4+ a@-Dgt) (651> %L+ % 11 + 1-67 1(t-1)
t2(t-1)° 2 290 2(-)* " 2 (a1 )"

the coefficients of which depend on complex parameters
e - (ea ) 9B7 ey7 66)

. The main property of this equation is the absence of movsibigular
points, the so-called Painlevé property: All essentiadjglarities of all solu-
tionsq(t) of the equation only appear whes {0, 1,}; in other words, any
solutionq(t) extends analytically as a meromorphic function on the usade
cover ofP}(C)\ {0,1,»}.

Another important property, expected by Painlevé himsslithe irre-
ducibility. Roughly speaking, the general solution is moenscendental
than solutions of linear, or first order non linear, ordindifferential equa-
tions with polynomial coefficients. Painlevé proved thay areducible sec-
ond order polynomial differential equation without mowalsingular point
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falls after reduction into the 4-parameter famiy, or one of its degenera-
tionsh,...,R,. The fact that Painlevé equations are actually irredecids
proved by Nishioka and Umemura By (see [Bp[4}4]) and by Watanabe in
[E8] for R/,. Another notion of irreducibility, related with transceste of
first integrals, was developped by Malgrange and Casal&ifill}] and then
applied to the first of Painlevé equations (fee 7 for morail$t

A third important property, discovered by R. Fuchs, is th@tsons of
R/ parametrize isomonodromic deformations of rank 2 merotmorpon-
nections over the Riemann sphere having simple pold®,at1, o}, with

respective set of local exponer(ts%,ie—;,i%y,ie—f). From this point of
view, the good space of initial conditions at, s&y, is the moduli space
M1, (0) of those connections fdr= tg (see [2P]); it turns to be a conve-
nient semi-compactification of the naive space of initiahditions C2 >
(q(to),d (to)) (compare[[37]). Via the Riemann-Hilbert correspondencg(0)
is analytically isomorphic to the moduli space of correging monodromy

representations, namely to (a desingularizatiorsfk c p) with parameters

(1.9) a=2cogmy), b=2cogmg), c=2cogTdy), d = 2cogm0;).

The (non linear) monodromy d®,|, obtained after analytic continuation
around 0 and 1 of locdk/| solutions at = tg, induces a representation

T[]_(IP)]'(C) \ {07 17 00}7t0) - AUt[%A,B,C,D)]
whose image coincides with the actionlaf C PSL (2,2) (see [1F[29]).

1.5. The Cayley cubic. One very specific choice of the parameters will
play a central role in this paper. The parameters(@r,0,4), and the sur-
faceS0,0,0,4) Is the unique surface in our family with four singulariti€sur
is the maximal possible number of isolated singularitiesafoubic surface,
andS,0,0,4) is therefore isomorphic to the well known Cayley cubic. From
the point of view of character varieties, this surface appéathe very spe-
cial case(a,b,c,d) = (0,0,0,0) consisting only of solvable representations
(dihedral or reducible).

|. The Cayley cubi&c ; 1. §_02,02,-024.39) ; - S0,003) ; V- S0,004.1)-

From the Painlevé point of view, it corresponds to the Rigaarame-
ter (81,02,03,64) = (0,0,0,1). The singular foliation which is defined by
the corresponding Painlevé equat®®n(0,0,0,1) is transversely affine (see
[[3]) and, as was shown by Picard himself, admits explic#t fintegrals
by means of elliptic functions (sd¢ 7). Moreover, this sfieequation has
countably many agebraic solutions, that are given by finiteeopoints on
the Legendre family of elliptic curves (sge 7).

The Cayley cubic has also the “maximal number of automomsisThe
whole groupPGL (2,Z), in whichl'; has index 6stabilizes the Cayley cubic,
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FIGURE 2. Four examples. |. The Cayley cubicx: ; Il
S-02,-02,-0.2439) ; . S0003) ; V. 0,0,04.1)-

and there are extra symmetries coming from the permutaficoardinates
(see sectioh 3.1), so that the maximal index 24 of theoremabiained in
the case of the Cayley cubic.

Moreover, the degree 2 orbifold cover

(110) TC . C'xCr— 8(0707074)

semi-conjugates the action BGL (2,Z) on the character surfa&y g o 4) to
the monomial action o6L (2,Z) on C* x C*, which is defined by

u uM1yMi2
@ n(4) = (),
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for any elemenM of GL(2,Z). On the universal coveC x C — C* x C¥,
the lifted dynamics is the usual affine action of the gréiig2,2) x Z2 on
the complex plan€?.

1.6. Compactification and entropy. Our first goal is to classify automor-
phisms of surface§agcp) in three types, elliptic, parabolic and hyper-
bolic, and to describe the main properties of the dynamiasach type of
automorphisms. This classification is compatible with tlesadiption of
mapping classes, Dehn twists corresponding to parabealistormations,
and pseudo-Anosov mappings to hyperbolic automorphisims nfost strik-
ing result in that direction is summarized in the followitgorem.

Theorem B. Let A B, C, and D be four complex numbers. Let M be an
element of 3, and v be the automorphism of & c p) which is determined
by M. The topological entropy off : Sagc p)(C) — Saec,p)(C) is equal

to the logarithm of the spectral radius of.M

The proof is obtained by a deformation argument: We shalivsthat the
topological entropy does not depend on the paraméfe& C, D), and then
compute it in the case of the Cayley cubic. To do so, we firstriles the
geometry of surfaceS € Fam (section[R), their groups of automorphisms
(section[B), and the action of automorphisms by biratioreaigformations
on the Zariski closur&of Sin P3(C) (section[#).

Another algorithm to compute the topological entropy hasnbebtained
by Iwasaki and Uehara for non singular cub®&is Fam (see [3R]). The case
of singular cubics is crucial for the study of the set of gqtfashsian defor-
mations of fuchsian representations, in connection witrs Benbedding of
Teichmiller spaces (see [23] arid][10]).

1.7. Bounded orbits. Section[b is devoted to the study of parabolic ele-
ments (or Dehn twists), and bounded or periodic (i.e. firaté)ts of ;. For
instance, given a representatipnS3 — SU (2) ¢ SL(2,C), therl 3-orbit of
the correponding poing(p) will be bounded, contained in the cupe2, 2J3.
If moreover the image gb is finite, then so will be the corresponding orbit.
Though, there are periodic orbits with complex coordinates

First of all, fixed points of ; are precisely the singular points§h g c p)
and have been extensively studied (seé [29]). Singulartpa@irise from
semi-stable points dRep(S3), that is to say either from reducible represen-
tations, or from those representations for which one of tlagricesp(a),
P(B), p(y) or p(d) is +I. Both type of degeneracy occur at each singular
point of Sa g c,p) depending on the choice of parametgash, ¢, d) fitting
to (A,B,C,D). The Riemann-Hilbert correspondangs,(6) — Sagcp)
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is a minimal resolution of singularities am}, equation restricts to the ex-
ceptional divisor as a Riccati equation : this is the locuRafcati-type
solutions. We note that any poifx,y, z) is the singular point of one member
SaBCD):

Periodic orbits of length> 2 correspond to algebraic solutions f,
equation (see[[31]). In Propositign 5.4, we classify orbitdength< 4 :
we find one 2-parameter family of length 2 orbits and two lapaater fam-
ilies of length 3 and 4 orbits. They correspond to well-knbwatgebraic
solutions ofR,, equation (se€[]3]). For instance, the length 2 orbit arise
whenA = C = 0 ; the correspondinBy,-solution isq(t) = /.

The following result shows that infinite bounded orbits aal and con-
tained in the cubé-2, 2)3.

Theorem C. Let m be a point of @ g ¢ p) With a bounded 3-orbit of length
> 4. Then, the parameter@, B,C,D) are real numbers and the orbit is
contained in the real part @ g c p)(R) of the surface.

If the orbit of m is finite, then both the surface and the orlo& actually
defined over a (real) number field.

If the orbit of m is infinite, then it corresponds td8l (2)-representation
for a convenient choice of parametdes b, c,d), and the orbit is contained
and dense in the unique bounded connected component of dwrspart

of Sascp)(R)-

As a corollary, periodic orbits of lengtlk 4 are rigid and we recover
the main result of[]3]. Recall that Cayley cubic containsnitély many
periodic orbits, of arbitrary large order. Itis conjectitbat there are finitely
many periodic orbits apart from the Cayley member, but thigtiil an open
problem. A classification of known periodic orbits can berfdun [1].

About infinite orbits, Theorem C should be compare with rissoil Gold-
man and Previte and Xia, concerning the dynamics on the clearzariety
for representations intdU (2) [AQ]. We note that an infinite bounded orbit
may also correspond t8L (2, R)-representation for an alternate choice of
parameterga, b, c,d).

This theorem stresses the particular role played by theceesd, when all
the parameters, B, C, andD are real numbers; in that cadé, preserves
the real part of the surface and we have two different, bugetiorelated,
dynamical systems: The action on the complex surfaggc p)(C) and

the action on the real surfac®sgcp)(R). The link between those two
dynamical systems will be studied 10].

lAIthough we usually find 4 families of algebraic solutionsRyf in the litterature (see
(11, E]), there are actually 3 up to Okamoto symmetries : dedreolutions 3B and 4C in
[B] are conjugated by the symmems,s; (with notations of [3B]).
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1.8. Dynamics, affine structures, and the irreducibility of R/;. The last
main result that we shall prove concerns the classificatiopasameters
(A,B,C,D) for which S g c p) admits al" 3-invariant holomorphic geomet-
ric structure.

Theorem D. The groupl'; does not preserve any holomorphic curve of fi-
nite type, any singular holomorphic foliation, or any sif@uholomorphic
web. The group; does not preserve any meromorphic affine structure, ex-
cept in the case of the Cayley cubi®e. when(A,B,C,D) = (0,0,0,4), or
equivalently when

(a,b,c,d) =(0,0,0,0) or (2,2,2,—2),

up to multiplication by—1 and permutation of the parameters.

Following [12], the same strategy shows that the Galois gpaliis the
whole symplectic pseudo-group except in the Cayley case gsetior(]7),
and we get

Theorem E. The sixth Painle& equation is irreducible in the sense of Mal-
grange and Casale except whgi B,C,D) = (0,0,0,4), i.e. except in one
of the following cases:

¢ 6p€3+Z,Yw=0,B,Y,85
e 0y,eZ, Vw=0a,pB,y,d andy 0 is even.

Following [I3], Malgrange-Casale irreducibility also itigs Nishioka--
Umemura irreducibility, so that theorefn 1.8 indeed prosidegaloisian
proof of the irreducibility in the spirit of Drach and Pain&e

1.9. Aknowledgement. This article has been written while the first author
was visiting Cornell University: Thanks to Cliff Earle, Jotsmillie and
Karen Vogtmann for nice discussions concerning this papet o the DREI
for travel expenses between Rennes and Ithaca.

We would like to kindly thank Marta Mazzocco who introducesl to
Painlevé VI equation, its geometry and dynamics. The thkx gave in
Rennes was the starting point of our work. Many thanks al$eup Casale
who taught us about irreducibility, and to Yair Minsky wha#ly explained
some aspects of character varieties to the first author.

Part of this paper was the subject of a conference held in &eim2005,
which was funded by the ANR project "Systemes dynamiqudgnomi-
aux”, and both authors are now taking part to the ANR proj&gtiplexe.”
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2. THE FAMILY OF SURFACES

As explained irf I]1, we shall consider the faniiym of complex affine
surfaces which are defined by the following type of cubic ¢igna

X2 +Y? + 22+ xyz= Ax+By+Cz+D,

in which A, B, C, andD are four complex parameters. Each choice of
(A,B,C,D) gives rise to one surfacs in our family; if necessarys will
also be denote§ s g c p). When the parameters are real numbg(R,) will
denote the real part & Figure[1.b presents a few pictures $R) for
various choices of the parameters.

This section contains preliminary results on the geomeftth® surfaces
SaBc,p), and the automorphisms of these surfaces. Most of thesksrasel
well known to algebraic geometers and specialists of Paé equations.

2.1. The Cayley cubic. In 1869, Cayley proved that, up to projective trans-
formations, there is a unique cubic surfac@#iC) with four isolated singu-
larities. One of the nicest models of the Cayley cubic is théegeS g .4),
whose equation is

X +Y+ 2+ xyz=4.
The four singular points d&: are rational nodes located at

(=2,-2,-2), (-2,2,2), (2,—2,2) and (2,2,-2),

and can be seen on figure]1.5. This specific member of our fashiyr-
faces will be calledhe Cayley cubiand denote&. This is justified by the
following theorem (see Appendix A).

Theorem 2.1(Cayley) If S is a member of the famiRam with four singular
points, then S coincides with the Cayley cuhkic S

The Cayley cubic is isomorphic to the quotient@f x C* by the involu-
tionn(u,v) = (u=1,v1). The map

(x,y)=1-u 1 Vv 1 uv 1
TIC 7y - U, V7 uv
gives an explicit isomorphism betweé@* x C*) /n and<. The four fixed
points
(17 1>7 (17_]')7 (_17 1) and (_17_1>
of n respectively correspond to the singular point§ohbove.

The real surfac&:(R) contains the four singularities &, and the smooth
locus&:(R) \ Sing(&c) is made of five components : A bounded one, the clo-
sure of which coincides with the image B = St x St ¢ C* x C* by 1t
and four unbounded ones, corresponding to imagés'ok R™, R x R,
R~ xR",andR~ x R~ (see figurg 1]5).



DYNAMICS, PAINLEVE VI AND CHARACTER VARIETIES. 13

As explained in sectiop 1.5, the groGp (2,Z) acts onC* x C* by mono-
mial transformations, and this action commutes with thelwmton n, per-
muting its fixed points. As a consequen®&l (2,Z) acts on the quotient
<. Precisely, the generators

1 0 11 and 1 0
-1 1) \0 1 0 -1
of PGL (2,Z) respectively send the triple,y, z) to

(X7 _Z_Xy7y>7 (Z7y7 —X—yZ) and (X7y7 _Z_Xy>'

As we shall see, the induced actionRiEL (2,Z) on & coincides with the
action of the extended mapping class grouSﬁJtonsidered irgfL2.

The groupPGL (2,Z) preserves the real part & ; for example, the prod-
uct C* x C* retracts by deformation on the real 2-tofis = St x St, and
the monomial action o6L (2,Z) preserves this torus (it is the standard one
under the parametrizatigis, t) — (e2™,eA™)).

2.2. Mapping class group action. First, let us detail section 1.2. The ex-
tended mapping class groWpCG*(S3) is the group of isotopy classes of
homeomorphisms of the four punctured sptﬁﬁ';ethe usual mapping class
groupMCG(Sﬁ) is the index 2 subgroup consisting only in orientation pre-
serving homeomorphisms. Those groups embed in the groupterf auto-
morphisms ofnl(Sﬁ) in the following way. Fix a base poirmy € Sﬁ. In any
isotopy class, one can find a homeomorphisfixing pp and thus inducing
an automorphism of the fundamental group

h, : (S5, Po) — Tu(SE, Po) ; y+ hoy.
The class oh, modulo inner automorphisms does not depend on the choice
of the representativiein the homotopy class and we get a morphism
(2.1) MCG*(S3) — Out (T (S3))
which turns out to be an isomorphism.
Now, the action oDut(1y(S2)) onx(S3) gives rise to a morphism

{MCG*(S&) — Aut[X(S3)]

[ — {X(p)—xX(poh™)}
into the group of polynomial diffeomorphisms ;Q(Sﬁ). (here, we use that
po(h)™t=poh*=poh™1). Our goal in this section is to give explicit
formulae for this action of1CG*(S3) onx(S3), and to describe the subgroup
of MCG(S%) which stabilizes each surfa@ g c p).-

(2.2)
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2.2.1. Torus cover.Consider the two-fold ramified cover
(2.3) T T? = R?/22 — §?

with Galois involutiono : (x,y) — (—X, —Yy) sending its ramification points
(1/2,0),(0,1/2),(1/2,1/2) and(0,0) respectively to the four punctureg,
Pg, Py andps (see figuré 1]1).

FIGURE 3. The torus cover.

The mapping class group of the torus, and also of the oncetymaac
torusT2 = T2\ {(0,0)}, is isomorphic toGL (2,Z). This group acts by lin-
ear homeomorphisms on the torus, fixif@O0), and permuting the other
three ramification points oftr. This action provides a section of the pro-
jection Diff (T?) — MCG*(T?). Since this action commutes with the invo-
lution o (which generates the centerGE (2,2)), we get a morphism from
PGL(2,Z) to MCG*(S2). This morphism is one to one and its image is con-
tained in the stabilizer ops in MCG*(S3).

The subset C T? of ramification points oftcoincides with the 2-torsion
subgroup of(T?,+) ; H acts by translation off* and commutes with the
involution o as well. This provides an isomorphism (see section 4.4 n [5]

(2.4) PGL(2,Z) x H — MCG*(S3).
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Lemma 2.2. The subgroup ofiut(X(S3)) obtained by the action of the sub-
group PGL (2,Z) of MCG*(S3) is generated by the three polynomial auto-
morphisms B, B, and & of equationsg 2|7, 2.8, arjd .9 below. Therder
translation group H acts trivially on paramete(#\, B,C, D, x,y,z), permut-
ing parameterga, b, c,d) as follows

(25) P = (1/270) : (a7 b,C,d) = (d707 b7a)

(26) P = (07 1/2) : (a7 b,C,d) = (b,a,d,C)

Proof. Let iy and, be the lifts of the base poimh < Sﬁ. Still denote bya,
B, y andd the two lifts of those loops, with respective initial poirfs and
fi- The fundamental group of the four punctured téfgs= T2\ H based at

Po may be viewed as the set of even wordsii3, y andd, or equivalently
of words inwy, W, andod that are even id where
w=Pfy=0"1"1 and wp=y3=pta L.

(see Figurg 2.2/1). The action of the linear homeomorphism

or we should say, of a convenient isotopic homeomorptidixing po, on
the fundamental groups, (T2, fio) andTy (S3, po) is given by :

w — & o tapdt o — apa
h, : {002 — Wy ie. 5 : 3
0 — o 5 5

This automorphism oﬁl(Sﬁ, po), which depends on the choice lofn the
isotopy class oB;, induces an automorphism

Rep(S) — Rep(S3) ; pr po(h) ™.

The corresponding action on the character varietypn the corresponding
7-uples(a,b,c,d,x,y,z) € C’, is independant of that choice. In order to
compute it, note that

B~tap
y
5

(h)t=h:

1111

< ™A



16 SERGE CANTAT, FRANK LORAY

We therefore obtain

a — b ¥ X
1 0\ . b — a
(2.7) Blz(_l 1) : C oo c and {y — —Z—Xy+ac+ bd
zZ — Y
d — d

For instance, the coordinageof the image is given by = tr(poh*(By)) =
tr(p(B~taBy)), and its value is easily computed using standard FrickerKlei
formulae, like

tr(My) = tr(M%), tr(MiMg) = tr(MaMy),

tr(MiMy 1) +tr(M1My) = tr(My)tr(My)
and tr(MleMg) —I—tr(MlMgMz) +tr(M1)tr(M2)tr(M3)
= tr(M1)tr(M2M3) 4 tr(M2)tr(M1M3) + tr(M3)tr(M1M>)
for anyM1,M2,M3 € SL(2,C).
A similar computation yields

a — a « 7
(2.8) Bx= Lhy. b =c g y y
01 c — b
zZ — —Xx—Yyz+ab+cd
d — d

which, together wittB,, provide a system of generators for thgL (2,2)-
action. In order to generaf®GL (2,Z), we have to add the involution

a — ¢ X oy
0 1)\ . b — b
(2.9) T3:(1 O) X c — a and {)Z/ : >Z<
d — d
The formulae for the action df are obtained in the same way. O

Remark 2.3. The formulad 2]7] 2]8, arid 2.9 84, B, and Tz specialize to
the formulae of section 3.1 wheéi, B,C,D) = (0,0,0,4).

Remark 2.4. The Artin Braid Groupss = (B1,B2 | B1B2B1 = B2B1B2) is
iIsomorphic to the group of isotopy classes of the thrice puned disk fixing
its boundary. There is therefore a morphism fremnto the subgroup of
MCG(SE) that stabilizegg. This morphism gives rise to the following well
known exact sequence

| — ((B1B2)) — B3 — PSL(2,Z2) — 1,

where generatof$; and[3; are respectively sent 8, andB,, and the group
((B1B2)3) coincides with the center aks. In particular, the action o33
on X(S3) coincides with the action oPSL (2,Z). We note thatPSL (2,2)
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is the free product of the trivolutioB;1B, and the involutionB;B,B;. In
PGL (2,Z), we also have relatior = |, T3B1Ts = B, * andT3B,Ts = B *.

2.2.2. The modular groupB3; andl,. Since the action dil € GL (2,Z) on
the setH of points of order 2 depends only on the equivalence cladd of
modulo 2, we get an exact sequence

| -5 —=PGL(2,Z)xH— Sym, — 1

wherel; C PGL(2,Z) is the subgroup defined by those matridéds= |
modulo 2. This group acts on the character variety, and stnuesserves
the punctures, it fixea, b, ¢, andd. The groupr’; is the free product of 3
involutions,sy, sy, ands,, acting on the character variety as follows.

1 X +— —X—yz+ab+cd
Z — Z

(2.10)

= X

X
(2.11) sy: {y — —y—Xxz+bc+ad
z

= Z
(2.12) sZ: {

We note thaty = B,B; 'B, T3, s, = B2B1B, T3 ands, = ByB1B,Ts. The
standard modular groU’pz CPSL(2,Z2)is generated by

— X
=y
—

—z—Xxy+ac+bd

N < X

( 1 0
& = S8 = Bl = -2 1
12

—25-2 1 -2

\gz = §% = B"B" = <2 _3>

(we haveg,gygx = |); as we shall see, this corresponds to Painlevé VI mon-
odromy (see[[49] and sectigh 7). The following propositismow a direct
consequence of lemniaP.2.

Proposition 2.5.LetMCG(S?) (resp.MCGo(S?)) be the subgroup dCG*(S32)
(resp. MCG(S?)) which stabilizes the four punctures $f. This group co-
incides with the stabilizer of the projectiar: x(S3) — C* which is defined
by

m(a,b,c,d,x,y,z) = (a,b,c,d).
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Its image inAut(x(Sﬁ)) coincides with the image df; (resp. ') and is
therefore generated by the three involutioRs § and s (resp. the three
automorphisms,g gy, d).

As we shall see in sectiorjs B.1 and] 3.2, this group is of fimitex in
Aut(X(S3).
Remark 2.6. Let us consider the exact sequence
| - T5—PGL(2,Z) — Symz — 1,

whereSyms C Sym, is the stabilizer ofps, or equivalently ofd, or D. A
splitting Symz — PGL (2,Z) is generated by the transpositiohRs= T3B1B>
andT, = B1B,Ts. They act as follows on the character variety.

(a — b % X

-1 0\ . b — a
le(l 1). c o c and {)Z/: Z
d — d y

and

(a — a < o 7
T, = 1 1 : b — ¢ and {y — y
0 -1 c — b 2> X

\d — d

2.3. Twists. There are other symmetries between surf&gs c p) that do
not arise from the action of the mapping class group. Indgaeen any
4-uplee = (€1,€2,€3,€4) € {il}"’ with |_|i4:15i = 1, thee-twist of a repre-
sentatiorp € Rep(Sﬁ) is the new representatiahep generated by

p(a) = ep(a)

P(B) = e2p(B)

py) = e3p(y)

P(d) = eap(d)

This provides an action of /2Z x Z/2Z x Z /2Z on the character variety
given by

a — €ga A — €16A
X — €169
-~ b — & B — &y¢3B and s eoe
& c — &3b C — ¢g&3C }Z/ . 828332/
d — & D — D 13

The action orfA,B,C, D, x,y, z) is trivial iff e =4(1,1,1,1). The "Benedetto-
Goldman symmetry group” of order 192 acting @b, c,d, x,y, z) which is
described in[[4] §3C) is precisely the group generated dfwists and the
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symmetric grougpym, = (T1, T2, P1, P2). The subgroui® acting trivially on
(A,B,C,D,x,y,2) is of order 8 generated by

(2.13) Q= (P, P2,®(71,71,f1,71)>-

2.4. Character variety of the once-punctured torus. Our family of sur-
facesSa gc,p) also provides, fofA,B,C,D) = (0,0,0,D), the moduli space
of representations of the torf¥ = R?/Z2 with one puncture af0,0). Pre-
cisely, if we go back to the notations §.2 (see figur¢ 2.2.1), the funda-
mental groupm (T?), T2 = T2\ {(0,0)}, is the free group generated by
anduy. The algebraic quotient(T?) = Rep(T?)//SL(2,C) is given by the
map

{Rep(Ti) — X(T} ~
P (XY, Z) ( r(p(ay)), tr(p(wz)), —tr(p(wrn)))
(see [4]). Using that

tr([M1, Ma]) = tr(M1)2+tr(M2)?+tr(M1M2)2 —tr(My)tr(M2)tr(M{My) — 2,

fgr allMy, M2 € SL (2,C), we note that those representations with given trace
d = tr(p([wy, wp])) are parametrized by the affine cubic

X2 4Y2 4224+ XYZ=d+2
which is precisely§,00,p) With D = d+ 2. The reason is given by the two-
fold ramified covent: T? — S? used in§2.2. Consider a representatipre
Rep(Sﬁ) corresponding to some poifk,y,z) € So,0,0), With local traces
given by(a,b,c,d) = (0,0,0,d), D = 4 —d?. One can lift the representation

on the 4-punctured torus, where punctures are given by thé gE2-torsion
points. Sincea=b = c=0, we have

p(a), p(B), P(Y) ~ <C') fi)

and the lifted representatiqrv thas local monodromy-| around the corre-
sponding punctured/2,0), (0,1/2) and(1/2,1/2). After twistingp o Tthy

—I at each of the punctures, we finally deduce a represenﬁ‘stdﬁep(ﬂl‘i).
Sincett.w; = By andr.wy = B~ 1o~ (seefl.2), the character associated to
the lifted representatiop is given by

X = wu@w) = vy
{Y = tr(p(an)) = X
Z = —tr(p(wyp) = —z—Xy

which satisfiex?+Y?2+2Z?+ XY Z=4—d?. Note that the local monodromy
of p at(0,0) is —p(&?) and we indeed find = 2— d?. We can now reverse
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the formulae and deduce that any representdti, Z) € x(T?) is the lift-

ing of a representatiofx, y, z) € X(S2). This is due to the hyperelliptic nature
of the once punctured torus.

3. GEOMETRY AND AUTOMORPHISMS

This section is devoted to a geometric study of the family wfaces
SaBc,D), and to the description of the groups of polynomial automisipis
Aut[Sagc,p)l-

In section[3.4, we describe a special case that is famousiaméller
theory. Sectiof 33 introduces the concept of ellipticapatic, and hyper-
bolic automorphisms g c p)-

3.1. The triangle at infinity and automorphisms. Let Sbe any member
of the familyFam. The closureS of Sin P3(C) is given by a cubic homoge-
neous equation

WO +y? + Z2) 4+ xyz= W2(Ax+ By+C2) + DW°.

The intersection o6 with the plane at infinity does not depend on the pa-
rameters and coincides with the triandigiven by the equation

A xyz=0;

moreover, one easily checks that the surf@de smooth in a neighborhood
of A (all the singularities oS are contained if%).

Since the equation definirfgis of degree 2 with respect to thlevariable,
each point(x,y,z) of S gives rise to a unique second poii,y,z). This
procedure determines a holomorphic involutiorBphamely

S((X,y,Z) = (A—X—yZ,y,Z).
This automorphism coincides with the automorphisrédétermined by the
involutions, of I'; (see equatiop 2.11@¢.2.2). Geometrically, the involution
s corresponds to the following: Ifn is a point ofS, the projective line
which joinsmand the vertexy = [1;0;0; 0 of the triangleA intersectsSon

a third point; this point is,(m). The same construction provides two more
involutions

S(XY,2) = (X,B—y—xz2z) and s(x,y,z) = (X,y,C—z—xy),
and therefore a subgroup
A= (SOS}’? SZ>
of the groupAut[S of polynomial automorphisms of the surfaSe

From sectior) 2.2]2, we deduce thiatr any membe$ of the familyFam,
the groupa coincides with the image df; into Aut[S|, which is obtained

by the action of 3 C MCG*(S2) onx(S?) (seesL.2).
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Theorem 3.1. Let S= Sapc p) be any member of the family of surfaces
Fam. Then

e there is no non-trivial relation between the three invadus s, s,
and g, and 4 is therefore isomorphic to the free produ@/2Z)
(Z2/22)%(Z2/2Z) ;

e the index ofz in Aut[S is bounded by4;

e 2 coincides with the image 6f; in Aut[S].

Moreover, for a generic choice of the parametéfsB,C,D), 4 coincides
with Aut[S].

This result is almost contained E’-Huti’s article [[9] and is more pre-
cise than Horowitz’s main theorem (s¢e][25]][26]).

Proof. SinceSis smooth in a neighborhood of the triangle at infinity and
the three involutions are the reflexions with respect to thetices of that
triangle, we can apply the main theoremd&tifHuti’s article:

e 4 isisomorphic to the free product
(2/22) % (Z2/2Z) % (Z/2Z) = (s0) * (Sy) * (S2);

e 7 is of finite index inAut[S ;

e Aut[S is generated byt and the group of projective transformations
of P3(C) which preserveS andA (i.e., by affine transformations of
C3 that preserve).

We already know thatz and the image of 5 in Aut[§ coincide. We now
need to study the index of in Aut[§. Let f be an affine invertible trans-
formation of C3, that we decompose as the composition of a linear art
and a translation of vectdr. Let Sbe any member dfam. If f preserves,
then the equation ddis multiplied by a non zero complex number when we
apply f. Looking at the cubic terms, this means this a diagonal matrix
composed with a permutation of the coordinates. Lookindgnatjuadratic
terms, this implies that is the nul vector, so that = M is linear. Coming
back to the equation &, we now see tha¥l is one of the 24 linear transfor-
mations of the typ@ o € whereg either is the identity or changes the sign of
two coordinates, and permutes the coordinates.(i, B,C, D) are generic,
SaBc,p) is not invariant by any of these linear maps. Moreover, orséyea
verifies that the subgroup is a normal subgroup dfut[S: If such a linear
transformatiorM = o o € preservess then it normalizesz. This shows that
4 is a normal subgroup dfut[S], the index of which is bounded by 24 [

3.2. Consequences and notationsAs a corollary of theorerh 3.1 and propo-
sition[2.5, we get the following resulffhe mapping class grOtMCGB(Sﬁ)
acts on the character varieq/Sﬁ), preserving each surfaGggc p), and its
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image inAut[Sagc p)] coincides with the image df;, and therefore with
the finite index subgroug of Aut[Sagc p)l- In other words, up to finite
index subgroups, describing the dynamicMﬁG*(Sﬁ) on the character va-

riety X(S2) or of the groupAut[S| on Sfor any membes of the family Fam
is one and the same problem.

Let H be the Poincaré half plane. The group of isometried &f isomor-
phic toPGL (2,R): If M is an element oGL (2,R), its action orH is defined
by

M(2) = M1Z+ M2
Mp1Z+ Mp2

if the determinant oM is positive, and by the same formula but wiine-
placed byz if the determinant is negative. In particul&, acts isometrically
onH. Let jx, jy andj; be the three points on the boundarylbfvith coor-
dinates—1, 0, andw respectively. Lety (resp.ry andr;) be the reflection
of H around the geodesic betwe@pand j; (resp. j; and jx, resp. jx, and
jy)- These isometries are respectively induced by the thregaessy, sy,
ands; given in section 2.2} 2. As a consequericgcoincides with the group
of symmetries of the tesselation Hf by ideal triangles, one of which has
verticesjy, jy andj; (see the left part of figurg 3.3).

In the following, we shall identify the subgroup of PGL (2,Z) and the
subgroupa of Aut[Sapgcp) : If fis an element ofi, Mt will denote the
associated element bf, (either viewed as a matrix or an isometryldy, and
if M is an element of 5, fyy will denote the automorphism associatedvto
(for any surfaces of the familyFam). If f is one of the three involutiors,

Sy, ors; (resp. the three elemerdg gy, or g;), we shall use exactly the same
letters to denote the elementof "5 or the corresponding automorphism
f € 4. The only place where this rule is not followed is when we sttiay
action ofl"; on the Poincar disk: We then use the notatigrry, andr; to
denote the involutive isometrys induced &ys,, ands,.

3.3. Elliptic, Parabolic, Hyperbolic. Non trivial isometries oftl are clas-
sified into three different species. Ldtbe an element d?GL (2,R) \ {Id},
viewed as an isometry d@. Then,

e M is elliptic if M has a fixed point in the interior dfl. Ellipticity
is equivalent to déM) = 1 and|tr(M)| < 2 (in which caseM is a
rotation around a unique fixed point) or @dt) = —1 andtr(M) =0
(in which caseM is a reflexion around a geodesic of fixed points).
e M is parabolic ifM has a unique fixed point, which is located on
the boundary offl; M is parabolic if and only if déM) = 1 and
tr(M) =2 or—2;
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e M is hyperbolic if it has exactly two fixed points which are or th
boundary oft; this occurs if and only if déM) = 1 and|tr(M)| > 2,
or de{M) = —1 andtr(M) # 0.

An elementf of 2 \ {Id} will be termed elliptic, parabolic, or hyperbolic,
according to the type d¥l;. Examples of elliptic elements are given by the
three involutionss,, sy ands,. Examples of parabolic elements are given by
the three automorphisnug, gy andg, (see sectiofn 2.2.2). The dynamics of
these automorphisms will be described in detaikbd. Let us just mention
the fact thaig (resp. gy, g;) preserves the conic fibratiofx = c¢} (resp.
{y=c¢}, {z=c™¢}) of any membef of Fam.

Proposition 3.2. Let S be one of the surfaces in the fantityn (S may be
singular). An element f of is

e elliptic if and only if f is conjugate to one of the involut®sg, s, or
s;, ifand only if f is periodic;

e parabolic if and only if f is conjugate to a non trivial powef one
of the automorphisms,ggy or g;

¢ hyperbolic if and only if f is conjugate to a cyclically redeetcom-
position which involves the three involutions s, and s.

Proof. Sincel; and the image of1 in Aut[S are isomorphic for any in
Fam, we just need to prove the same statementfor The groupl'; is a
subgroup ofPGL (2,Z). As a consequence, any elliptic elementlgfis
periodic. Since

5=(2/22)x(Z2/2Z)x(Z2/22),

any periodic element df; is conjugate to one of the involutiomg, ry, r;
(see for exampl€g]43]), and the first property is proved.

If M is a parabolic element df}, its unique fixed point on the boundary
RU{e} of H is a rational number. The action b on the seQ U {oo} of
rational numbers has three distinct orbits: The orbitg.ef —1, jy =0 and
jz= . Thisimplies that there exists an elem&nof I'; such theeMF ~1is
parabolic and fixes one of these three points, sayAny parabolic element
G of I'; that fixesw is of the type

(5 7)

wherek is an integer. This fact shows thislt is conjugate to a power af,
(see sectioh 2.2.2) and concludes the proof of the secomdl poi

Let M be a hyperbolic element &f;. After conjugation, we can writdl
as a cyclically reduced word in the involutive generatgysy andr,. If the
number of involutions that appear in this composition is&do 1 or 2, then
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FIGURE 4. Conjugation for the Markov example. The
right hand part of this figure depicts the dynamicd gfon
Su.+(R), but viewed inP?(R) after the birational change of
variables[x:y:z:w] = [XQ:YQ: ZQ: XYZ, with Q =
X?4+Y? 472, This change of variables sends the interior of
the triangle{X > 0,Y > 0,Z > 0} ontoSu . (R).

M is an involution or a power dady, gy or g,. The third property follows from
this remark. O

Remark 3.3. The three verticegy, jy and j, disconnecdH in three seg-
ments(jy, jz), [jz Jx] and[jx, jy]. LetM be a hyperbolic element &f;. Let
apm be the repulsive and attrating fixed pointshéfon the boundary oH.
The Fricke-Klein ping-pong lemma, as described[if [15], 2§, shows
thatM is a cyclically reduced composition of, ry, andr; if and only if

the fixed points oM are contained in two distinct connected components of

aH\ {jX7 jy= JZ}

3.4. The Markov surface. Let Sy be the element dfam corresponding to
the parametefA,B,C,D) = (0,0,0,0). After a simultaneous multiplication
of each coordinate by-3, the equation ofy is

x2+y2+22:3xyz

This surface has been studied by Markov in 1880 in his paperserning
diophantine approximation. The real p&i(R) of the Markov surface has
an isolated singular point at the origin and four other catedcomponents,
each of which is homeomorphic to a disk. One of these compsngn

S+ (R) = Su(R) N (R)2.
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Proposition 3.4 (Markov, [14]). The action ofa =T} on the Markov sur-

face & preserves each connected componentydfRS. There exists a dif-

feomorphisnt : H — Sy (R) such that(i) the image of the (closed) ideal
triangle with vertices j, jy and } is the subset ofyp, (R) defined by the

three inequalities

xy<2z yz<2x, and zx<2y,

and (i) c conjugates the action éf; onH with the action of 5 on Sy (R)
in such a way that

Cofy=5S0C, Cofy=so0C, and Cor;=s;0C.

Remark 3.5. We refer the reader t§ [L4] dr [R2] for a proof (see figuré 3r3 fo
a visual argument). This result is not surprising if one cedithatSy  (R)

is a model of the Teichmuller space of the once puncturadtaith a cusp
at the puncture, and finite area.2

3.5. An (almost) invariant area form. The monomial action of the group
GL(2,Z) onC* x C* almost preserves the holomorphic 2-form

o=\

Xy

More preciselyM*Q = +Q for any elemenM of GL(2,Z). This form is
invariant under the action af and determines a holomorphic volume form
on the Cayley cubic, that is almo&tit|S:] invariant. This property is shared
by all the members dfam (the proof is straightforward).

Proposition 3.6. Let Se Fam be the surface corresponding to the parame-
ters (A,B,C,D). The volume fornf2, which is globally defined by the for-
mulas

_dxAdy  dyadz  dzAdx

- 224+xy—C  2x+yz—A 2y+zx—B
on S\ Sing(S), is almost invariant under the action éiut[S, by which we
mean that fQ = +Q for any f inAut[S].

3.6. Singularities, fixed points, and an orbifold structure. The singulari-
ties of the elements dfam will play an important role in this article. In this
section, we collect a few results regarding these singidari

Lemma 3.7. Let S be a member &&m. A point m of S is singular if and
only if m is a fixed point of the group.

Proof. This is a direct consequence of the fact timas a fixed point ofsy if
and only if X+ yz= Ax, if and only if the partial derivative of the equation
of Swith respect to the-variable vanishes. O
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Example 3.8. The family of surfaces with parametefé+ 2d,4+ 2d,4 +

2d, —(8+8d+d?)) with d € C is a deformation of the Cayley cubic, that cor-
responds tal = —2, and any of these surfaces has 3 singular points (counted
with multiplicity).

Lemma 3.9. If m is a singular point of S, there exists a neighborhood of m
which is isomorphic to the quotient of the unit balld? by a finite subgroup

of SU(2).

Proof. Any singularity of a cubic surface is a quotient singularigxcept
when the singularity is isomorphic 18 +y® + 22+ Axyz= 0, for at least one
parameteh (see[B]). Since the second jet of the equatioBoéver vanishes
whenSis a member ofam, the singularities oS are quotient singularities.
SinceS admits a global volume form@, the finite group is conjugate to a
subgroup ofU (2,C). O

As a consequence, any memiSof Fam is endowed with a well defined
orbifold structure. IfSis singular, the groupm fixes each of the singular
points and preserves the orbifold structure. We shall ciemghis action in
the orbifold category, but we could as well extend the aabiofto a smooth
desingularization o§.

Lemma 3.10. The complex affine surface S is simply connected. When S is
singular, the fundamental group of the complex surfag&isg(S) is nor-
mally generated by the local finite fundamental groups acotie singular
points.

Proof. First of all, recall that a smooth cubic surfacé#(C) may be viewed
as the blowing-up oP?(C) at 6-points in general position. Let us be con-
crete. After a projective change of coordinates, one camasshat those 6
points lie on the trianglXY Z= 0 and are labelled as follows

pi=[0:1:y], g=[v:0:1 et ri=[1:w:0], i=12
where[X : Y : Z] are projective coordinates Bf. One can moreover assume
that the three following products take the same value
Uil = V1Vo = WiWo =: A.
Now, consider the map

®:P?--»C3; (X:Y:Z).—><P Q R)

YZ' XZ' XY

whereP, Q andR are degree 2 homogeneous polynomials given by
P = —X2—3Y2-AZ%+ (= + i) XY + (V1 +V2)XZ
Q = —MXZ2-Y2-3Z2 4 (Wi +W2)XY+ (g + )Y Z
R = —3X?-AY2—Z24 (4 2)XZ+ (U +u)YZ
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Foru;, v andw; generic, the ma@ sends the triangl¥Y Z= 0 to the triangle

at infinity xyz= 0 of P® > C3 and has simple indeterminacy points exactly
atpi, g, andrj, i = 1,2. Let Sbe the surface obtained by blowing-up the 6
indeterminacy points ob. One can check that the image®f: S— P3(C)

is exactly the cubic surfacd= S gc p), With parameters

)
Uz}\

= (VV711+VV722+VVT§+VVT§>—(U1A+MAA+UZA+A>

B = (3711+3722+3712+3721>—(V1A+V1%+VZ2\+V2%)

C = (3—1+3—§+3—;+3—§>—(W1A+W—5+WZA+W—;)
1

D = 2i,i ke{1,2} (UiVjWk+uiijk

\ — (B3 L g
Singular cubics arise when 3 of the 6 points lie on a line, bofathem lie
on a conic. Inthis case, the corresponding line(s) and/oicdtave negative
self-intersection ir§, and are blown-down bgp to singular point(s) of. A
smooth resolution oBis therefore given by

Our claim is that the quasi-projective surfg8eobtained by deleting the
strict transform of the triangI¥Y Z= 0 from Sis simply connected. Indeed,
the fundamental group @2 — {XY Z= 0} is isomorphic toZ?, generated
by two loops, say one turning arouXd= 0, and the other one aroulvd= 0.
After blowing-up one point lying oiX = 0, and adding the exceptional divi-
sor (minusX = 0), the first loop becomes homotopic to 0; after blowing-up
the 6 points and adding all exceptional divisors, the twoegators become
trivial and the resulting surfacg is simply connected. The affine surface
Sis obtained after blowing-down some rational curveSend is therefore
simply connected as well.

The second assertion of the lemma directly follows from Vaamipen
Theorem. OJ

4. BIRATIONAL EXTENSION AND DYNAMICS

4.1. Birational transformations of surfaces. Let f be a birational trans-
formation of a complex projective surfageand Ind f) be its indeterminacy
set. The critical set of is the union of all the curve€ in S such that
f(C\ Ind(f)) is a point (in fact a point of Ingdf—1)). One says thaf is
not algebraically stable if there is a cur@in the critical set and a pos-
itive integerk such thatf¥(C\ Ind(f)) is contained in In¢f). Otherwise,
f is said to be algebraically stable (s¢e][16]). #(X,Z) be the sec-
ond cohomology group oX and f* : H2(X,Z) — H?(X,Z) be the linear
transformation induced b¥. It turns out thatf is algebraically stable if and
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only if (f€)* = (f*)k for any positive integek (see [ZB]). More generally,
(fog)" =g*o f* if and only if g does not blow down any curve onto an
element of Indf).

The (first) dynamical degre®(f) of f is the spectral radius of the se-
quence of linear operatof$X)*. If f is algebraically stable\y(f) is therefore
the largest eigenvalue df. It follows from Hodge theory that

Iimsup% log||(f)*[V]|| = logA(f).

for any class|v| that is obtained through a hyperplane sectiorXofThe
dynamical degree of is invariant under birational conjugation (sde][16,
24]), and provides an upper bound for the topological entafpf (see [1B,

Z

Example 4.1.1f M is an element o6L (2,Z), M acts onC* x C* monomi-
ally (see equatioh 1.111). The dynamical degree of this maalanansfor-
mation is equal to the spectral radjpidM) of M. If fy is the automorphism
of the Cayley cubic&: which is induced by, the dynamical degree diy
coincides also witlp(M) (see [2D], or the survey articlg [24]).

4.2. Birational extension. Let Sbe a member of the familyam. The group
4 acts by polynomial automorphisms 8and also by birational transforma-
tions of the compactificatioBof Sin P3(C). LetA be the triangle at infinity,
A = S\ S The three sides of this triangle are the lifs= {x = 0,w = 0},
Dy = {y=0,w= 0} andD, = {z= 0,w= 0}, the vertices argy = [1:0:0:
0, =[0:1:0:Fandv,=[0:0:1:0. The “middle points” of the sides
are respectively

my=[0:1:1:9, my=[1:0:1:0,andm,=[1:1:0:(
(see figurg 3]3 inB.4). LetV be the subspace #f2(S,Z) defined by

where[Dy] denotes either the homology classyf in H2(S Z) or its dual
in H_Z(_S Z). SinceA is 4-invariant, the action of any elemefitin 2 on
H?(S Z) preserves the subspade

Lemma 4.2(see [1P] or[3R]) The involution gacts on the trianglé in the
following way.

e The image of the side,Ds the vertex y and the vertex,vis blown
up onto the side

o the sides ) and D; are invariant and g permutes the vertices and
fixes the middle point of each of these sides.



DYNAMICS, PAINLEVE VI AND CHARACTER VARIETIES. 29

Of course, we have the same resultdpands,, with the obvious required
modifications. In the following, we shall denote By (resp. sy or s;) the

restriction of(s¢)* (resp.(sy)* or (S;)*) on the subspacé of H2(S, Z).

Remark 4.3. The “action” of 2 on the triangleA does not depend on the
choice of the paramete(#\,B,C,D). Let f = w(sy,s,,s;) be an element of
4, given by a reduced word in the lettesg s, ands,. Sincesy (resp. sy,
s;) does not blow down any curve on indeterminacy points of thertwo
involutions, the linear transformatiofi : V — V is the compositionf* =
W(s;,s),s;), wherew! is the transpose off (see sectiofi 4.1). I ends with
Sk (resp.sy or s), thenf contracts the sid®y (resp. Dy or D). If w starts
with s, (resp.sy or s;), the image of the critical set dfis the vertex (resp.
Vy Or V). In particular, Indf) and Ind f~1) are not empty iff is different
from the identity.

Example 4.4. The elemengy = s;0 'S, preserves the coordinate variatile
Its action onA is the following: gx contracts botDy and D, \ {w} on v,
and preserveBy; its inverse contract®y andD;\ {v;} onw. In particular
Ind(gx) = W and Indgy 1) = v,. The elementsy andg, act in a similar way.
In particular,gx, gy andg, are algebraically stable.

Let us now present a nice way of describing the “actionof.e. of I';,
on the triangleA. Since this action does not depend on the parameters, we
choose(A,B,C,D) = (0,0,0,0) and use what we know about the Markov
surfaceSy (see§3.4). The closure 0§y (R) in Sy contains a part of the
triangle at infinity, namely the s& (R) of points[x:y: z: 0] such that
xyz= 0, andx, y, z> 0. This provides a compactification &, (R) by the
triangleA; (R). The conjugation

c:H— Su,.(R)
between the Poincaré half plane afd. (R) described in§3.4 does not
extend up to the boundary of this compactification. Nevéew one can
“extend” the map in the following way (see figyre]3.3):
e the three segmentsy, j2), (jz, jx) and(jx, jy) of OH are sent to the
three verticesy, vy andv; of A,
e the three pointgy, jy, andj; are “sent” to the three sidé3,, Dy and
D, of AL (R) by c (or equivalently to the middle pointsy, m, and
my);
Then, ifM is a hyperbolic element df5, the two fixed points oM on the
boundary ofH are sent to the indeterminacy pointsfgf and f,\;l: If Mis
hyperbolic, with one attractive fixed poiaj, and one repulsive fixed point
oM, then
Ind(fw) =c(am), Ind(fy?) = clm).
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Remark 4.5. Let us consider the surface obtained by blowing up the \astic
of the triangleA. This is a new compactification of the affine culdg by

a cycle of six rational curves. Then we blow up the six vegicé this
hexagon, and so on : This defines a sequence of rational esBad et S*

be the projective limit of these surfaces. The grégpacts continously on
this space, and we can exterid so as to obtain a semi-conjugation between
the action ory; \ Su and the action of 5 on the circle. Such a construction
is presented in details in a similar context[in][27], chagtésee also[]9] for

a related approach).

The following proposition reformulates and makes more iggcsection
7 of [B2].

Proposition 4.6. Let S be any member of the familym and f an element
of 4.

¢ The birational transformation fS— S is algebraically stable if, and
only if f is a cyclically reduced composition of the threedlwions
S, Sy and s of length at leasg.

e Every hyperbolic element f of is conjugate to an algebraically
stable element of .

e If f is algebraically stable and hyperbolic, Id) and Ind f~1) are
two distinct vertices o, and f" contracts the whole trianglé \
Ind(f) onto Ind f 1) as soon as n is a positive integer.

Proof. If Ind(f) = Ind(f~1) # 0, f is not algebraically stable. This shows,
for example, that an involution with a non empty indetermsinaet is not
algebraically stable.

LetM be an element df; \ {Id} andfy the corresponding element af
viewed as a birational transformation &fFrom remarK 4]3, we know that
Ind(fy) is non empty, and from propositi¢n B.2 that any elliptic edernof
5 is an involution. This shows théfl, is not algebraically stable ¥ is
elliptic.

Let us now fix a non elliptic elemeM of '3, which we write as a reduced
word w(ry,ry,rz) in the generators,, ry andr, of I'; (seegB.3).

Let us first assume thal is parabolic. Iffy is a non trivial iterate oy
(resp. gy or gz), we know from examplg 4.4 thad is algebraically stable.
If not, the unique fixed point d¥ ondH is different fromjy, jy andj, and
its image byc is a vertex ofA. This vertexv coincides with Indfy) and
Ind(f,\;l), and fy is not algebraically stable. Sind is cyclically reduced
if, and only if M is an iterate ofgy, gy, or g, the result is proved in the
parabolic case.

Let us now suppose thM is hyperbolic : The fixed pointay; and wy
define two distinct elements offl \ { ]y, jy, j.} and the indeterminacy sets
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of fy and f,* are the vertices Indu) = c(am) and Ind fy, 1) = c(wwm) of
A. These vertices are distinct if, and onlyafy andwy are contained in
two distinct components @H \ { jx, jy, jz}, if, and only if fy is a cyclically
reduced composition of the three involutianssy, s, (see remark3.3). This
shows thaffy, is not algebraically stable ¥ is not cyclically reduced. In the
other direction, ifvis cyclically reduced, theg(wy ) is not an indeterminacy
point of fy, fy fixes this point, and contracts the three sideé\ain this
vertex. As a consequence, the positive orbit of(liyet) does not intersect
Ind(fm), and fy is algebraically stable. O

Theorem 4.7.Let f be an element of and M the element oPGL (2,Z)
which is associated to. fThe dynamical degre¥( f) is equal to the spectral
radius of M.

This result is different from, but similar to, the main theor of [32],
which provides another algorithm to computef ).

Proof. Let f be an element ofi. After conjugation insidez (this does not
change the dynamical degree and the spectral radiig hfwe can assume
that f = w(sy,sy,s,) is a cyclically reduced word. If is periodic, thenf is
one of the involutive generators and the theorem is provetdid parabolic,
thenf is conjugate to an iterate of, gy or gz, f preserves a fibration &
into rational curves, and(f) = 1. If f is hyperbolic, propositiop 4.6 shows
that f is algebraically stable. Lgw] = [Dy] + [Dy] + [D] be the class of
the hyperplane section &which is obtained by cuttin§ with the plane at
infinity. We know that

: 1
imsup( log (14"l ) =og(A(F).
Since the action of* on the subspacé of H?(X,Z) does not depend on
the parameter$A B,C,D), and since]v| is contained inv, A(f) does not
depend on(A,B,C,D). Consequently, to calcula#g f), we can choose the
parameterg0,0,0,4) and work on the Cayley cubic. The conclusion now
follows from examplé¢ 4] 1. O

4.3. Entropy of birational transformations. Let f be a hyperbolic ele-
ment of2 (see sectiop 3.3). Up to conjugation, the birational trams&tion

f : S— Sis algebraically stable, I{d) is a fixed point off ~* and Ind(f 1)

is a fixed point off. As remarked in[[32], this enables us to apply the main
results from [R] and[[18].

Theorem 4.8. (Bedford, Diller, Dujardin, Iwasaki, Uehara) Let f be an el-
ement of the groug and S be an element Bdm. The topological entropy
of fy : S— S is equal to the logarithm of the spectral radiusf) of My,
the number of periodic (saddle) points of f of period n groksA ()" and
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these points equidistribute toward an ergodic measure ofimal entropy
for f.

In [[LJ], we shall explain how the dynamics bfs related to the dynamics
of HéEnon mappings, and deduce a much more precise desariptithe
dynamics.

Example 4.9.Let M be an element oEL (2,Z). LetU be the unit circle in

C* andT? be the subgroup x U of C* x C*. The monomial automorphism
M of C* x C* preserved and induces a “linear” automorphism on this real
torus. The entropy ofl : T2 — T2 is equal to the logarithm of the spectral
radius ofM. If (x,y) is a point ofC* x C*, the orbitM"(x,y), n > 0, con-
verges toward? or goes to infinity. The same property remains true for the
dynamics offy on the Cayley cubi&:; the role played b{f'? is now played

by T?/n = &(R)N[-2,2°.

5. BOUNDED ORBITS

5.1. Dynamics of parabolic elements.Parabolic elements will play an im-
portant role in the proof of theorefn JL.8. In this section, vesatibe the
dynamics of these automorphisms, on any men3xdrour family of cubic
surfaces. Since any parabolic element is conjugate to anuigg, gy or gz,
we just need to study one of these examples.

Once the parameters B, C, andD have been fixed, the automorphiggm
is given by

X A—x—zy
o |y | =| B-Az+zx+ (2 -1y
y4 z

This defines a global polynomial diffeomorphism®@t, that preserves each
horizontal plandl1;, = {(x,y,2), x € C,y € C}. On each of these planes,
induces an affine transformation

X . -1 -7 X n A
y 0 z—1)\y B—Az )’
which preserves the conf;; = SNI,. The trace of the linear part of this

affine transformation iz% — 2 while the determinant is 1.

Proposition 5.1. Let S be any member of the family of cubic surfdees.
Let g be the automorphism of S defined by the compositios,s On each
fiber S, of the fibration

T,:S—C, TuXY,2) =2
0, induces a homographic transformatigg, and
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e 0 is an elliptic homography if and only ifoz= (—2,2); this ho-
mography is periodic if and only ifpzs of type+2cogm®) with 6
rational;

e 0 is parabolic (or the identity) if and only ifoz= £+2;

e T is loxodromic if and only ifgis not in the interval—2, 2].

If 5 is different from 2 and-2, g, has a unique fixed point insidg;,, the
coordinate of which aréxo, Yo, Z0) where

Bz —2A _ Az—2B

- 202_47 YO— 202_4
This fixed point is contained in the surfa8af and only if zy satisfies the
quartic equatior®,(zg) = 0 where

(5.1) P,=2"-CZ—(D+4)Z+(4C—AB)z+4D+ A2+ B2

In that case, the union of the tvgp-invariant lines ofl1,, which go through
the fixed point coincides witls,,; moreover, the involutions, ands, per-
mute those two lines. If the fixed point is not containeithe conicS,, is
smooth, and the two fixed points of the (elliptic or loxodraijiomography
0z, are at infinity.

If zo = 2, the affine transformation induced gyon I, is

w(5)-(7 7))+ (afn)

Either @z, has no fixed point, oA = B and there is a line of fixed points,
given byx+y = A/2. This line of fixed points intersects the surf&iand
only if S coincides with this (double) line. In that case the invalngsy
ands, also fix the line pointwise. When the line does not intersgdhe
conic S, is smooth, with a unique point at infinity; this point is theigue
fixed point of the parabolic transformatigg . In particular, any point 0§,
goes to infinity under the action gf.

If zg= —2, then

(y) (2 2)(5)(alen)

Eitherg, does not have any fixed point if;,, or A= —B andg, has a line
of fixed points given bx—y = A/2. This line intersectSif and only if S,
coincides with this (double) line. In that case the invalngs, ands, fixe
the line pointwise.

Lemma 5.2. With the notation that have just been introduced, the homo-
graphic transformatiorgz, induced by gon S, has a fixed point in & if
and only if g satisfies equatiorf (3.1). Moreover
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e when 3 # 2, -2, S, is a singular conic, namely a union of two lines
that are permuted byysand s, and the unique fixed point @f, is
the point of intersection of these two lines, with coordasat

~ Bzp-2A _ Az—2B,

- 202_47 Yo = 202_4

e when 3 =2, then A= B, S, is the double line -y = A/2, and this
line is pointwise fixed by, S and s;

e when 3 = —2, then A= —B, S, is the double line x y = A/2, and
this line is pointwise fixed by, sc and s,

The dynamics ofy; on Sis now easily described. Ly = (Xo,Yo,2)
be a point ofS. If zy is in the interval(—2,2), the orbit of pp underg; is
bounded, and it is periodic if, and only if, eithpg is a fixed point, oz is
of type 2 cogm0), where® is a rational number. Ifp = £2, and if pg is
not a fixed pointg"(pp) goes to infinity whem goes to+c and—oo. If zy
is not contained in the interv@-2, 2], for instance if the imaginary part of
Zo is not 0, eithepy is fixed org"(po) goes to infinity whem goes to—o
or 0. Of course, the same kind of results are validdeandgy, with the
appropriate permutation of variables and parameters.

5.2. Bounded Orbits. There is a huge literature on the classification of al-
gebraic solutions of Painlevé VI equation (sfle [7] andrezfees therein).
Such solutions give rise to periodic orbits for the actioraobn the cubic
surfaceSagc,p), Where the parameters are defined in terms of the coef-
ficients of the Painlevé equation (s&®). Of course, periodic orbits are
bounded. Here, we study infinite bounded orbits.

Theorem 5.3.Let S= S c,p) be a surface in the familllam, and p be a
point with an infinite and bounddd; orbit Orb(p). Then AB, C, and D are

real numbers, the orbit is contained jr-2, 2] and it forms a dense subset
of the unique bounded component OR$\ Sing(S).

We fix a pointp in one of the surfaceS and denote it§ *(2)-orbit by
Orb(p). Let us first study orbits of small finite length. Recall thabits of
length 1 are singular points of the culdc

Proposition 5.4. Modulo Benedetto-Goldman symmetries (§86}), ;-
orbits of length2 are equivalent to

{(0,0,21),(0,0,22)} € Soocp), C°+4D #0

where z and 2 are the two roots ofZ= Cz+ D, [5-orbits of length3 are
equivalent to

{(07 07 1)7 (A7 07 1)7 (07A7 1)} € S(A7A,2,—1)7
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and[3-orbits of length4 are equivalent to
{(17 17 1)7 (A_ 27 17 1)7 (17A_ 27 1)7 (17 17A_ 2)} € S(A,A,AA*SA)'
Example 5.5. An orbit of length 2 is for instance provided by the represen-
tationp defined by
p : (O(,B,V,é) = <M7 N7M7_N)
whereM, N € SL (2,C) are any element satisfyinig(MN) = 0i.e. (MN)? =
—I. Trace parameters are given (g b,a, —b) wherea = Tr(M) andb =
Tr(N) : we getC = a® — b?, D = (a® — 2)(b? — 2) andz = a® — 2. The other
representation in the orbit, given y= 2 —b?, is defined by
o' 1 (a,B,Y,8) — (M,M INM,NMN~1 —N).
To this length 2 orbit corresponds a two-sheeted algebaditien of R/)-
equation, namely
q(t)=1++v1—t, for parameters® = (8p,01,60,—01),

with a = 2cogm0p) andb = 2cogm®1). This representation was already
considered in[[39] : for convenient choice of parameteandb, the image
of the representation is a dense subgrouplof2).

Other choice of the trace parameters are provided by

(@,u,a,-b’) witha =+/4—b2andb’ = /4—a?
giving rise to a representation of the same kind, and
(@,0,c”,0) witha” ¢’ = ;M_bzig 4— a2

The later one corresponds to a dihedral representatioredbtm

eso- (3,22 62 965

with Apvt = 1.

Proof. Let p = (Xo,Yo0,20) be a point ofSapc p). Recall thatp is fixed if,
and only if, p is a singular point os. On the other handp is periodic of
ordern > 1 for g; if, and only if,

2= Zcoinlﬁ(), kann=1

and at least one of the equalitiBgzy) = 0, 2x0+ Yozo = A, 2yo+ XoZp = B
does not hold. In particular, denoting by Qyip) the orbit of p under the
action ofg,, we have:

#Orhy,(p) =2 = =0,
#Orhy,(p) =3 = 720=*£1,
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#Or, (p) =4 = 2= +V?2,

#Orhy,(p) =6 = 2p=+V3.

Up to permutation of variables y andz (and correspondingly of the pa-
rametersh, B andC), an orbit of length 2 takes the form Qi) = {p,s:(p) }
In this casep andp’ = s;(p) = (Xo, Yo, Z,) are permuted byg,, and thus by
Ox = S;0Sy andgy = Sc0 s, ; this impliesxy = yo = 0. On the other hand,
p andp’ are fixed bys,, s, and thereforeA = B = 0. Sincep = (0,0, 7) is
contained irS, we deduce thatp andz, are the roots of? = Cz+D.

Up to permutation of the variablesy andz, an orbit of length 3 takes the
form

Orb(p) = {Po, P1 = S(Po), P2 = Sy(Po) }

with po = (Xo,Y0,20), P1 = (%o, Yo, Z0), and pz = (Xo, Yy, 20). Sincegy (resp.
Qy) permutesyy andp; (resp. pp andpy), we getxp = yo = 0. On the other
hand,g; permutes cyclicallypg — p2 — p1, SO thatzg = +1. Changing signs
if necessary by a twist (s¢e P.3), we can assagre 1. Now, studying the
fixed points ofsy, s, ands,, amongstg, p1 andpy, we obtain:

Ao+x20=B _ 4 [2o+ypo=A
220+%g¥0=C 220+ XoYp=C

and thusC = 2, x; = B andy, = A. We also have

27y + XoYo = C, {

Xo=A—Xo—YoZo and yp=B—yo—X2

(action ofs, ands,) yielding A = B. Finally, the fact thap is contained in
Sgives 1= C+ D, whence the result.

Up to symmetry, an orbit of length 4 consistsgg, p1 andp; like before
(p1 = sx(po) and p2 = sy(po)) and there are 4 possibilities for the fourth
point ps:

(1) P3 = (X0, Yo, 20) = Sy(P1)
(2) P3 = (X0,Y0:20) = Sy(P1)
(3) P = (X Y0: %)) = Sz(P1),
(4) P3 = (XO,YO7%> - ( )
The first case is impossible: Singg andg, have order 2 for each;, the
coordinates andy vanish for each poinp;, and thereforgy = p1 = p2 =
p3, a contradiction. The second case is impossible for the saas®n since
ox andgy have order 2 foipp and pz, so thatpp = p1, a contradiction. The
same argument applies in third cagg:has order 2 fopp and p; implying
Po = p1, contradiction.
For the fourth case, sinag, gy andg, have order 3 foipg, we getpg =
(+£1,+£1,+1). Up to symmetry, there are two subcasgs:= (1,1,1) or

= Sx(P2),
# S(P2),
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po= (—1,—1,-1). In the first sub-case, conditions given by the fixed points
of s;, sy ands; yield

A=B=C=2+X=2+Yo=2+%,

and the fact thap; is contained inS gives 4= 3A+ D. Proceeding in the
same way with the second sub-case, conditions given by teé finints of
S Sy ands; yield

A=B=C=-2-x=-2-Yy=—-2-2
and the fact thap; is in Sgives
2=-3A+D and x3=A
implying x; = A= —1 andp; = po, a contradiction. O

Lemma 5.6. If Orb(p) is bounded andOrb(p) > 4, then A, B, C, and D
are real and pc S(R).

Proof. Let po = (Xo,Yo0,20) be a point of the orbit. If the third coordinate
20 ¢ (—2,2), the homography induced lgy on the conicS,, is parabolic or
hyperbolic. Since the orbit gby is bounded, this implies that is a fixed
point ofg, s, ands, (see lemm@5]2). Since Qiiw) has length> 4, s,(po) is
different frompo, so thatpg is not fixed bygx, nor bygy either ; this implies
thatxo,Yo € (—2,2). Moreover, the poinp; := S;(pPo) = (Xo,Y0,21) iS not
fixed byg,, otherwise the orbit would have lengthsd thatzy € (—2,2) and
p1 € (—2,2)3. This argument shows the following: If one of the coordisate
of po is not contained if—2,2), thenpg is fixed by two of the involutions
S, Sy ands, while the third one mapgy into (—2,2)3.

Let now p be a point of the orbit with coordinates (a2, 2)3; if the three
pointssx(p), Sy(p) ands,(p) either escape frori-2,2)3 or coincide withp,
then the orbit reduces tp, s«(p), sy(P), &2(p)}, and has lengtkc 4. From
this we deduce that the orbit contains at least two distioatp p1, p2 €
(—2,2)3, which are, say, permuted Isy. Let (x;,y1,21) be the coordinates
of pi,i =1,2. Then, A=x1+X2+VY1z1 € R. If BandC are also real, thep;
is real and satisfies the equation®)ko thatD is real as well and Oflm) =
orb(p1) C S(R).

Now, assume by contradiction thBtZ R. Then,q; := sy(pi) = (%i,B—
y1—X21,21) & (—2,2) and is therefore fixed bs, (otherwise the orbit would
not be bounded): We thus have

2+ (B—y1—Xz1)z1 = A

SinceB is the unique imaginary number of this equatimnmust vanish, and
we getx; = Xo(= %), a contradiction. A similar argument shows tBatust
be real as well. O
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Proposition 5.7. If Orb(p) is finite and#Orb(p) > 4, then A, B, C, and D
are real algebraic numbers andgS(R) has algebraic coordinates as well.

The proof is exactly the same, replaciftg2,2) by (—2,2) N2cogmQ)
and thuR by RN Q.

Lemma 5.8. Let S be an element of the familym and p a point of S. There
exists a positive integer N such that, ifip a point of the orbit of p with a
coordinate of the form

k
Zcos{nﬁ), kan=1,

then n divides N.

Proof. The pointp is an element of the character varietyS3). Let us
choose a representati@n: T (S3) — SL(2,C) in the conjugacy class that
is determined byp. Sincenl(Si) is finitely generated, Selberg’'s lemma
(see [1]) implies the existence of a torsion free, finite indabgroupG of
p(Ty(S2)). If we defineN to be the cardinal of the quotieptm (S3))/G,
then the order of any torsion elementd(ry (S2)) dividesN.

If p’is a point of the orbit of, the coordinates g’ are traces of elements
of p(Tu(S2)). Assume that the trace of an elem&hin p(1y(S3)) is of type

2cosmo). If 6 = 'ﬁ andk andn are relatively prime integers, theM is a
cyclic element op(Tu(S?)) of ordern, so thatn dividesN. O

The subset 08U (2)-representations always form a connected component
of S\ Sing(S) contained intd—2, 2]3; the corresponding orbits are bounded,
generally infinite. A bounded component can also consiSLif2, R)-repre-
sentations, depending on the choicqafb, c,d); for instance, in the Cay-
ley case, the bounded component consisf.if2, R)-representations (resp.
SU (2)-representations) whdia, b,c,d) = (2,2,2,—2) (resp.(0,0,0,0)).

Proposition 5.9 (Benedetto-Goldmarj][4])When A, B, C and D are real,
then $R) \ {Sing(S)} has at most one bounded connected component. In
this case, a, b, c and d lie i2, 2|, whatever the choice d¢&,b,c,d) cor-
responding tdA,B,C,D).

When S(R) is smooth, the converse is true: Whanb, ¢ andd lie in
[—2,2], S(R) has a “bounded component” maybe degenerating to a singu-
lar point, like in the Markov case. It is proved in Apendix #8.3, that a
bounded component always correpondStq2)-representations for a con-
venient choice of parametefa, b, c,d).

Proof of theorenfi 5]3Let Orb(p) be an infinite and bounddd;-orbit in S=
Saec,p)- Following Lemmd5]6A, B, C andD are real and Ortp) C S(R).
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We want to prove that the closu@rb(p) is open inS(R) \ {Sing(S(R))};
sinceOrb(p) is closed, it will therefore coincide with the (unique) baokeal
connected component 8A {Sing(S)}, thus proving the theorem.

We first claim that there exists an element (actually inflgiteany) po =
(X0, Yo, 20) of the orbit which is contained it—2,2)3 and for which at least
one of the Mdbius transformatiof,, Ty, or Tz, is (elliptic) non periodic.
Indeed, if a pointpg of the orbit is such thad), is not of the form above,
then we are in one of the following cases

e P,(20) =0 andpy is a fixed point ofg,

e 20 =2cogT¥) with kAn = 1, n|N andg is periodic of perioch
(whereN is given by Lemma 5]8). This gives us finitely many possiieiit
for zp; we also get finitely many possibilities fop andyg and the claim
follows.

Let po be a point of Orbp), with, say, Jx, elliptic and non periodic,
so that the closur®rb(p) contains the "circle’Orby, (po) = S, (R). Let
us first prove thaOrb(p) contains an open neighborhood pf in S(R) \
{Sing(SR))}. _ _

Since the poinfg is not fixed bygx = s, 05y, then eithers, or s, does
not fix pp, says;; this means that the poin is not a critical point of the
projection

X Ty @ S(R) — R?; (X,Y,2) — (X,Y).
Therefore, there exists sorae- 0 and a neighborhood of pp in S(R) such
that 15 x 15, mapsV diffeomorphically onto the squareg — €, %+ €) X
(Yo—€,Yo+€). By construction, we have

T X T4(Orb(p)) > o x T,(Orby, (o)) O {0} X (Yo—&,Yo+€).
For eachy; € (Yo —¢€,Yo+¢€) of irrational type, that is to say not of the form

2cog10) with 6 rational, there existp; = (Xo,Y1,21) € Orb(p) (namely, the
preimage ofXo, y1) by T x 15, and

Orb(p) > Orly, (p1) = S, (R);
in other words, for eacty € (Yo — €, Yo + €) of irrational type, we have

T < Ty/(Orh(p)) O T x T4/(Orby, (1)) > (X0 —&,% +€) *x {Yo}-

Since those coordinatgs of irrational type are dense ityo — €,yo+€), we
deduce tha¥e C Orb(p), andOrb(p) is open atpp.

It remains to prove thaDrb(p) is open at any poirg € Orb(p) which is
not a singular point o§R). Let g = (xo, Yo,20) be such a point and assume
thatq ¢ Orb(p) (otherwise we have already proved the assertion).
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Sinceq is not a singular point & R), one of the projections, say x T, :
S(R) — R?, is regular aj and we consider a neighborhowglike above,
Th X Thy(Ve) = (X0 — €, X0+ €) X (Yo —€,Yo+€). By assumption, Ortp) NVe
is infinite (accumulating)) and, applying once again Lemrma]5.8, one can
find one such poinp; = (x1,Y1,21) € Orb(p) NV such that eithex; or y;
has irrational type, sax;. Now, reasonning witlp; like we did above with
po, we eventually conclude th&t D Orb(p), andOrb(p) isopenag. O

6. INVARIANT GEOMETRIC STRUCTURES

In this section, we study the existenceadinvariant geometric structures
on surfacesS of the family Fam. An example of such an invariant structure
is given by the area forr@, defined in Propositioh 3.6. Another example
occurs for the Cayley cubicx: is covered byC* x C* and the action ofz
on & is covered by the monomial action Gt (2,Z), that is also covered by
the linear action oL (2,Z) on C x C if we use the covering mapping

T:CxC—C"xC* 10,9 = (exp0),expo));
as a consequence, there is an obviadsivariant affine structure o&c.

Remark 6.1. The surfacex: is endowed with a natural orbifold structure,
the analytic structure near its singular points being lgcaslomorphic to
the quotient ofC? near the origin by the involutioa(x,y) = (—x, —y). The
affine structure can be understood either in the orbifolglage, or as an
affine structure defined only outside the singularities (sdew).

6.1. Invariant curves, foliations and webs. We start with

Lemma 6.2. Whatever the choice of S in the famitlym, the groupa does
not preserve any (affine) algebraic curve an S

Of course, invariant curves appear if we blow up singukesiti This is
important for the study of special (Riccati) solutions oirffevé VI equation
(see sectiofi 7).

Proof. Let C be an algebraic curve o8 EitherC is contained in a fiber
of 1, or the projection,(C) coversC minus at most finitely many points.
If C is not contained in a fiber, we can choase = (X, Yo,2p) in C and

a neighborhoodJ of my such thatz is contained in(0,2) and, inU, C
intersects each fibe3, of the projectionr, in exactly one point. Letf =
(X,y,Z) be any element & NU such that is an element of0, 2). Theng;

is an elliptic transformation d&, that preserve€NS,; since the intersection
of C and S, contains an isolated poimt/, this point isg, periodic. As a
consequence is of the form 2 coérp/q) (see propositiof 5.1). Since any
Z € (0,2) sufficiently close tay should satisfy an equation of this type, we
obtain a contradiction.
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Since no curve can be simultaneously contained in fiberg,af, andrt,
the lemma is proved. O

A (singular) web on a surfac¥ is given by a hypersurface in the pro-
jectivized tangent bundIBT X; for each point, the web determines a finite
collection of directions tangent % through that point. The number of di-
rections is constant on an open subset dut it may vary along the singular
locus of the web. Foliations are particular cases of webd,ay web is
locally made of a finite collection of foliations in the corepient of its sin-
gular locus.

Proposition 6.3. Whatever the choice of S in the famiym, the groupa
does not preserve any web on S

Proof. Let us suppose that there exists an invariant Wélon one of the
surfacesS. Let k and| be coprime positive integers amd= (x,y,z) be a
periodic point ofg, of periodl, with

z=2cogTK/l).

LetLq, ..., Lq be the directions determined WY through the pointm, and
Cy, ..., Cq4 the local leaves ofV which are tangent to these directions. The
automorphisng3, with s=1(d!), fixesm, preserves the web and fixes each
of the directiond,j; it therefore preserves each of e The proof of lemma
B-2 now shows thad = 1 and that the curveS; are contained in the fiber of
T throughm. Since the set of pointswhich areg,-periodic is Zariski dense
in S this argument shows that the web is the foliation by fibers,ofThe
same argument shows that the web should also coincide vétfotiations

by fibers ofry or 1, a contradiction. O

Corollary 6.4. Whatever the choice of S in the fanfiym, the groupa does
not preserve any holomorphic riemannian metric on S

Proof. Let g be an invariant holomorphic riemannian metric. At each poin
mof S, g has two isotropic lines. This determines . arnvariant web, and
we get a contradiction with the previous proposition. O

6.2. Invariant Affine Structures. A holomorphic affine structure on a com-
plex surfaceM is given by an atlas of char®; : U; — C? for which the
transition functionsb; o de’l are affine transformations of the plag8. A

local chart® : U — C? is said to be affine if, for all, ® o ®; is the re-
striction of an affine transformation @? to @;(U;) N ®(U). A subgroupG
of Aut(M) preserves the affine structure if element&adre given by affine
transformations in local affine charts.
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Theorem 6.5.Let S be an element 88m. Let G be a finite index subgroup
of Aut(S). The group G preserves an affine structure opSsg(S), if, and
only if S is the Cayley cubic:S

In what follows,Sis a cubic of the familyFam andG will be a finite index
subgroup ofa preserving an affine structure &

Before giving the proof of this statement, we collect a fewgibaesults
concerning affine structures. Détbe a complex surface with a holomorphic
affine structure. Lett: X — X be the universal cover of; the group of
deck transformations of this covering is isomorphic to thedlamental group
1 (X). Gluing together the affine local chartsXfwe get a developping map

dev: X — C?,
and a monodromy representatibion : 1y (X) — Aff (C?) such that
dev(y(m)) = Mon(y)(dev(m))

for all yin Ty (X) and allmin X. The mapdevis a local diffeomorphism but,
a priori, it is neither surjective, nor a covering onto itsige.

Let f be an element okut(X) that preserves the affine structurexofLet
mp be a fixed point off, let My be an element of the fibar(my), and let
f: X — X be the lift of f that fixesmy. Sincef is affine, there exists a unique
affine automorphismff (f) of C2 such that

devo f = Aff (f)odev.

6.3. Proof of theorem [6.5; step 1.In this first step, we show tha\
Sing(S) cannot be simply connected, and deduce from this fact $hat
singular. Then we study the singularities®&nd the fundamental group of

S\ Sing(9).

6.3.1. Simple connectednesAssume that)\ Sing(S) is simply connected.
The developping magev is therefore defined 08\ Sing(S) — C2. Let N

be a positive integer for whiogll is contained irG. Choose a fixed pointy

of gx as a base point. Sing' preserves the affine structure, there exists an
affine transformatiorff (gf) such that

devogl = Aff (g}) o dev.

In particular,dev sends periodic points @ to periodic points ofAff (glY).
Let m be a nonsingular point db with its first coordinate in the interval
(—2,2), and letU be an open neighborhood of. Section[5]L shows that
periodic points oy} form a Zariski-dense subset bf, by which we mean
that any holomorphic function® : U — C which vanishes on the set of peri-
odic points ofgl vanishes everywhere. Sindevis a local diffeomorphism,
periodic points ofAff (g}) are Zariski-dense in a neighborhooddsfv(m),
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and thereforeAff (glY) = Id. This provides a contradiction, and shows that
S\ Sing(S) is not simply connected.

Consequently, lemma3]10 implies tt&is singular and that the funda-
mental group oS\ Sing(S) is generated, as a normal subgroup, by the local
fundamental groups around the singularities.

6.3.2. Orbifold structure. We already explained in sectipn 3.6 that the sin-
gularities ofS are quotient singularities. K is a singular point of§, Sis
locally isomorphic to the quotient of the unit b@lin C? by a finite sub-
groupH of SU (2).

The local affine structure arougatan therefore be lifted intold-invariant
affine structure o\ {(0,0) }, and then extended up to the origin by Hartogs
theorem. In particulagev lifts to a local diffeomorphism betwedhand an
open subset oE2. This remark shows that the affine structure is compatible
with the orbifold structure o8 defined in sectioh 3.6.

Leth be an element of the local fundamental gréuid_et us lift the affine
structure oB and assume that the monodromy actioh iftrivial, i.e. devo
h = dev. Sincedev is a local diffeomorphism, the singularity is isomorphic
to a quotient of3 by a proper quotient dfi, namely the quotient dfl by the
smallest normal subgroup containihg This provides a contradiction and
shows thati) H embeds in the global fundamental grougafSing(S) and
(i) the universal cover dbin the orbifold sense is smooth (it is obtained by
adding points to the universal cover®f Sing(S) above singularities d).

In what follows, we denote the orbifold universal coveribyS— S, and

the developing map bgfev: S— C2.

6.3.3. Singularities. Let q be a singular point o8. Let g be a point of the
fiber m1(q). Since the group fixes all the singularities o8, it fixes q and
one can lift the action oft onSto an action ofz on Sthat fixesq. If f is an
element ofz, f will denote the corresponding holomorphic diffeomorphism

of S Then we composdev by a translation of the affine plar@? in order
to assume that

dev(g) = (0,0).
By assumptiondevo g = Aff (g) o dev for any elemeng in G, from which
we deduce that the affine transformatifi (g) are in fact linear. Since
almost preserves an area forAif (g) is an element oL (2, C) with deter-
minant+1 or —1; passing to a subgroup of index 2@) we shall assume

that the determinant is. Bincedevrealizes a local conjugation between the
action of G nearg and the action oAff (G) near the origin, the morphism

{G — SL(2,C)
g — Aff(g)
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is injective.

SinceG is a finite index subgroup @fut(S), G contains a non abelian free
group of finite index and is not virtually solvable. Udtbe the finite sub-
group ofy (S\ Sing(S)) that fixes the poin§. This group is normalized by
the action ofa on S. Consequently, using the local affine chart determined
by dev, the groupAff (G) normalizes the monodromy grodgon(H). If
Mon(H) is not contained in the center 8k (2,C), the eigenlines of the ele-
ments ofMon (H) determine a finite, non empty, aAdf (G)-invariant set of
lines inC?, so thatAff (G) is virtually solvable. This would contradict the in-
jectivity of g — Aff (g). From this we deduce that any elemenMiin(H) is
a homothety with determinant Since the monodromy representation is in-
jective onH, we conclude that "coincides” with the subgroup+Id, —1d}
of SU (2).

6.3.4. Linear part of the monodromyBy lemmg3.1ID, the fundamental group
of S\ Sing(S) is generated, as a normal subgroup, by the finite fundamental
groups around the singularities 8fSince+Id is in the center oL (2,C),

the linear part of the monodrondon (y) of any elemenyin 14 (S\ Sing(9))

is equal to+Id or —Id.

6.4. Proof of theorem[6.5; step 2.We now study the dynamics of the par-
abolic elements o& near the fixed poind.

6.4.1. Linear part of automorphismd.et g be an element of the group.
Let mbe a fixed point ofy andim a point of the fiberr1(m). Let §r, be the
unique lift ofg to §fixing m (with the notation used in step @ = §). Since
g preserves the affine structure, there exists an affine ttamationAff (gx)
such that

devo gy = Aff (gm) o dev.

Note thatAff (gw) depends on the choice af andm, but thatAff (gx) is
uniquely determined by up to composition by an element of the mon-
odromy groupgMon (1 (S\ Sing(S)). Since the linear parts of the monodromy
are equal tet1d or —Id, we get a well defined morphism

{G — PSL(2,C)
g — Lin(g)

that determines the linear part Aff (gs) modulo+Id for any choice oim
andm.
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6.4.2. Parabolic elementsSince the linear paitin (g) does not depend on
the fixed poinim, it turns out that.in preserves the type of We now prove
and use this fact in the particular case of the parabolic etésgy, g, and
9z

Let N be a positive integer such thg} is contained inG. For m, we
choose a regular point &which is periodic of period for gi and which
is not a critical point of the projectiory. Thengl!' fixes the fiberS, of i
throughm pointwise. Sincey is not periodic and preserves the fibergmpf
this implies that the differential of}' at mis parabolic. Leth be a point

of r(m) and (gl the lift of gi' fixing that point. The universal cover
T provides a local conjugation betweell' and (g)!')+ aroundm and i,

and the developping map provides a local conjugation betygl )= and
Lin (g). As a consequenceijn (gl') is a parabolic element ¢¥SL (2,C).
Since a power otin (gY) is parabolic,Lin (gY) itself is parabolic. In

particular, the dynamics @ff nearq is conjugate to a linear upper triangular
transformation ofc? with diagonal entries equal ta 1

As a consequence, the It is locally conjugate neaj to a linear para-
bolic transformation with eigenvalugsl. The eigenline of this transforma-
tion corresponds to the fib& throughg. Since the local fundamental group
H coincides with+Id, this eigenline is mapped to a curve a fixed point by
the coveringrt In particular, the fibe6, throughq is a curve of fixed points
for gy.

Of course, a similar study holds fgy andg,.

6.4.3. Fixed points and coordinates of the singular poifithe study of fixed
points ofgy, gy andg, (see lemmd4 5/2) now shows that the coordinates of
the singular point are equal ta+2. Let &, &, ande; be the sign of the
coordinates of, so that

q = (2&x, 28y, 2¢;).

Recall from sectior] 3|6 that the coefficiemis B, C, and D are uniquely
determined by the coordinates of any singular poir@ dfthe productxeye;,
is positive, then, up to symmetry= (2,2,2) andSis the surface

X2 + Y2 + 22 + xyz= 8x+ 8y + 82— 28;

in this caseg is the unique singular point d§, and this singular point is
not a node: The second jet of the equation reear (x4 y+ 2z)? = 0. This
contradicts the fact that has to be a node (see sectjon §.3.3). From this we
deduce that the produggeye, is equal to—1, and thaiSis the Cayley cubic.
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7. IRREDUCIBILITY OF PAINLEV E VI EQUATION.

The goal of this section is to apply the previous section¢artteducibility
of Painlevé VI equation.

7.1. Phase space and space of initial conditionsT'he naive phase space
of Painlevé VI equation is parametrized by coordingtes(t),q/(t)) € (P1\
{0,1,»}) x C?; the “good” phase space is a convenient semi-compactiicati
still fibering over the three punctured sphere

3 (8) - P1\ {0,1,0}

whose fibreasy,(8), at any pointy € P*\ {0, 1,0}, is the Hirzebruch sur-
face F> blown-up at 8-points minus some divisor, a union of 5 rationa
curves (see[[37]). The analytic type of the fibre, namely tbsitpn of
the 8 centers and the 5 rational curves, only depends oneRé@iphrameters
0 = (6q,0p,6y,05) € C* andto. This fibre bundle is analytically (but not al-
gebraically!) locally trivial: The local trivializatiorsi given by the Painlevé
foliation (see [4]L]) which is transversal to the fibratiorheTmonodromy of
Painlevé equation is given by a representation

(P {0,1,00},tg) — Diff (#1,(8))

into the group of analytic diffeomorphisms of the fibre.

7.2. The Riemann-Hilbert correspondance and?,;-monodromy. Onthe
other hand, the space of initial conditiomg,(8) may be interpreted as the
moduli space of rank 2, trace free meromorphic connectiaes B* hav-
ing simple poles atpq, Pg; Py, Ps) = (0,10, 1,) with prescribed residual

eigenvalueste—“, ie—;, i% andie—zf’. The Riemann-Hilbert correspondance
therefore provides an analytic diffeomorphism

M(6) — Sapcp)

Whereé(A’Bp,D) is the minimal desingularization 8= Sapgcp), the pa-
rameters(A,B,C,D) being given by formulae[(1.9) anfl (1.5). From this
point of view, the Painlevé VI foliation coincides with tiomonodromic
foliation: Leaves correspond to universal isomonodrong@fodnations of
those connections. The monodromy of Painlevé VI equatwrespond to

a morphism

(P {0,1,},t) — Aut(Sapcp))

and coincides with th€,-action described in sectign 2.2.2. For instarge,
(resp.gy) is the Painlevé VI monodromy whegturns around O (resp. 1) in
the obvious simplest way. All this is described with muchedlen [P9].
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7.3. Riccati solutions and singular points. WhenS g c p) is singular, the

exceptional divisor iré(A7B7C7D) is a finite union of rational curves in restric-
tion to whichrl™; acts by Mobius transformations. To each such rationaleurv
corresponds a rational hypersurfageof the phase space (8) invariant by
the Painlevé VI foliation. Or¥/, the projectiorns (8) — P\ {0, 1,00} re-
stricts to a regular rational fibration and the Painlevéatign restricts to a
Riccati equation of hypergeometric type: We get a one patemfi@mily of
Riccati solutions. Sed [#5,14R,]29] for a classification ofgsilar points of
SaBc,p) and their link with Riccati solutions; they occur preciseiyien
either one of thé@-parameter is an integer, or when the spi is an inte-
ger. SinceSagc p) is affine, there are obviously no other complete curve in

M1, (0) (see sectiop §.1).

7.4. Algebraic solutions and periodic orbits. A complete list of algebraic
solutions of Painlevé VI equation is still unknown. Apamrh those solu-
tions arising as special cases of Riccati solutions, tretel known, they
correspond to periodiEz-orbits on the smooth part §a g c p) (see [3LL]).
Following sectior] 5]2, apart from the three well-known fiesi of 2, 3 and
4-sheeted algebraic solutions, other algebraic solutawascountable and
the cosines of the correspondifgparameters are real algebraic numbers.
In the particular Cayley cas& = S04, periodicl z-orbits arise from

pairs of roots of unity(u,v) on the two-fold cover(C*)? (see[Z]L); there
are infinitely many periodic orbits in this case and they aesg in the real
bounded component & \ {Sing(&)}. The corresponding algebraic so-
lutions were discovered by Picard in 1889 (before Paintiséovered the
generalR/-equation !); see[[34] and below. All algebraic solutionss(r.
periodicl 2-orbits) have been classified in the particular case(0,0,0, *)
(resp. (A,B,C,D) = (0,0,0,x)) in [L7,[34]: Apart from Riccati and Picard
algebraic solutions, there are 5 extra solutions up to sytmyngee also[]6]
for finite orbit coming from finite subgroups 86U (2)).

Boundedr »-orbits correspond to what Iwasaki calls “tame solutioms” i

[Ba].

7.5. Nishioka-Umemura irreducibility. In 1998, Watanabe proved in [45]
the irreducibility of Painlevé VI equation in the sense a$iNoka-Umemura

for any parameteB: The generic solution oR/(0) is non classical, and
classical solutions are

e Riccati solutions (like above),
e algebraic solutions.

Non classical roughly means “very transcendental” wittardg to the XIXth
century special functions: The general solution cannot{peessed in an
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algebraic way by means of solutions of linear, or first ordem hinear dif-
ferential equations. A precise definition can be foundif.[13

7.6. Malgrange irreducibility. Another notion of irreducibility was intro-
duced by Malgrange irf [B3]: He defines the Galois groupoidhadlgebraic

foliation to be the smallest algebraic Lie-pseudo-grougt tontains the
tangent pseudo-group of the foliation (hereafter refetoeds the "pseudo-
group”); this may be viewed as a kind of Zariski closure fa& fiseudo-group
of the foliation. Larger Galois groupoids correspond to emplicated fo-

liations. From this point of view, it is natural to call irrecible any foliation

whose Galois groupoid is as large as possibée,coincides with the basic
pseudo-group.

For Painlevé equations, a small restriction has to be takeraccount: It
has been known since Malmquist that Painlevé foliationg beadefined as
kernels of closed meromorphic 2-forms. The pseudo-groog tlae Galois
groupoid, both preserve the closed 2-form. The irredutytbnjectured by
Malgrange is that the Galois groupoid of Painlevé equatiooincide with
the algebraic Lie-pseudo-group of those transformationthe phase space
preservingw. This was proved for Painlevé | equation by Casald i [12].

For a second order polynomial differential equatiim,y,y’,y") =0, like
Painlevé equations, Casale proved[irfj [13] that Malgrangehucibility im-
plies Nishioka-Umemura-irreducibility; the converse & irue as we shall
see.

7.7. Invariant geometric structures. Restricting to a transversal, e.g. the
space of initial conditionsti,(0) for Painlevé VI equations, the Galois grou-
poid defines an algebraic geometric structure which is iamaunder mon-
odromy transformations; reducibility would imply the ebeisce of an extra
geometric structure ont,(0), additional to the volume formw, preserved
by all monodromy transformations. In that case, a well knoesult of
Cartan, adapted to our algebraic setting by Casalge Jn [$8krés that mon-
odromy transformations

e either preserve an algebraic foliation,
e Or preserve an algebraic affine structure.

Here, “algebraic” means that the object is defined over aebaljc exten-
sion of the field of rational functions, or equivalently, beges well-defined
over the field of rational functions after some finite ramifiealver. For
instance, “algebraic foliation” means polynomial web. Asaollary of

propositio{ 6J3 and Theorem .5, we shall prove the follgwin

Theorem 7.1. The sixth Painle& equation is irreducible in the sense of Mal-
grange, except in one of the following cases:

¢ 6pei+Z, w=0a,B,y3
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e 0,cZ, w=0a,p,y,0 andy 0 is even.
All these special parameters are equivalent, modulo Okaragtnmetries,
to the caseb = (0,0,0,1). The corresponding cubic surface is the Cayley
cubic.

Of course, in the Cayley case, the existence of an invarfneatructure
shows that the Painlevé foliation is Malgrange-reduadisée [I]L]). This will
be made more precise in sectjon 7.9.

Before proving the theorem, we need a stronger version ofhaj®.?

Lemma 7.2. Let S be an element of the familym. There is naz -invariant
curve of finite type in S

By "curve of finite type” we mean a complex analytic curveSmith a
finite number of irreducible componer®s such that the desingularization
of eachC; is a Riemann surface of finite type.

Proof. Let C C S be a complex analytic curve of finite type. SinSas
embedded irC23, C is not compact. In particula€ is not isomorphic to
the projective line and the group of holomorphic diffeontagms ofC is
virtually solvable. Sincer contains a non abelian free subgroup, there exists
an element in 2 \ {Id} which fixesC pointwise. From this we deduce that
C is contained in the algebraic curve of fixed pointd o his shows that the
Zariski closure ofC is an 4 -invariant algebraic curve, and we conclude by

Lemma[6.p. O

7.8. Proof of theorem [7.1. In order to prove that Painlevé VI equation,
for a given paramete® ¢ C* is irreducible, it suffices, due td 112] and
the discussion above, to prove that the space of initial itiamd 2, (6)
does not admit any monodromy-invariant web or algebraioafitructure.
Via the Riemann-Hilbert correspondance, such a geométuctare will in-
duce a similail 2-invariant structure on the corresponding character #arie
SaBc,p)- But we have to be carefull: The Riemann-Hilbert map is ngeal
braic but analytic. As a consequence, the geometric stestue have now
to deal with onSa g c p) are not rational anymore, but meromorphic (on a
finite ramified cover). Anyway, the proof of propositipn]6s3still valid in
this context and exclude the possibilitylof-invariant analytic web.

7.8.1. Multivalued affine structuresWe now explain more precisely what is

al »-invariant multivalued meromorphic affine structure in #imve sense.
First of all, a meromorphic affine structure is an affine s in the sense

of section6.R defined on the complement of a proper analybsetZ, hav-

ing moderate growth alongin a sense that we do not need to consider here.
This structure is said to H&-invariant if bothZ, and the regular affine struc-
ture induced on the complementof arel o-invariant. Now, a multivalued
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meromorphic affine structure is a meromorphic structureh(wolar locus
Z) defined on a finite analytic ramified cover: S — S; the ramification
locusX is an analytic set. This structure is said tolBeinvariant if bothX
andZ = 1¢(Z’) are invariant and, over the complemen¥af Z, ', permutes
the various regular affine structures induced by the vafiwasches ofT.

Let us prove that the multivalued meromorphic affine strrectnduced on
S by a reduction of Painlevé VI Galois groupoid has actuatlypole, and
no ramification apart from singular points 8f Indeed, leC be the union
of Z andR; thenC is analytic inS but comes from an algebraic curve in
Mt,(8) (the initial geometric structure is algebraicsin,(0)), so that the 1-
dimensional part o€ is a curve of finite type. Lemmnia 7.2 then show t@at
is indeed a finite set. In other words,is contained irSing(S), R itself is
contained irbing(S) andZ is empty.

7.8.2. Singularities of S.Since the ramification s&is contained irbing(S),
the covent is an étale cover in the orbifold sense (singularitieS @fre also
quotient singularities). Changing the covér S — Sif necessary, we may
assume that' is a Galois cover.

If Sis simply connected, then of coursgis trivial, the affine structure
is univalued, and theorefn B.5 provides a contradiction. Wetberefore
choose a singularitg of S, and a pointq’ in the fiber ()~1(q). Since
™ (S q) is finitely generated, the number of subgroups of index dedn
(S q) is finite. As a consequence, there is a finite index subg@upl >
which lifts to S and preserves the univalued affine structure definedl.on

We now follow the proof of theorern 8.5 f@, S and its affine structure.
First, we denotat: S— S the universal cover o8, we choose a poing ~
in the fiberr(¢f), and we lift the action of5 to an action on the universal
coverSfixing §. Then we fix a developping matev: S— C2 with dev(q) =
0; these choices imply thaff (g) is linear for anyg in G. Section[6.3]3
shows that the singularities 8andS are simple nodes.

Now comes the main difference with sectidns 6.3.4 6.4:ridrip
the fundamental group @& is not generated, as a normal subgroup, by the
local fundamental groups around the singularitieSiag(S). It could be
the case tha® is smooth, with an infinite fundamental group. So, we need
a new argument to prove that (resp.gy andg,) has a curve of fixed points
through the singularitg.

7.8.3. Parabolic dynamicsLet g = g} be a non trivial iterate ofjx that is
contained inG. The affine transformatioAff (g) is linear, with determinant
1; we want to show that this transformation is parabolic.

LetU be an open subset &on which bothdev and the universal cover
T ot are local diffeomorphisms, and et be the projection ot on S by
T o .. We chooseJ in such a way that) contains pointsn = (x,Y, z) with
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xin the interval[—2,2]. The fibration ofU by fibers of the projectiom is

mapped onto a fibratios of dev(U) by the local diffeomorphisrdevo (11 o
L. Let us prove, first, thag is a foliation by parallel lines.

Let mbe a point oU which isg-periodic, of period. Then, the fiber of
T, throughm is a curve of fixed point fog. If fis a lift of min S one
can find a liftyo § of gto S(yin T (S,q) = Aut(1)) that fixes pointwise the
fiber throughni’ As a consequence, the fiber pfthroughdev(m) coincides
locally with the set of fixed points of the affine transfornoatiAff (g') o
Mon(y). As such, the fiber of throughdev(m) is an affine line.

This argument shows that an infinite number of leaves oére affine
lines, or more precisely coincide with the intersection fiine lines with
dev(U). Sinceg preserves each fiber of, the foliation# is leafwise(Aff (g')o
Mon (y))-invariant. Assume now thatis a line which coincides with a leaf
of # ondev(U). If L is not parallel to the line of fixed points &fff (¢') o
Mon(y), then the affine transformatiofff (g') o Mon(y) is a linear map
(since it has a fixed point), with determinaffl,, and with two eigenlines,
one of them, the line of fixed points, corresponding to themglue 1 This
implies thatAff (g') o Mon(y) has finiter order. Sincg is not periodic, we
conclude that is parallel to the line of fixed points @&ff (g') o Mon(y),
and that the foliatior¥ is a foliation by parallel lines.

By holomorphic continuation, we get that the imagedey of the fibration
T o Ttis a foliation of the plane by parallel lines.

Let us now study the dynamics gf iear the fixed point."Using the
local chartdev, § is conjugate to the linear transformatiéiff (g). Sinceg
preserves each fiber o, Aff (g) preserves each leaf of the foliation.
Sinceg is not periodic Aff (g) is not periodic either, andff (g) is a linear
parabolic transformation. As a consequergéas a curve of fixed points
throughg.

7.8.4. Conclusion.We can now apply the arguments of secfion 6.4.3 word
by word to conclude th&is the Cayley cubic.

7.9. Picard parameters of Painlee VI equation and the Cayley cubic.
Let us now explain in more details why the Cayley case is sciapeith
respect to Painlevé equations. Consider the universarcov

% C - {y = x(x- D(x—1)} ; 2 (X(1,2).y(t,2)

of the Legendre elliptic curve with periods+ tZ - this makes sense at least
on a neighborhood db € P1\ {0,1,}. The functionst = 1(t) and g are
analytic int.
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The following theorem, obtained by Picard in 1889, showstti@aPainlevé
equations corresponding to the Cayley cubic have (almdssgical solu-
tions.

Theorem 7.3 (Picard, see[[}1] for exampleYhe general solution of the
Painle\é sixth differential equation®?(0,0,0,1) is given by

t— X(t,c1+C2-1(t)), c1,c2€C.

Moreover, the solution is algebraic if, and only if and ¢ are rational
numbers.

Note thatcs, c; € Q exactly means thak(cy + ¢ - 1(t)) is a torsion point
of the elliptic curve.

Finally, R/(0, 0,0, 1)-equation can actually be integrated by means of el-
liptic functions, but in a way that is non classical with respto Nishioka-
Umemura definition. Coming back to Malgrange’s point of viélae cor-
responding polynomial affine structure on the phase spa¢e,0,0,1) has
been computed by Casale jn][11], thus proving the redutyjtifiR,, (0,0, 0, 1)
equation (and all its birational Okamoto symmetrics) in sease of Mal-
grange.

8. APPENDIXA

This section is devoted to the proof of theorfen 2.1, accgrtbirwhich the
unique surface in the famillyam with four singularities is the Cayley cubic

.

Proof. I. The pointq = (,Y,2) is a singular point 0§ g c p) if, and only if
g is contained ir§a g ¢ py and

2X+yz=A, 2y+zx=B, and Z+xy=C.

In particular, any pair of two coordinates gfdetermines the third coordi-
nate.

Il. If (u,v) is a couple of complex numberns,,(X) will denote the fol-
lowing quadratic polynomial

Kuv(X) = X% — uvX+ (U2 +V2 — 4).
This polynomial has a double root, namely= uv/2, if and only if Kyy(X) =
(X —uv/2)?, if and only if (u®> — 4) (v —4) = 0.

Let us now fix a set ofa, b, c, d) parameters that determin@s B,C, D). It
is proved in [#] that the coordinates of a singular pojsatisfy the following
properties:

(i) Thex coordinate satisfy one of the following conditions

— xis a double root okap(X),
— Xis a double root ok¢q(X),
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— X is a common root okap andkcq(X) ;
() y satisfies the same kind of conditions with respectdpandk;
(i) zalso, with respect taac andkpg.

This shows that the number of possilléesp.y, z)-coordinates foq is
bounded from above by. Zogether with step, this shows tha§a g c p) has
at most four singularities.

WhenSa g c p) has four singuarities, there are two possibilities forxthe
coordinate, and eithaty, andk.q both have a double root, a&f;, andkcqg
coincide and have two simple roots.

[ll. Let us assume that, andkcq have a double root. After a symmetry
(see§P.3), we may assume that= c = 2. Then,Kac, Kag andkpc all have
a double root. In particular, sinc&s g c p) has four singularities, the two
choices for the-coordinate of singular points are two double roots, thé roo
of Kac, and, necessarily, the double rootigfy. This implies thato or d is
equal to+2. Applying a symmetry of the parameters, we may assume that
b =2, so that(a,b, c,d) is now of type(2,2,2,d).

Under this assumption, the y andz coordinates of singular points are
contained in{2,d} (these are the possible double rootspa~ 4, the equa-
tions of stepg show that two of the coordinates are equal tovBen one is
equal tod. This gives at most three singularities. As a consequahee?
ord = —2, and the conclusion follows from the fact that whee- 2, there
is only one singularity, namelf2,2, 2).

IV. The last case that we need to consider is when all polynomigls
u,v e {a,b,c,d}, coincide. In that case, up to symmetrias: b=c=d.
Then, a similar argument shows tlaat O if Shas four singularities (another
way to see it is to apply the covering QuaQuad from section 9.4). O

9. APPENDIX B

9.1. Painleve VI parameters (6q,0p,6y,05) and Okamoto symmetries.
Many kinds of conjugacy classes of representatmmnsth

X(p) = (a,b,c,d,x,y,z)

give rise to the sam@A, B,C, D, x,y, z)-point ; in order to underline this phe-
nomenon, we would like to understand the ramified cover

n - ct - c4
' (a,b,c,d) — (AB,C,D)

defined by equatiori (1.5).

9.1.1. Degree off1.
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Lemma 9.1. The degree of the covering map that is the number of points
(a,b,c,d) giving rise to a given generiA, B,C, D)-point, is24.

Proof. We firstly assum® # +C so thata # +b. Then, solvingd = bc+ad
andC = ac+ bdin c andd yields

aC—bB aB—bC
C= 22 ~ 2
Subsituting inA = ab+cd andD = 4— a? — b? — ¢® — d? — abcdgives{P =
Q = 0} with
P = —ab(a®—b??2+A@—b?)?+ (B?>+C?)ab— BC(a’+b?)
andQ = (a?+b?)(a®—b?)?+(D—4)(a®—b?)?
+(B?4C?)(a® — a®b® 4 b?) + BCal{a® + b* — 4).

and d

These two polynomials have both degree §arb) and the corresponding
curves must intersect in 36 points. However, one easilylctiet they in-
tersect along the line at infinity with multiplicity 4 at eaohthe two points
(a:b)=(1:1) and(1:—1); moreover, they also intersect along the for-
bidden linesa = +b at (a,b) = (0,0) with multiplicity 4 as well, provided
thatBC # 0. As a consequence, the number of preimagg®\d8,C,D) is
36— 4 —4—4 =24 (counted with multiplicity). O

Remark 9.2. I is not a Galois cover: The group of deck transformations is
the order 8 grou® = (P1,P2,®(_1, 11 1)) (s€€§.3).

9.1.2. Okamoto symmetrieslo understand the previous remark, it is conve-
nient to introduce the Painlevé VI parameters, which deded to(a, b, c,d)
by the map

a = 2cosmdy)

4 . 4 _
C C with b 2cogT6p)
(80, 6p,8y,085) — (ab,c,d) C = 2cogTdy)
d = 2cogmd;)

The composite mafBy, g, 6y,85) — (A,B,C,D) has been studied i [P8]:

It is an infinite Galois ramified cover whose deck transfoiora coincide
with the groupG of so called Okamoto symmetries. Those symmetries are
"birational transformations” of Painlevé VI equationgthhave been com-
puted directly on the equation by Okamoto[in|[38] (Je¢ [36fmodern pre-
sentation). LeBir(R/|) be the group of all birational symmetries of Painlevé
sixth equation. The Galois growpis the subgroup dBir(R/|) generated by
the following four kind of affine transformations.
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(1) Even translations by integers

ea — ea + n]_

. )8 — Bgt+ny . n=(ng,N,ng,ng) € Z4,

©n ey — 9y+n3 with Ni+no+n3+ne2Z.
O — B5+na

Those symmetries also act on the space of initial conditadridy
in a non trivial way, but the corresponding action @y, z) is very
simple: We recover the twist symmetries of section[Z3 by con-
sideringn modulo Z*.

(2) An action ofSym, permuting(6q, 8g, 8y, 85). This corresponds to the
action ofSym, on (a, b, c,d,x,y, z) permuting(a, b, c,d) in the same
way. This group is generated by the four permutatitng,, P, and

P, (see sections 2.2.1 apd 2]2.2).

(3) Twist symmetries on Painlevé parameters

ea — slea
. GB — 8263 . B 4
®€ . ey —> 839y Wlth €= (81782783,84) € {:i:l} .

The corresponding action da, b, c,d, x,y, z) is trivial.
(4) The special Okamoto symmetry (callgdn [B6])

6q—6p—6y—6
By — —r2 BZ L |
—BQ+OB—GV 95
ok: (% B0—6+0,0 i
eV - ea 9[32 9y+95 1
95 — B VT [32 i 5-1—1

The corresponding action dii\,B,C, D, x,y, z) is trivial (see [ZB]),
but the action orja, b, c,d) is rather subbtle, as we shall see.

The ramified cove(6q, 6,6y, 05) — (a,b,c,d) is also a Galois cover: Its
Galois grouiK is the subgroup o0& generated by those translatiohg with
€ (2Z)* and the twistsze. One can check thd6 : K] = 24 butK is not

a normal subgroup d&: It is not Ok-invariant. In factK is normal in the

subgroupG’ C G where we omit the generator Ok a@d= G’ /K coincides
with the order 8 group of symmetries fixin@, B,C,D). Therefore,G/K
may be viewed as the disjoint union of left cosets

G/K = QUOk-QUOK- Q
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whereOKk is the following symmetry (calles;sys; in [B8])
Oa —93—6y+95

N 6y — —0+05—6y+65

: — 2

Ok : o ., —Pa8t8,6
Y 2

S — — 2

9.1.3. From (A,B,C,D) to (a,b,c,d). Now, given a(a,b,c,d)-point, we
would like to describe explicitly all other parametg@,b’,c’,d’) in the
samell-fibre, i.e. giving rise to the same paramegt@rB,C, D). We already
know that theQ-orbit

(a,b,c,d) (—a,—b,—c,—d) (d,c,b,a) (—d,—c,—b,—a)
(b,a,d,c) (—b,—a,—d,—c) (c,d,a,b) (—c,—d,—a,—b) [’

, Which generically is of length,8s contained in the fibre. In order to
describe the remaining part of the fibre, let us cho@gebs, c¢,de) € c4,
€=0,1, such that

3 = Y52 a = Y52
by = 57 and {1 =
o = V5 = VoE

If By is such thatag,a;) = (coqne—z"),sin(n%)), thena=2cog10y); there-
fore, the choice ofap,a;) is equivalent to the choice ofRy-parametefq
modulo Z, i.e. of%" moduloZ. Then, looking at the action of the special
Okamoto symmetry Ok on Painlevé parametdi, 6g,0y,05), we derive
the following new poin{a,b’,c’,d’) in theM-fibre

a = _22(_1)i+81a81b82%3d84
b = _22<_1)%+8 a81b82083d84
¢ = _22<_1)%+8 a81b82083d84
d = _22<_1)%+8 a81b82083d84

where the sum is taken over a@l= (£1,€2,€3,€4) € ({0,1})* for which
Zi4=1 & is even. One can check that the different choiceq#rbo, o, do)
and (a1,bs,c1,d;) lead to 16 distinct possiblga,b',c’,d’), namely 2 dis-
tinct Q-orbits, which together with th@-orbit of (a,b,c,d) above provide
the wholell-fibre.
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Example 9.3.When(a,b,c,d) = (0,0,0,d), we havgA,B,C,D) = (0,0,0,D)
with D = 4—d?. Thel-fibre is given by th&Q-orbits of the 3 points

(0,0,0,d) and (d,d,d,—d) where d=1/2++/4—d?

(only the sign of the square root inside is relevant u®jo The fibre has
length 24 except in the Cayley cagde= 0 where it has length 9, consisting
of the twoQ-orbits of

(0,0,0,0) and (2,2,2,—2)

(note that(0,0,0,0) is Q-invariant) and in the Markov cagk= 2 where it
has length 16, consisting of the tW@orbits of

(0,0,0,2) and (V2,v2,v2,—V2).
9.2. Reducible representations versus singularities.
Theorem 9.4([fl, P9]). The surface @ gc p) is singular if, and only if, we

are in one of the following cases
e A(a,b,c,d) =0where

A = (2(a®+b?+c?+d?) —abcd— 16)2 — (4—a?)(4—b?) (4 —c?)(4—d?),
e at least one of the parameters a, b, c or d equals

More precisely, a representatignis sent to a singular point if, and only if,
we are in one of the following cases :
e the representatiop is reducible and thei = 0,
e one of the generators(a), p(B), p(y) or p(d) equalstl (the corre-
sponding trace parameter is then equaht@).

In fact, itis proved in[#] that the s@ of parameter$A, B,C, D) for which
SaBc,p) is singular is defined by = 0 whered is the discriminant of the
polynomial

P,=7"-CZ - (D+4)Z+ (4C—AB)z+4D + A% 4 B?
defined in sectiofi §.1P, has a multiple root at each singular point. Now,
consider the ramified cover
n:c*—c*(ab,c,d)— (AB,C,D)
defined by[(1]5). One can check by direct computation that

dol= 1—16(a2 —4)(b*— 4)(c* — 4)(d? — 4)1%.

One also easily verifies that the locus of reducible reprtesiens is also the

ramification locus of1: 1
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It is a well known fact (se€[]29]) that Okamoto symmetriesnpgte the
two kinds of degenerate representations given by Theprdn#8r instance,
a singular point is defined by the following equations:

A=2x+yz B=2y+xz C=2z+Xxy

and X% +y? + 22 + xyz= Ax+ By+Cz+D.
Now, a compatible choice of paramet¢esb, c,d) is provided by

(ab,c.d)=(y,zx2)
and one easily check that the corresponding represengatadisfyp(d) = 1.

9.3. SU(2)-representations versus bounded componentdVhena, b, c,
andd are real numbersh, B, C, andD are real as well. In that case, the
real partSa gc p)(R) stands forSU (2) andSL (2, R)-representations; pre-
cisely, each connected component of the smooth patgfc p)(R) is ei-
ther purelySU (2), or purelySL (2,R), depending on the choice @, b, c,d)
fitting to (A,B,C,D).

Moving into the parameter spa¢éa, b, c,d)}, when we pass frorBU (2)
to SL(2,R)-representations, we must go through a representationeof th
groupSU (2) NSL(2,R) = SO (2,R). Since representations infD (2,R)
are reducible, they correspond to singular points of theccsibrface (see
§0-2). In other words, any bifurcation betwe®l (2) andSL (2, R)-represen-
tations creates a real singular point3f g c p).

SinceSU (2)-representations are contained in the c{ib2, 2)°, they al-
ways form a bounded component of the smooth pag gt c p)(R): Un-
bounded components always corresponfilt¢2, R)-representations, what-
ever the choice of parametdig b, c,d) is.

The topology ofSagcp)(R) is studied in [#] when(a,b,c,d) are real
numbers. There are at most four singular points, and the gnpaot has at
most one bounded and at most four unbounded components. eQniftér
hand, ifA, B, C, andD are real numbers, then b, ¢, andd are not necessar-
ily real.

Example 9.5.1f a, b, ¢, andd are purely imaginary numbers, théanB, C,
andD are real numbers. In this specific example, there are ramiEsms
p: Ty (S3) — SL(2,C) with trace parameters

(a,b,c,d,x,y,2) € (iR)*x (R)3,

the image of which are Zariski dense in the (real) Lie gréug2, C). Such
a representation correspond to a pdit, z) on §agc p)r) Which is not

realized by a representation irid (2,R).

The goal of this section is to prove the following theoremjckihpartly
extends the above mentionned results of Benedetto and Gal{#h
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Theorem 9.6.Let A, B, C, and D be real numbers, for which the smooth part
of Sagc,p)(R) has a bounded component. Then for any choice of parame-
ters(a, b, c,d) fitting to (A, B,C, D), the numbers a, b, ¢, and d are real, con-
tained in(—2,2) and the bounded component stands30r(2) or SL (2,R)-
representations. Moreover, for any such parameigrB,C,D), we can
choose betweefiU (2) and SL (2,R) by conveniently choosin@,b,c,d):

The two cases both occur.

In particular, bounded components of real surfaSgs c,p)(R) always

arise fromSU (2)-representatiorfs

Denote byZ c R*the subset of those parametétsB, C, D) for which the
corresponding surfachA7B7C7D)(R) is singular (see sectidn 9.2). Over each
connected component 8&*\ Z, the surfaceSa g c,p)(R) is smooth and has
constant topological type. L&t be the union of connected components of
R*\ Z over which the smooth surface has a bounded component.

The ramified covefl : C* — C#;(a,b,c,d) — (A, B,C,D) has degree 24;
Okamoto correspondences, defined in sedtign 9.1, “actsitigely on fibers
(recall thatlT is not Galois). Because of their real nature, these correspo
dences permute real paramet@d, c,d): Therefore[1 restricts as a degree
24 ramified covefl|gas : R* — M(R%). Following [B], we have

N-1(3)NR*=(-2,2)*\ {A=0}.
Using again thasU (2) NSL (2,R) = SO(2) is abelian, and therefore corre-
sponds to reducible representations, we promptly deduate @fong each
connected component ¢f-2,2)4\ {A = 0}, the bounded component of
the corresponding surfac®s g c p)(R) constantly stands either f6U (2)-
representations, or f&l (2, R)-representations. We shall denotedks” (2)
ands5(2R) the corresponding components#f Theoren{9]6 may now be
rephrased as the following equalities:

5 — gSU(@ _ zSL2R)

To prove these equalities, we first note thabt (@ UsSL(2R) « M([-2,2]%)
is obviously bounded by-8 < A,B,C < 8 and—20< D < 28 (this bound is
not sharp !).

Lemma 9.7. The sets is bounded, contained inte8 < A,B,C < 8 and
-56< D <68

Proof. The orbit of any poinp belonging to a bounded componen8¥ g c p)(R)
is bounded. Applying the tools involved in sectifin 5, we dezlthat the

2This strengthens the results [40] where the bounded commtavas assumed to arise
from SU (2)-representations.
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bounded componentis contained ifte, 2]3. Therefore, for anp = (x,y,2)
ands«(p) = (X,Y,z) belonging to the bounded component, we #et x+
X +yzand then-8 <A < 8. Usings, ands;, we get the same bounds fér

andC. Sincep is in the surface, we also gBt= X%+ y? + 722 + xyz— Ax—
By—Cz O

The order 24 group of Benedetto-Goldman symmetries act@pdhame-
ters(A,B,C,D) by freely permutting the tripléA, B,C), and freely changing
sign for two of them. This group acts on the set of connectedpaments of
R*\ Z, 8, 35Y(@ and35-(2R) The crucial Lemma is

Lemma 9.8. Up to Benedetto-Goldman symmetri&,\ Z has only one
bounded component.

Proof. Up to Benedetto-Goldman symmetries, one can always assume 0
A <B<C. Thisfactis easily checked by looking at the action of syriras

on the projective coordinatgs : B: C] = [X : Y : 1]: the triangleT = {0 <

X <Y < 1} happens to be a fundamental domain for this group action. We
shall show thaR*\ Z has at most one bounded component over the cone

c={(AB,C); 0<A<B<C}

with respect to the projectiofd, B,C,D) — (A, B,C).
The discriminant o with respect td reads

dis(8) = —65536(B—C)?(B+C)?(A—C)?(A+C)?(A—B)*(A+B)?53
whered is the following polynomial (with(X,Y) = (£, &))
81 = —COX3Y3+ (27Y4 + 27X — 6X2Y* — 6XTY2 4+ 27X - 6X%Y?) C®
- <—768X5Y +192Y3X — 768XY + 192X3Y — 768Y°X + 192x3v3) c’
+ (4096Y6 — 1536Y? + 4096+ 23808X%Y?2 — 1536X* — 1536X%Y*

—1536X*Y?+4096X° — 1536X% — 1536Y4) C®
+ (—86016X3Y — 86016Y3X — 86016XY) C>+ (712704X?Y?
—196608r* — 196608- 196608K* + 712704X? 4 712704¢2) C*

—5505024C3XY + (3145728K% + 31457281 3145728%) C* — 16777216

First, we want to show that \ {disqd) = 0} has 5 connected components,
only two of which are bounded. The polynomial has degree 9 i€ in
restriction to any lindkxy = {A=XC,B=YC} C c with0O< X <Y < 1;
we claim that it has constantly 3 simple real roots (and 6 reahaones)

c(X,Y) <0< c(X,Y) <c3(X,Y).
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In order to check this, let us verify that the discriminandgfvith respect to
C does not vanish in the interior of the triandle After computations, we
find

disa(31) = k(X2 —Y?)8(X?—1)8(Y2 - 1)8(Yd,)?
wherek is a huge constant aréd is given, settingk =tY, by

5, = (222728 4 40337%+ 1638410+ 163842 + 222724) y10

+ (—592334 +163841° - 59233° + 404488 + 16384+ 4044&2> y®
+ (22272+ 222728 592332 592336 1188934> &

+ (403316 +40337- 592332 - 592334> &

+ (222724 22272% + 40448?) Y2 4 16384+ 163847,

This later polynomial has non vanishing discriminant wiglspect tor for
0 <t < 1 and has a non real root, for instance, whenl/2: Thus dis¢d;)
does not vanish in the interior of the triangle Therefore, the polynomial
01 has always the same number of real roots w{¥yY) lie inside the tri-
angleT and one can easily check that O is never a root, and by spzcali
(X,Y), that there are indeed 3 roots, one of them being negative clHim
is proved.

The coner is cutted off by dis@d) = 0 into 5 components, namely

c1={C<ci(X,Y)}, c2={c1(X,Y)<C<O0}, c3={0<C<c2(X,Y)},
ca={c(X,Y)<C<c3(X,Y)} and ¢s5={c3(X,Y)<C}.
Butd; has degree 8 whex = 0 and one of the rootg(X,Y) tends to infinity
whenX — 0. One can check thag — o and onlyc, andcs are bounded.
We now study the possible bounded componenB*fZ over the cona’;
they necessarily project ont®, ¢s or the union (together withA, B,C) =

0). The polynomiab definingZ has degree 5 iD. After several numerical
specializations, we obtain the following picture:

e the polynomiab has 5 real rootd; < dy < d3 < dg4 < ds overc, and
c3, di=d(AB,C)fori=1,...,5,
e overC=c; orC=cy, 0< A< B<C, the 5 roots extend continu-
ously, satisfyingly =dr < dz3 < ds < dsg
e over(A,B,C) =0, the 5 roots extend continuously as-@l; < dp =
d3=ds=4.
Among the 6 connected componentsRif\ Z over ¢, (resp. ¢3), only that
one defined by{di(A,B,C) < D < dz(A,B,C)} does not “extend” over the
unbounded componenmt (resp. ¢4). The unique bounded component of
R*\ Z over the cona is therefore defined over, U{A=B=C =0} U3
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by {d1(A,B,C) < D < d2(A,B,C)}. The corresponding connected compo-
nent ofR*\ Z must be bounded as well, since there is at least one bounded
component, given bgSY (@ or zSL 2R, O

We thus conclude that = 35Y(2 = 35L(2R gnd Theoreni 9]6 is proved
in the case the real surfag, g c p)(R) is smooth. The general case follows
from the following lemma, the proof of which is left to the dea.

Lemma 9.9. Let (A,B,C,D) be real parameters such that the smooth part
of the surface @ g cp)(R) has a bounded component. Then, there exist an
arbitrary small real perturbation ofA, B,C, D) such that the corresponding
surface is smooth and has a bounded component.

We would like now to show that there is actually only one bathdom-
ponent inR*\ Z (up to nothing).
Inside[—2,2]4, the equatiom splits into the following two equations

2(a%+ 17+ ¢+ d?) —abed— 16 = /(4 — a2)(4 - b2) (4 — c2)(4 - ).

Those two equations cut-off the parameter spfae2 2]* into many con-
nected components and we héve

Theorem 9.10(Benedetto-Goldmarj][4])When a, b, ¢ and d are real and
Sagc,p)(R) is smooth, then ®g c p)(R) has a bounded component if, and
only if, a, b, c and d both lie if—2,2). In this case, the bounded component
corresponds t&L (2, R)-representations if, and only if,

2(a% +17 + ¢+ d) — abed— 16> /(4 a2) (4~ b?) (4 ?) (4~ d?),

When we cross the boundary

2(@%+ 17+ ¢+ d?) —abed— 16 = /(4 - 82) (4— D) (4 c2) (4— d?)

inside (—2,2)4, we pass fronSL (2,R) to SU(2)-representations: At the
boundary, the bounded component must degenerate downrgudasi point.
We now prove the

Proposition 9.11. The se(—2,2)*\ {A = 0} has24 connected components,
8 of them corresponding t6L (2, R)-representations. Okamoto correspon-
dence permute transitively those components.

Recall that the group of cover transformatid@shas order 8 and does
not change the nature of the representation: The inpdge(S?)) remains

3In [H], the connected components[ef2,2]* standing forSL (2, R)-representations are
equivalently defined b > 0 and Za? + b? + ¢? + d?) — abcd— 16 > 0.
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unchanged ifPGL (2,C). Therefore, up to this tame action, Okamoto corre-
spondence provides, to any smooth pdtB,C, D, x,y, z) of the character
variety, exactly 3 essentially distinct representatidws, of them inSU (2),
and the third one iSL (2,R). It may happens (se€ ]39]) that one of the two
SU (2)-representations is dihedral, while the other one is dense!

Proof. We shall prove that th6L (2,R)-locus, i.e. the real semi-algebraic
setX of [—2,2]* defined by

2(a%+ 17+ ¢4 &) —abed— 16> /(4 - 82) (4— D) (4— ) (4~ d2),

consist in connected neighborhoods of those 8 verticegegponding to the
Cayley surface
(a,b,c,d) = (€1-2,€2-2,€3-2,€4-2), €& =+1, €180€384= 1.

Benedetto-Goldman symmetries act transitively on thosepaments. On
the other hand, the Cayley surface also arise(#b,c,d) = (0,0,0,0),
which is in theSU (2)-locus: the Okamoto correspondence therefore sends
any of the 8 components above into 8l¢(2)-locus, thus proving the theo-
rem.

By abuse of notation, still denote Z/the discriminant locus defined by
{A =0} C (—2,2)* The restrictiorzZ,, of Z to the slice

Map={(abcd);cde(-22)}, (ab)e(-22?
is the union of two ellipses, namely those defined by

c®>+d?>—dcd+8°—4=0, whered= % (abi \/(4—a2)(4—b2)) .

Those two ellipses are circumscribed into the sqiityg (see figurg 9]3)
and, for generic parametaasndb, cut the square into 13 connected compo-
nents. One easily verify th&L (2,R)-components (namely those connected
components 0K, p = XN, defined by the inequality of the previous the-
orem) are those 4 neighborhoods of the vertices of the square

This picture degenerates precisely wleea +2, b = +2 ora = +b. We
do not need to consider the first two cases, since they areedvotidary of
(—2,2)*. Anyway, in these cases, the two ellipses coincide; theyemar
degenerate to a double line whae= +b.

In the last cas@ = +b, the picture bifurcates. Whem= b, one of the
ellipses degenerates to the double lme d, and the two components of
Xap Near the verticeg2, 2) and(—2, —2) collapse. Whem = —b, the com-
ponents o5, near the two other vertices collapse as well. This means that
each component of;, stands for exactly two componentsXf We finally

obtain 8 connected components for $ie(2,R)-locusX C (—2,2)%. One
easily verify that there are sixte&h) (2)-components if—2,2)4\z. O
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Zap={0=0}

2a% + 2b2 4+ 2¢% + 2d? — abcd— 16=0

FIGURE 5. Z restricted to the slice Myp.

9.4. Ramified covers. Here, we would like to describe other kinds of cor-
respondences between surfa&ggc p), that arise by lifting representa-
tions along a ramified cover 6§. Letp € Rep(S3) be a representation with
a=d=0, so thatp(a)? = p(B)?> = —I, and consider the two-fold cover
T: S% — S? ramifying overpy and ps.

The four punctures lift-up as six punctures labelled in theious way

~I501~ = Pa
Pe. Pz — Pp
Py, B, — Py
Ps — Ps
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Po

v B
a (@)
~ s
Po
Po
m
Pa Pp py
a B Y

FIGURE 6. The two-fold cover. (the pointpg is at infinity)

o0&

After twisting the lifted representatiopo 1t by —I at py and gs, we get a
new representatiop € Rep(S3) ; the new punctures are respectively By,
Pg and p”B and the new generators for the fundamental group are given by

afyB~ta—1, aBa~1, B, andy. After computation, we get a map

0 — c

b — b x = y
and <y — 2—X

¢ — b 2y+xz—Yy+bc

0 c z — Xy y

defining a two-fold cover
Quad : Sopop) — S284-D,28,20-B2—4)

whereB = bcandD = 4 —b? — c?. This map corresponds to the so-called
“quadratic transformation” of Painlevé VI equation.
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When moreoverc = 0, we can iterate twice this transformation and we
deduce a 4-fold cover

Quadb Quad : S0,0,00) — Sg-20,8-20,8—2D,~28+12D—D?)

8 : E X — 2-X2
and {y — 2—y?
00— Db

For instance, whebD = 0, we get a coveringg 0,0,0) — Ss8g8—28)- Another
particular case arise whdh= 4 where Quad defines an endomorphism of
the Cayley cubic surfac&g0.4) — So,0,04), Namely that one induced by
the regular cover

C*xC* = C*xC" : (u,Vv) — (V,u?).

Example 9.12.By the way, we note that, up to the action@fthe following
traces data are related :
(0,0,0,d) « (d”,d",d",—d") — S0,00,4-d?)
|
(0,0d,d) < (22d,-d) — Sd?,0,0,4—2d2)

|
(d,d,d,d) < (222d°-2) — Sugeo022024 402 d%)

whered’ = vV4—d? andd” = v/2+d'. In the previous diagram, horizon-
tal correspondences arise from Okamoto symmetries, whiligcal arrows,
from quadratic transformatio@.
More generally, we have related
(07 07 C, d) A (C”7 C/lv dl/? _d//) - S(Cd,070,4—02—d2)
| |

(ccdd) <« (22c,d)  — S 2ed2cds-202-202-2d2)

Whered — cd+\/(02;4)(d2_4)’ q — cd—\/(c2;4)(d2_4)’ & — 240 andd” —
2-C.

Remark 9.13. One can check by direct computations that the quadratie tran
formation Quad is equivariant, up to finite index, with resp® thel ;-
actions. Precisely, we have

QuadB? = B,'oQuad

QuadB, = B;%oQuad
Quacbs, = s,0Quad
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The group generated 8, B, ands,, acting on both sides, contaifi§ as
an index 2 subgroup (recall thB2 = g« = s;05, andB3 = gy = S0 ).
Therefore, ifg = Quad p) (for some parameter®,B,0,D)), thenpis I'5-
periodic (resp. bounded) if, and only s
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