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An overview on polynomial approximation of NP-hard problems *

The fact that it is very unlikely that a polynomial time algorithm could ever be devised for optimally solving NP-hard problems, strongly motivates both researchers and practitioners in trying to heuristically solving such problems, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find in reasonable time, not the best solution but one solution which is "near" the optimal one. Among classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in polynomial time by computing feasible solutions that are, under some predefined criterion, as near as possible to the optimal ones. The polynomial approximation theory deals with the study of such algorithms. This survey presents and analyzes in a first time approximation algorithms for some classical examples of NP-hard problems. In a second time, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what it is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled.

1 What is polynomial approximation and why we do it?

It is widely believed that no polynomial algorithm can be ever devised for optimally solving NP-hard problems. So, several approaches, more or less satisfactory, can be followed when one tries to solve them. Roughly these approaches belong to one of the following two families.

Exact (optimal) algorithms, that compute optimal solutions for the problems but they run in exponential time; such algorithms are based upon either search tree-based methods (branchand-bound, branch-and-cut, branch-and-price, etc.), or upon dynamic programming, or . . . Heuristic methods, that run faster than the exact algorithms and compute sub-optimal solutions (that are, sometimes, unfeasible); the most notorious among these methods are:

• the polyhedral methods,

• the metaheuristics (simulated annealing, genetic algorithms, tabou, etc.),

• the polynomial approximation algorithms with (a priori) performance guarantees.

The goal of this overview is to make a general presentation of this last category of heuristic methods, that are the polynomial approximation algorithms.

What is polynomial approximation? Roughly speaking, this is the art to achieve, in polynomial time, feasible solutions with objective value as close as possible (in some predefined sense) to the optimal value. How can we do it? Hopefully, the reader will see it in what follows.

Why do we use polynomial approximation rather than other heuristic methods? There are several reasons for that. The main such reasons are, to our opinion, both "operational" and "structural".

A central operational reason is that there exist problems, describing natural situations, either requiring that feasible solutions must be obtained quickly (i.e., in polynomial time) and this fact must be guaranteed a priori, or where optimum is misdefined, or senseless. Also, it is sometimes necessary in the context these problems are handled, that a decision maker has an a priori estimation of the performance of the algorithms used to solve them.

On the other hand, the main "structural" reason is that polynomial approximation is a natural extension of complexity theory to combinatorial optimization and largely contributes to the enrichment of both domains.

The aim of the study of polynomial approximation of combinatorial optimization problems is to characterize the ability of a specific problem to be "well-solved" in polynomial time. This is done by determining both upper and lower bounds of approximability, i.e., by exhibiting specific approximation algorithms achieving a given level of approximation, on one side, and, on the other side, showing that no algorithm can possibly provide a better approximation level, until somewhat strange and unexpected happens, i.e., until a very highly improbable complexity hypothesis (e.g., P = NP) holds.

Existence of polynomial approximation as scientific area has started from the seminal paper by [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF]. Since then, this research programme is one of the most active research programmes in operational research, combinatorial optimization and theoretical computer science.

Preliminaries

The object of polynomial approximation is the class of the so-called NPO problems. Informally, this is the class of optimization problems the "decision"-counterparts of which are in NP. Let us recall that, given an optimization problem, it is immediate to produce its decision version in the following way:

• if the optimization goal of the problem is "max", then its decision version becomes: "does there exist a solution with value greater than, or equal to, K?", where K is some constant that, for the decision version, is part of the instance;

• if the optimization goal of the problem is "min", then its decision version becomes: "does there exist a solution with value smaller than, or equal to, K?", where K is as in the previous item.

Solving a decision problem Π becomes to correctly answering by yes or no to the question defining Π. For example, for the decision version of max independent set1 : "given a graph G and a constant K, does there exist an independent set of G of size at least K?", solving it becomes to correctly answering if G has an independent set of size at least K, or not. Formally, an NPO problem Π is a four-tuple (I, Sol, m, goal) such that:

• I is the set of instances (recognizable in polynomial time);

• for I ∈ I, Sol(I) is the set of feasible solutions of I; feasibility of any solution is decidable in polynomial time;

• for any I ∈ I, at least one feasible solution can be computed in polynomial time;

• the objective value m(I, S) of any solution S, is computable in polynomial time;

• goal ∈ {min, max}.

We now briefly present some basic notions in polynomial approximation theory. More details can be found in [START_REF] Ausiello | Complexity and approximation[END_REF][START_REF] Hochbaum | Approximation algorithms for NP-hard problems[END_REF][START_REF] Th | Complexité et approximation polynomiale[END_REF][START_REF] Vazirani | Approximation algorithms[END_REF].

Given an instance I of a combinatorial maximization (resp., minimization) problem Π = (I, Sol, m, goal), ω(I), m A (I, S) and opt(I) will denote the values of the worst solution of I (in the sense of the objective function), the approximated one, S (provided by some polynomial time approximation algorithm A supposed to feasibly solve problem Π), and the optimal one, respectively. The worst solution of I is the optimal solution for I with respect to the NPO problem Π ′ = (I, Sol, m, goal ′ ) where:

goal ′ = max if goal =

min min if goal = max

There exist mainly two paradigms dealing with polynomial approximation.

Standard approximation. The quality of an approximation algorithm A is expressed by the ratio ρ A (I) = m A (I, S)/ opt(I). Note that approximation ratio for minimization problems is in [1, ∞), while for maximization ones this ratio is in (0, 1]. For both paradigms, the closer the ratios to 1, the better the performance of the approximation algorithm A. Let us note also that, as we will see, results obtained adopting the one or the other of the two paradigms are very often different even for the same problem. The rest of the paper is organized as follows. In Section 3 the main approximability classes are defined. In Section 4 we analyze polynomial approximation algorithms for several well-known hard optimization problems. In Section 5, we show how the main tool of complexity theory, that are polynomial reductions, can be adapted to the framework of polynomial approximation, in order to produce structural results. In Section 6 we say a few words for the limits of approximability, i.e., for inapproximability of NP-hard problems. Providing inapproximability results stating that a specific problem is not approximable within better than some approximation level, is crucial (although somewhat far from the classical operational researchers concerns; for this reason this part of the paper will be short) for characterizing approximability of NP-hard problems and for understanding structure of them. Finally, in Section 7 we present a quick overview on completeness result in approximation classes.

Differential approximation. The quality of an approximation algorithm

For shortness, only the problems discussed in details in this paper will be defined. For the other ones, the interested reader can be referred to [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF]. Also, for notions and definitions from graph theory, on can be refered to [START_REF] Berge | Graphs and hypergraphs[END_REF].

Approximation classes

According to the best approximation ratios known for them, NP-hard problems are classified to approximability classes. These classes create a kind of hierarchy in the class of the NP-hard problems. The most known among them (going from the pessimistic to the optimistic ones) are the following classes (for any standard-approximation class C, DC denotes the respective differential class).

Exp-APX and Exp-DAPX. Classes of problems for which the best ratio known is exponential (or the inverse of an exponential) with the size of their instance. Notorious member of Exp-APX is min tsp. On the other hand, no natural combinatorial optimization problem is still known to be in Exp-DAPX.

Poly-APX and Poly-DAPX. Classes of problems for which the best ratio known is polynomial (or the inverse of a polynomial) with the size of their instance. max independent set, max clique, min coloring, etc., belong to Poly-APX, while max independent set, max clique, min vertex cover, min set cover, etc., belong to Poly-DAPX.

Log-APX and Log-DAPX. Classes of problems for which the best ratio known is some logarithm (or the inverse of some logarithm) of the size of their instance. min set cover and min dominating set are the most notorious representatives of Log-APX. On the other hand, no natural combinatorial problem is known to be in Log-DAPX.

APX and DAPX. Here start the "more optimistic" approximability classes. APX and DAPX are the classes of problems approximable within ratios that are fixed constants. min vertex cover, min metric tsp 2 , bin packing, max tsp, etc., belong to APX, while min tsp, max tsp, min coloring, etc., belong to DAPX.

PTAS and DPTAS. Classes of problems admitting polynomial time approximation schemata.

A polynomial time approximation schema, is a sequence of algorithms A ǫ achieving ratio 1 + ǫ, for every ǫ > 0 (1ǫ for maximization problems, or for the differential paradigm), in time which is polynomial with the size of the instance but exponential with 1/ǫ. max planar independent set 3 , min planar vertex cover 4 , min euclidean tsp 5 , etc., are in PTAS. On the other hand, max independent set, min planar vertex cover, bin packing, etc., are known to belong to DPTAS.

FPTAS and DFPTAS. Classes of problems admitting fully polynomial time approximation schemata. A fully polynomial time approximation schema is a polynomial time approximation schema that, furthermore, is polynomial with 1/ǫ also. knapsack is in both FPTAS and DFPTAS.

Let us also mention the existence of another approximability class denoted by 0-DAPX (defined in [START_REF] Bazgan | Differential approximation for optimal satisfiability and related problems[END_REF]) that is meaningful only for the differential approximation paradigm. 0-DAPX is the class of problems for which any polynomial algorithm returns a worst solution on at least one of their instances. In other words, for problems in 0-DAPX, their differential approximation ratio is equal to 0. min independent dominating set is known to be in 0-DAPX.

Finally, let us note that, by the way approximability classes are defined (i.e., as functions of the instance size), there exist indeed a continuum of such classes. Dealing with the classes defined above, the following inclusions hold:

PO ⊂ FPTAS ⊂ PTAS ⊂ APX ⊂ Log-APX ⊂ Poly-APX ⊂ Exp-APX ⊂ NPO PO ⊂ DFPTAS ⊂ DPTAS ⊂ DAPX ⊂ Log-DAPX ⊂ Poly-DAPX ⊂ Exp-DAPX ⊂ 0-DAPX ⊂ NPO
These inclusions are strict unless P = NP.

Indeed, for any of these classes, there exist natural problems that belong to each of them but not to the immediately smaller one. For instance, for the standard paradigm:

knapsack ∈ FPTAS \ PO max planar independent set ∈ PTAS \ FPTAS min vertex cover ∈ APX \ PTAS min set cover ∈ Log-APX \ APX max independent set ∈ Poly-APX \ Log-APX min tsp ∈ Exp-APX \ Poly-APX
4 Approximation algorithms for several NP-hard problems

max independent set

Given a graph G(V, E), max independent set consists of determining a maximum-size set

V ′ ⊆ V such that, for every (u, v) ∈ V ′ × V ′ , (u, v) / ∈ E.
Let us first consider the integer-linear formulation of max independent set and its linear relaxation, denoted by max independent set-r, where given a graph G(V, E), A denotes its incidence matrix:

max independent set =    max 1 • x A x 1 x ∈ {0, 1} n (1) 
max independent set-r =    max 1 • x A x 1 x ∈ (Q n ) + (2) 
The following seminal theorem, due to [START_REF] Nemhauser | Vertex packings: structural properties and algorithms[END_REF] gives a very interesting characterization for the basic optimal solution of (2).

Theorem 1. ( [START_REF] Nemhauser | Vertex packings: structural properties and algorithms[END_REF]) The basic optimal solution of max independent set-r is semi-integral, i.e., it assigns to the variables values from {0, 1, 1/2}. If V 0 , V 1 and V 1/2 are the subsets of V associated with 0, 1 et 1/2, respectively, then there exists a maximum independent set S * such that:

1. V 1 ⊆ S * 2. V 0 ⊆ V \ S *
A basic corollary of Theorem 1 is that in order to solve max independent set, one can first solve its linear relaxation max independent set-r (this can be done in polynomial time [START_REF] Aspvall | Khachiyan's linear programming algorithm[END_REF][START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF][START_REF] Khachian | A polynomial algorithm for linear programming[END_REF][START_REF] Schrijver | Theory of linear and integer programming[END_REF]) and store V 1 and then solve max independent set in some way in G[V 1/2 ], i.e., the subgraph of G induced by V 1/2 . Indeed, solution of max independent set-r provides sets V 0 , V 1 and V 1/2 that form a partition of V . Furthermore, by the constraint set of this program, edges can exist into V 0 and V 1/2 and between V 1 and V 0 and V 0 and V 1/2 , but not between V 1 and V 1/2 (see also Figure 3 where thick lines indicate the possible existence of edges between vertex-sets). So, the union of V 1 (that is an independent set per se) and of an independent set of G[V 1/2 ] is an independent set for the whole of G.

Consider now the following algorithm, due to [START_REF] Hochbaum | Efficient bounds for the stable set, vertex cover and set packing problems[END_REF], denoted by IS:

1. solve max independent set-r in order to determine

V 0 , V 1 et V 1/2 ; 2. color G[V 1/2 ] with at most ∆(G[V 1/2 ]
) colors (where, for a graph G, ∆(G) denotes its maximum degree) using the algorithm by [START_REF] Lovász | Three short proofs in graph theory[END_REF]; let Ŝ be the largest color

3. output S = V 1 ∪ Ŝ Theorem 2.
Algorithm IS achieves approximation ratio 2/∆(G) for max independent set.

Proof. Let us first recall, that the vertices of a graph G can be feasibly colored6 with at most ∆(G) colors in polynomial time ( [START_REF] Lovász | Three short proofs in graph theory[END_REF]). This result, is, in fact, the constructive proof of an existential theorem about such coloring originally stated by [START_REF] Brooks | On coloring the nodes of a network[END_REF].

V 1 V 0 V 1/2
G Figure 3: A graph G, input of max independent set, and the possibility of existence of edges between sets V 0 , V 1 and V 1/2 computed by the solution of max independent set-r.

Fix a maximum independent set S * of G that contains V 1 (by item 1 in Theorem 1 this is always possible). Since Ŝ is the largest of the at most ∆(G[V 1/2 ]) colors (independent sets) produced in step 2 of Algorithm IS, its size satisfies:

Ŝ V 1/2 ∆ G V 1/2 (3) 
The size of S returned by the algorithm at step 3 is given by:

m(S, G) = |S| = |V 1 | + Ŝ (3) 
|V 1 | + V 1/2 ∆ G V 1/2 |V 1 | + V 1/2 ∆(G) (4) 
Finally, denote by

S * 1/2 a maximum independent set in G[V 1/2 ].
Observe that the value of the optimal solution for max independent set-r in G[V 1/2 ] is equal to V 1/2 /2. Since max independent set is a maximization problem, the objective value of (integer) max independent set is bounded above by the objective value of (continuous) max independent set-r. Hence:

S * 1/2 V 1/2 2 (5) 
Denote by α(G), the size of S * . Then, obviously, the following holds:

opt(G) = |S * | = |V 1 | + S * 1/2 (5) |V 1 | + V 1/2 2 (6) 
Putting together (4) and ( 6) we get:

m(S, G) opt(G) 2 ∆(G)
that completes the proof.

A slight improvement of the ratio claimed in Theorem 2 appears in [START_REF] Th | A note on the improvement of the maximum independent set's approximation ratio[END_REF].

An immediate corollary of Theorem 2 is that max independent set belongs to Poly-APX. Also, since the value ω(G) of a worst solution of the problem is 0 (i.e., we can consider the empty vertex-set as a feasible max independent set-solution), standard-and differentialapproximation ratios coincide. So, max independent set belongs to Poly-DAPX also. Finally, let us note that the strongest approximation results known for this problem are the following:

• max independent set is asymptotically approximable (i.e., for large ∆(G) within ratio k/∆(G), for every fixed constant k ( [START_REF] Demange | Improved approximations for maximum independent set via approximation chains[END_REF][START_REF] Th | A survey about how optimal solutions to some covering and packing problems can be approximated[END_REF]);

• max independent set is approximable within ratio O(log 2 n/n) ( [START_REF] Halldórsson | Approximations of weighted independent set and hereditary subset problems[END_REF]);

• max independent set is approximable within O(log n/∆(G) log log n) ( [START_REF] Demange | Improved approximations for weighted and unweighted graph problems[END_REF]);

• max independent set is inapproximable within better than O(n ǫ-1 ) for any ǫ > 0, unless P = NP ( [START_REF] Håstad | Clique is hard to approximate within n 1-ǫ[END_REF]).

min set cover

Given a ground set C = {c 1 , . . . , c n } and a collection S = {S 1 , . . . , S m } ⊂ 2 C of subsets of C, min set cover consists of determining a minimum-size sub-collection S ′ ⊆ S that covers C, i.e., such that ∪ S∈S ′ S = C. Let us consider the following natural greedy algorithm for min set cover denoted by GREEDYSC:

1. set: S ′ = S ′ ∪ {S}, where S ∈ argmax S i ∈S {|S i |} (S ′ is assumed to be empty at the beginning of the algorithm); This algorithm has been independently analyzed by [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF][START_REF] Lovász | On the ratio of optimal and fractional covers[END_REF]. Its version for weighted min set cover where we ask for determining a set cover of minimum total weight has been analyzed by [START_REF]A greedy-heuristic for the set covering problem[END_REF]. It is easy to see that Algorithm GREEDYSC runs in polynomial time.

Theorem 3 . The standard-approximation ratio of Algorithm GREEDYSC is bounded above by 1 + ln ∆, where ∆ = max S∈|S| {|S|}.

Proof. Denote by I i (S i , C i ) the surviving instance at the first moment residual cardinalities of sets in S are at most i; denote by m(I i , S ′ ) the number of sets of residual cardinality i placed in S ′ and note that m(I ∆ , S ′ ) = m(I, S ′ ). Following these notations:

C ∆ = C (7) m I, S ′ = ∆ i=1 m I i , S ′ (8) 
For i = 1, . . . , ∆, we have the following ∆-line equation-system:

|C i | = i k=1 k × m I k , S ′ (9) 
where any of the above equations expresses the facts that:

• anytime a set S is chosen to be part of S ′ , Algorithm GREEDYSC removes from C the elements of S;

• for any i the remaining ground set C i to be covered, is covered by sets of cardinality at most equal to i chosen later by the algorithm.

Multiplying the ∆th line of ( 9) by 1/∆ and, for the other lines, line i by 1/(i(i + 1)) and taking into account ( 7), ( 8) and the fact that:

1 i(i + 1) = 1 i - 1 i + 1
we finally obtain:

∆-1 i=1 |C i | i(i + 1) + |C| ∆ = ∆ i=1 m I i , S ′ = m I, S ′ (10) 
Consider now an optimal solution S * of I(S, C) and let S * i be an optimal solution for I i (S i , C i ), i = 1, . . . , ∆. Elements of S * covering C i are always present and form a feasible solution for I i . Therefore:

opt (I i ) = |S * i | |S * | = opt(I) (11) |C i | i × opt (I i ) (12) 
where ( 12) expresses the fact that in order to cover |C i | elements by sets covering at most i of them, at least |C i |/i such sets will be needed. Putting [START_REF] Bar-Yehuda | A local-ratio theorem for approximating the weighted vertex cover problem[END_REF], ( 11) and ( 12) together, we get:

m I, S ′ opt(I) × ∆ i=1 1 i opt(I)(1 + ln ∆)
that is the ratio claimed. Let us now show that ratio proved in Theorem 3 is asymptotically tight. Fix some k and consider the instance of Figure 4, designed for k = 4. We are given a set C of 3 × 2 k elements: C = {1, 2, . . . , 3 × 2 k } and a family S = {S 1 , S 2 , . . . , S k+4 } of k + 4 subsets of C. For simplicity, consider that elements of C are entries of a 3 × (k + 1) matrix. Then, sets in S are as follows:

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 k = 4
• three disjoint sets: S 1 , S 2 et S 3 , each one containing the 2 k elements of each of the three lines of the matrix; they form a partition on

C, i.e., C = S 1 ∪ S 2 ∪ S 3 et S i ∩ S j = ∅, i, j = 1, 2, 3 ; • k + 1 sets S 4 , . . . , S k+4 , of respective sizes: 3 × 2 k-1 , 3 × 2 k-2 , . . . , 3 × 2 1
, 3 × 2 0 and 3 contain, respectively, the points of the 2 k-1 , 2 k-2 , . . . , 2 1 , 2 0 and 1 columns.

It is easy to see that Algorithm GREEDYSC will choose the k + 1 sets S 4 , . . . , S k+4 , in this order, returning a set cover of size k + 1, while the optimal set cover is the family {S 1 , S 2 , S 3 } of size 3. Note finally that, for the instance considered, ∆ = 3 × 2 k-1 . Consequently, approximation ratio achieved here is

(k + 1)/3 = O(ln(3 × 2 k-1 )).
More recently, another analysis of Algorithm GREEDYSC has been presented by [START_REF] Slavík | A tight analysis of the greedy algorithm for set cover[END_REF] providing a tight ratio of O(log |C|). On the other hand, as stated in [START_REF] Raz | A sub-constant error probability low-degree test and a sub-constant error probability PCP characterization of NP[END_REF] (see [START_REF] Escoffier | Completeness in approximation classes beyond apx. Theoret[END_REF] for an informal proof), it is impossible to approximate min set cover within better than O(log |C|) -O(log log |C|), unless a highly unlikely complexity classes relationship is true. Note finally that the result of Theorem 3 has been slightly improved down to ln ∆ + (5/6) by [START_REF] Goldsmidt | A modified greedy heuristic for the set covering problem with improved worst case bound[END_REF].

A direct corollary of Theorem 3 (or alternatively of [START_REF] Slavík | A tight analysis of the greedy algorithm for set cover[END_REF]) and of [START_REF] Raz | A sub-constant error probability low-degree test and a sub-constant error probability PCP characterization of NP[END_REF] is that min set cover definitely belongs to Log-APX.

Dealing with the differential approximation paradigm, min set cover is approximable within differential ratio bounded below by 1.365/∆ ( [START_REF] Bazgan | On the differential approximation of min set cover[END_REF]) and inapproximable as is ( [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF]). So, it belongs to Poly-DAPX.

min vertex cover

Given a graph G(V, E), min vertex cover consists of determining a minimum-size set V ′ ⊆ V such that, for every (u, v) ∈ E, at least one among u and v belongs to V ′ .

Consider the following algorithm, denoted by MATCHING:

1. compute a maximal matching 7 M in G;

2. return the set C of the endpoints of the edges in M .

Algorithm MATCHING is polynomial since a maximal matching can be easily computed by picking an edge e, deleting it from G together with any edge sharing an endpoint with e and iterating these operations until no edge survives in G.

Theorem 4 . Algorithm MATCHING is 2-standard-approximation algorithm for min vertex cover.

Proof. Let us first prove that C is a vertex cover for G. The endpoints of any edge e of M cover e itself and any other edge sharing a common endpoint with e. Denote by V (M ) the set of endpoints of the edges of M . Since M has been built to be maximal, the edges in M have common endpoints with any edge in E \ M , so, V (M ) cover both M and E \ M , i.e., the whole of E.

Set m = |M |; then: |V (M )| = m(G, C) = 2m (13) 
On the other hand, since edges in M do not pairwise share common endpoints, any solution (a fortiori an optimal one) must use at least m vertices in order to cover them (one vertex per edge of M ). So, denoting by τ (G) the cardinality of a minimum vertex cover in G, we have:

τ (G) = opt(G) m (14) 
Figure 5: Tightness of the ratio achieved by Algorithm MATCHING.

Putting ( 13) and ( 14) together, we immediately get: m(G, C)/τ (G) 2 as claimed.

We now show that the ration claimed in Theorem 4 is tight. Consider the graph of Figure 5. Thick edge is a maximal matching for this graph and, consequently, the solution taken by Algorithm MATCHING will contain two vertices (the two endpoints of the thick edge). On the other hand, the center of the star suffices to cover all its edges.

One of the most known open problems in polynomial approximation is the improvement of ratio 2 for min vertex cover. A lot of unsuccessful effort has been provided for such improvement until now. All this long effort has only produced ratios of the form:

• 2 -(log log n/ log n) ([10, 54]); • 2 -(2 ln ln n/ ln n) ([40]); • 2 -(log log ∆(G)/ log ∆(G)) ([40]).
Unfortunately, a more recent result by [START_REF] Khot | Vertex cover might be hard to approximate to within 2ε[END_REF] gives strong evidence that this improvement should be impossible.

In the differential approximation paradigm, min vertex cover is equiapproximable with max independent set ( [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF]). So, it definitely belongs to Poly-DAPX.

min tsp

Given a complete graph on n vertices, denoted by K n , with positive weights on its edges, min tsp consists of determining a Hamiltonian tour8 of K n of minimum total cost.

Let us note that, with respect to the differential paradigm, computing a worst solution for min tsp is not trivial at all. On the opposite of the problems seen until now in the previous sections that had "trivial" worst solutions (the empty set for max independent set, the whole family S for min set cover, or the whole vertex-set V of the input-graph for min vertex cover) worst solution of min tsp is an optimal solution of max tsp, where we wish to determine a maximum total-cost Hamiltonian cycle. This problem is also NP-hard. So, determining a worst solution of min tsp is as hard as to determine an optimal solution.

Consider the following very well-known algorithm for min tsp, denoted by 2_OPT, originally devised by [START_REF] Croes | A method for solving traveling-salesman problems[END_REF], where d(i, j) denotes the weight of edge (v i , v j ):

1. construct some Hamiltonian tour T (this can be done, for example, by the nearest-neighbor heuristic); 6) i.e., produce a new Hamiltonian tour

v i v j v i ′ v j ′ 2_OPT Figure 6: Algorithm 2_OPT v 1 v 2 v 3 v 4 v 5 v 6 (a) T * v 1 v 2 v 3 v 4 v 5 v 6 (b) T ′

consider two edges

(v i , v j ) and (v i ′ , v j ′ ) of T ; if d(i, j) + d(i ′ , j ′ ) > d(i, i ′ ) + d(j, j ′ ), then replace (v i , v j ) and (v i ′ , v j ′ ) in T by (v i , v i ′ ) and (v j , v j ′ ) (Figure
T \ {(v i , v j ), (v i ′ , v j ′ )} ∪ {(v i , v i ′ ), (v j , v j ′ )};
3. repeat step 2 until no swap is possible;

4. output T the finally produced tour.

Algorithm 2_OPT is polynomial when, for instance, d max the maximum edge-weight is bounded above by a polynomial of n. For other cases where 2_OPT is polynomial, see [START_REF] Monnot | Approximation algorithms for the traveling salesman problem[END_REF].

Theorem 5. ( [START_REF] Monnot | Approximation algorithms for the traveling salesman problem[END_REF]) Algorithm 2_OPT achieves differential-approximation ratio bounded below by 1/2.

Proof. Assume that T is represented as the set of its edges, i.e.:

T = {(v 1 , v 2 ) , . . . , (v i , v i+1 ) , . . . , (v n , v 1 )}
and denote by T * an optimal tour. Let s * (i) be the index of the successor of v i in T * . So, s * (i) + 1 is the index of the successor of v s * (i) in T (modn) (in other words, if s * (i) = j, then s * (i) + 1 = j + 1). The tour T computed by 2_OPT is a local optimum for the 2-exchange of edges in the sense that every interchange between two non-intersecting edges of T and two non-intersecting edges of E \ T will produce a tour of total distance at least equal to d(T ), where d(T ) denotes the total weight of T . This implies in particular that, ∀i ∈ {1, . . . , n}:

d(i, i + 1) + d (s * (i), s * (i) + 1) d (i, s * (i)) + d (i + 1, s * (i) + 1) (15) 
Observe now that (see also Figure 7), denoting by T w a worst tour in K n the following hold:

i=1,...,n {(v i , v i+1 )} = i=1,...,n v s * (i) , v s * (i)+1 = T (16) i=1,...,n v i , v s * (i) = T * (17) i=1,...,n v i+1 , v s * (i)+1
= some feasible tour T ′ better than T ω [START_REF] Brooks | On coloring the nodes of a network[END_REF] Add inequalities in [START_REF] Bellare | Free bits and non-approximability -towards tight results[END_REF], for i = 1, . . . , n:

n i=1 (d(i, i + 1) + d (s * (i), s * (i) + 1)) n i=1 (d (i, s * (i)) + d (i + 1, s * (i) + 1)) (19) 
Putting [START_REF] Christofides | Worst-case analysis of a new heuristic for the traveling salesman problem[END_REF] together with ( 16), ( 17) and ( 18) we get:

(16) =⇒ n i=1 d(i, i + 1) + n i=1 d [s * (i), s * (i) + 1] = 2m (K n , T ) (17) =⇒ n i=1 d [i, s * (i)] = opt (K n ) (18) =⇒ n i=1 d [i + 1, s * (i) + 1] = d T ′ ω(K n )
Then, some easy algebra, and by taking into account that the differential ratio for a minimization problem increases with ω, leads to:

ω (K n ) -m (K n ) ω (K n ) -opt (K n ) > 1 2
that completes the proof of the theorem. We now show that ratio 1/2 is tight for Algorithm 2_OPT. Consider a K 2n+8 , n 0, set V = {i : i = 1, . . . , 2n + 8}, set:

d(2k + 1, 2k + 2) = 1 k = 0, 1, . . . , n + 3 d(2k + 1, 2k + 4) = 1 k = 0, 1, . . . , n + 2 d(2n + 7, 2) = 1
and set the distances of all the remaining edges to 2.

Consider the tour T = {(i, (i + 1)) : i = 1, . . . , 2n + 7} ∪ {((2n + 8), 1)} and observe that it is a local optimum for the 2-exchange on K 2n+8 . Indeed, let (i, (i + 1)) and (j, (j + 1)) be two edges of T . We can assume w.l.o.g. that 2 = d(i, i + 1) d(j, j + 1), otherwise, the cost of T cannot be improved. Therefore, i = 2k for some k. In fact, in order that the cost of T is improved, there exist two possible configurations, namely d(j, j +1) = 2 and d(i, j) = d(j, j +1) = d(i+1, j +1) = 1. Then, the following assertions hold:

• if d(j, j + 1) = 2, then j = 2k ′ , for some k ′ , and, according to the construction of K 2n+8 , d(i, j) = 2 (since i and j are even), and d(i + 1, j + 1) = 2 (since i + 1 and j + 1 are odd); so the 2-exchange does not yield a better solution;

• if d(i, j) = d(j, j + 1) = d(i + 1, j + 1) = 1, then according to the construction of K 2n+8 we will have j = 2k ′ + 1 and k ′ = k + 1; so, we lead a contradiction since 1 = d(i + 1, j + 1) = 2.

Furthermore, one can easily see that the tour:

T * = {(2k + 1)(2k + 2) : k = 0, . . . , n + 3} ∪ {(2k + 1)(2k + 4) : k = 0, . . . , n + 2} {(2n + 7)2}
is an optimal tour of value β(K 2n+8 ) = 2n + 8 (all its edges have distance 1) and that the tour:

T ω = {(2k + 2)(2k + 3) : k = 0, . . . , n + 2} ∪ {(2k + 2)(2k + 5) : k = 0, . . . , n + 1} ∪ {(2n + 8)1, (2n + 6)1, (2n + 8)3}
realizes a worst solution for K 2n+8 with value ω(K 2n+8 ) = 4n + 16 (all its edges have distance 2). The best differential-approximation ratio for min tsp is 3/4 ( [START_REF] Escoffier | Better differential approximation for symmetric tsp[END_REF]) but it does not admit a polynomial time differential-approximation schema ( [START_REF] Monnot | Approximation algorithms for the traveling salesman problem[END_REF][START_REF] Monnot | Differential approximation results for the traveling salesman problem with distances 1 and 2[END_REF]. So, min tsp definitely belongs to DAPX. Furthermore, it is proved in [START_REF] Monnot | Approximation algorithms for the traveling salesman problem[END_REF] that min tsp and min metric tsp are equiapproximable for the differential approximation.

Dealing with the standard approximation paradigm min tsp is in Exp-APX (see Section 6). On the other hand, min metric tsp is approximable within standard-approximation ratio 3/2 by the celebrated Christofides algorithm ( [START_REF] Christofides | Worst-case analysis of a new heuristic for the traveling salesman problem[END_REF]) while the most famous relaxation of min metric tsp, that is when edge-weights are either 1 or 2 is approximable within 8/7 ( [START_REF] Berman | 8/7-approximation algorithm for (1,2)-tsp[END_REF]). Finally, min euclidean tsp is in PTAS ([1]).

min coloring

Given a graph G(V, E), min coloring consists of determining the minimum number of colors (i.e., of independent sets, see also footnote 6), that feasibly color the vertices of G.

The worst-solution value for min coloring is equal to n, since coloring any vertex of the input graph with its own color produces a feasible coloring. Furthermore, this coloring cannot be augmented without producing empty colors.

Consider the following algorithm for min coloring, denoted by COLOR and devised by [START_REF] Hassin | Maximizing the number of unused colors in the vertex coloring problem[END_REF] (see also [START_REF] Th | Polynomial approximation and graph coloring[END_REF]):

1. find an independent set S of size 3 in G; color its vertices with a new color and remove it from G;

2. repeat step 1 until no independent set of size 3 is found;

3. determine a maximum family of disjoint independent sets of size 2 in (the surviving) graph G and color the vertices of each of them with a new color;

4. color the remaining vertices of G using as new colors as the vertices to be colored;

5. output C the union of colors used at steps 2, 3 and 4.

Observe first that Algorithm COLOR runs in polynomial time. Indeed, step 1 is greedy. For a graph of order9 n, all the independent sets of size 3 can be found in time O(n 3 ) by exhaustive search.

Step 2 can be performed in polynomial time since it amounts to a maximum matching computation that is polynomial ( [START_REF] Papadimitriou | Combinatorial optimization: algorithms and complexity[END_REF]). Indeed, at step 3, the maximum independent set of the surviving graph G has size at most 2. Consider Ḡ that is the complementary10 of G. Any independent set of size 2 in G becomes an edge in Ḡ and maximum family of disjoint independent sets of size 2 in G is exactly a maximum matching in Ḡ. So, computation in step 3 is nothing else than computation of a maximum matching. Proof. Since α(G) = 2, colors in G are either independent sets of size 2, or singletons. Fix some coloring C using x colors of size 2 and y colors that are single vertices. If n is the order of G, we have:

|C| = x + y (20) 
n = 2x + y (21) 
By ( 20) and ( 21), |C| = nx. Hence, the greater x, the better the coloring C and a minimum coloring corresponds to a maximum x. This is exactly what Step 3 of Algorithm COLOR does. We are ready now to prove the following theorem.

Theorem 6. ( [START_REF] Hassin | Maximizing the number of unused colors in the vertex coloring problem[END_REF]) Algorithm COLOR is 2/3-differential-approximation algorithm for min coloring.

Proof. We prove the theorem by induction on n the size of the input graph.

If n = 1 then Algorithm COLOR optimally colors it with one color. Assume that theorem's statement remains true for n k and consider a graph G of order n = k + 1. We distinguish two cases.

If G does not contain an independent set of size greater than 2, then by Lemma 1, Algorithm COLOR computes an optimal coloring for G. Assume now that G is such that α(G) 3 and denote by χ(G) the chromatic number (i.e., the cardinality of a minimum coloring) of G. Then, obviously, at least an independent set S has been found by COLOR at step 1 and:

χ(G[V \ S]) χ(G) (22) 
Consider the graph G[V \ S] of order n -3 and its coloring C \ S. This graph is colored with |C| -1 colors and, by the induction hypothesis:

n -3 -|C \ S| 2 3 (n -3 -χ(G[V \ S])) (23) 
Combining ( 22) and ( 23) we get:

n -|C| = n -|C \ S| -1 2 3 (n -3 -χ(G[V \ S])) + 2 2 3 (n -χ(G)) (24) 
Taking into account that ω(G) = n, (24) directly derives the differential ratio claimed. We now prove that differential ratio 2/3 is tight for Algorithm COLOR. Consider a graph G the complement of which is shown in Figure 9. It is easy to see that in G, Algorithm COLOR would produce C = {{a}, {d}, {b, c, e}}, while the optimal coloring is C * = {{a, b}, {c, d, e}}. Taking into account that ω(G) = 5, ratio 2/3 for this instance is immediately proved.

Dealing with standard paradigm, the best known approximation ratios for min coloring are:

• O(n(log log n) 2 / log 3 n) ([38]); • ∆ log log n/ log ∆ ([29]).
On the other hand, it is inapproximable within better than:

• n 1-ǫ for any constant ǫ > 0, unless NP ⊆ coRP ( [START_REF] Feige | Zero knowledge and the chromatic number[END_REF]);

• n (1/5)-ǫ for any ǫ > 0, assuming that NP = coRP ( [START_REF] Bellare | Free bits and non-approximability -towards tight results[END_REF]);

• n (1/7)-ǫ for any ǫ > 0 unless P = NP ( [START_REF] Bellare | Free bits and non-approximability -towards tight results[END_REF]).

More about the complexity classes mentioned in the results above can be found in [START_REF] Papadimitriou | Computational complexity[END_REF].

min weighted bipartite coloring

Consider a vertex-weighted graph G(V, E) and denote by w i the weight of vertex v i ∈ V . For any subset V ′ ⊆ V define its weight w(V ′ ) by:

w V ′ = max w i : v i ∈ V ′ (25)
min weighted coloring consists of determining a coloring C = (S 1 , . . . , S k ) of G minimizing the quantity:

m(G, C) = k i=1 w (S i ) (26) 
where, for i = 1, . . . , k, w(S i ) is defined as in [START_REF] Croes | A method for solving traveling-salesman problems[END_REF]. min weighted coloring is obviously NP-hard in general graphs since setting w i = 1, v i ∈ V , it becomes the classical min coloring problem. However, it is proved in [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF] that it is NP-hard, even in bipartite graphs (min weighted bipartite coloring). Let us note that min coloring is polynomial in these graphs since they are 2-colorable.

In what follows in this section, we present a polynomial time differential-approximation schema originally developed by [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF].

Consider a vertex-weighted bipartite graph B(U, D, E) and the following algorithm denoted by BIC:

1. range the vertices of B in decreasing order with respect to their weights; 2. fix an ǫ > 0 and set η = ⌈1/ǫ⌉; set S U = {v 4η+3 , . . . , v n } ∩ U and S D = {v 4η+3 , . . . , v n } ∩ D;

compute an optimal weighted coloring

C in B ′ = B[{v 1 , . . . , v 4η+2 }]; 4. output C = S U ∪ S D ∪ C.
Since the graph B ′ of step 3 has fixed size, computation of C can be performed in polynomial time by an exhaustive search. So, Algorithm BIC is polynomial.

Denote by C * = (S * 1 , S * 2 , . . . , S * p ) an optimal min weighted bipartite coloring-solution of B and let w 1 = w i 1 w i 2 . . . w ip be the weights of its colors. Remark also that:

ω(B) = v i ∈U ∪D w (v i ) opt(B) = w i 1 + w i 2 + . . . + w ip ω B ′ = 4η+2 i=1 w i (27) ω B ′ ω(B) (28) 
The proof of the existence of a polynomial time differential-approximation schema for min weighted bipartite coloring is based upon the following two lemmata.

Lemma 2. | C| 2η + 2.
Proof. Note first that it cannot exist more than 2 colors that are singletons in C. A contrario, at least two of them are in U or in D. By concatenating them into a single color we reduce the objective value (26) of C. Denote by x the number of colors that are singletons and by y the number of the other colors of C. Then, obviously, x + 2y 4η + 2 and, as mentioned just before, x 2; henceforth: 2x + 2y 4η + 4 =⇒ C = x + y 2η + 2 that proves the lemma. 

Proof. Just remark that coloring (S

* 1 ∩ V (B ′ ), S * 2 ∩ V (B ′ ), . . . , S * p ∩ V (B ′ )) is feasible for B ′ and it is only a part of C * .
We are ready now to prove the following theorem.

Theorem 7. ( [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF]) Algorithm BIC is polynomial time differential-approximation schema for min weighted bipartite coloring.

Proof. Using [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF] and Lemma 2 we have:

ω B ′ -opt B ′ = 4η+2 i=1 w i - | C| j=1 w i j 2ηw 4η+2 2 ǫ w 4η+2 (29) 
On the other hand:

w (S U ) w 4η+2 (30) 
w (S D ) w 4η+2 (31) 
From ( 29), ( 30) and ( 31), we get:

m (B, C) = w (S U ) + w (S D ) + opt B ′ = (1 -ǫ)opt B ′ + ǫ opt B ′ + 1 ǫ w (S U ) + 1 ǫ w (S D ) (1 -ǫ)opt B ′ + ǫ     opt B + 2 ǫ w 4η+2 ω(B ′ ) ω(B)     (1 -ǫ)opt(B) + ǫω(B)
that gives the schema claimed.

As it is shown in [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF], min weighted bipartite coloring cannot be solved by fully polynomial time differential-approximation schema. On the other hand, it is approximable within standard-ratio slightly better that 4/3 and inapproximable within standard ratio 8/7, unless P = NP ( [START_REF] Demange | Time slot scheduling of compatible jobs[END_REF]).

knapsack

We finish Section 4 by handling one of the most famous problems in combinatorial optimization, that is knapsack. An instance I of knapsack is the specification of two vectors a and c and of a constant b and can be defined in terms of an integer-linear program as follows:

I = max a • x c • x b
Consider the following algorithm for knapsack presented by [START_REF] Ibarra | Fast approximation algorithms for the knapsack and sum of subset problems[END_REF]:

1. fix an ǫ > 0 and build the instance

I ′ = ((a ′ i , c i ) i=1,...,n , b) with a ′ i = ⌊a i n/(a max ǫ)⌋; 2. output S := DYNAMICPROGRAMMING(I ′ ).
This dynamic programming algorithm is a classical example of how polynomial time approximation schemata are constructed. In fact, the most common technique for them consists first of scaling down data in such a way that the new instance becomes polynomial, then of solving it and, finally, of proving that the solution obtained corresponds to a feasible solution of the initial instance whose value is "very close" to the optimal

Step 2 above runs in O(n 2 a ′ max log c max ) = O((n 3 log c max )/ǫ) ( [START_REF] Ibarra | Fast approximation algorithms for the knapsack and sum of subset problems[END_REF]). So the whole running time of the algorithm is polynomial. Theorem 8. knapsack ∈ FPTAS.

Proof. Let S * be an optimal solution of I. Obviously, S * is feasible for I ′ . Let:

t = a max ǫ n (32) 
Then, for every i = 1, . . . , n:

a ′ i = a i t (33) 
and the following holds:

opt I ′ i∈S * a ′ i i∈S * a i t -1 opt(I) t -|S * | opt(I) t -n =⇒ t opt I ′ opt(I) -nt (34) 
Note now that the largest a i , i.e., that whose index verify: i 0 = argmax{a max } is feasible for I. Hence,

opt(I) = i∈S * a i a max (35) 
Putting ( 32), ( 35) and ( 34) together, we get:

nt = a max ǫ ǫ opt(I) (36) 
Then the following hold for the value of the solution S returned by the algorithm:

m(I, S) = i∈S a i (33) t i∈S a ′ i = t opt I ′ (34) 
opt(I)nt

(1ǫ) opt(I)

To conclude, it suffices to observe that the complexity of the algorithm is "fully" polynomial, since it does not depend on ǫ. Moreover, since it depends on the logarithm of c max , the algorithm remains polynomial even if c max is exponential with the size n of the instance. The proof of the theorem is completed. Let us note that, taking nothing is feasible for knapsack, producing a solution of value 0 is the worst solution for any instance I. So, standard-and differential-approximation ratios coincide for knapsack. Henceforth, knapsack belongs also to DFPTAS.

Approximability preserving reductions

The use to transform a problem into a different, but related, problem with the aim of exploiting the information we have on the latter in order to solve the former, has been always present in mathematics. Consider, for example, how Greek mathematicians and, subsequently, Al Khuwarizmi ( [START_REF] Bell | The Development of Mathematics[END_REF]) made use of geometrical arguments in order to solve algebraic problems.

In recent times, a particular type of transformation, called reduction has been introduced by logicians in computability theory ( [START_REF] Kleene | Introduction to Metamathematics[END_REF]). In this case, a reduction from a problem Π to a problem Π ′ not only specifies how the former can be solved starting from the solution of the latter but, possibly more important in such context, it allows to show that if problem Π is unsolvable (i.e., no algorithm for its solution may exist), so is problem Π ′ . Such development of the notion of problem transformation is of great importance because it determines a twofold application of mathematical transformations: on one side they allow to transfer positive results (solution techniques) from one problem to another and on the other side they may also be used for deriving negative (impossibility) results.

The first application of the concept of reduction in computer science and combinatorics arises the early seventies in the seminal paper by [START_REF] Cook | The complexity of theorem-proving procedures[END_REF], soon followed by the equally fundamental paper by [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. Actually, both Cook's and Karp's reductions where conceived for relating decision problems from a complexity theoretic point of view. So, if we want to use reductions in solving optimization problems, we need other types of more "optimization-oriented" reductions.

Why do we need them? NPO hierarchy discussed in Section 2 (Figures 1 and2) has been built in a somewhat ad-hoc and "absolute" way in the sense that problems are (constructively) classified following algorithms solving them. However, this classification does not allow comparisons between approximability properties of problems. For instance, we cannot answer or we can only very partially answer, to questions as:

• how can one compare problems with respect to their approximability properties and independently on their respective approximation levels?

• how one can compare approximability of different versions of the same problem (for examweighted version vs. unweighted one)?

• how one can link different types of approximation for a same problem (for instance, do there exist transfers of approximability results between standard and differential approximation for a given problem)?

• how to apprehend the role of parameters in the study of approximability (for example, we have seen in Section 4.1 that the functions describing approximation ratios for max independent set are different when dealing with n or when dealing with ∆(G))?

• can we transfer approximation results from a problem to another one?

• can we refine structure of the approximation classes given above by showing, for instance, that some problems are harder than some other ones within the same approximability class (completeness results)?

Researchers try to provide answers to these questions by using carefully defined reductions called approximation preserving reductions. Any of the existing ones imposes particular conditions on the way optimal solutions, or approximation ratios, or . . . , are transformed from one problem to another. For more details, the interested reader can be referred to [START_REF] Ausiello | Complexity and approximation[END_REF][START_REF] Ausiello | Reductions, completeness and the hardness of approximability[END_REF][START_REF] Ausiello | Reductions that preserve approximability[END_REF][START_REF] Crescenzi | A short guide to approximation preserving reductions[END_REF][START_REF] Escoffier | A survey on the structure of approximation classes[END_REF][START_REF] Hochbaum | Approximation algorithms for NP-hard problems[END_REF][START_REF] Th | Complexité et approximation polynomiale[END_REF][START_REF] Vazirani | Approximation algorithms[END_REF].

In general, given two NPO problems Π = (I, Sol, m, opt) and Π ′ = (I ′ , Sol ′ , m ′ , opt ′ ), an approximation preserving reduction R from Π to Π ′ (denoted Π ≤ R Π ′ ) is a triple (f, g, c) of polynomially computable functions such that:

• f transforms an instance I ∈ I into an instance f (I) ∈ I ′ ;

• g transforms a solution S ′ ∈ Sol ′ (f (I)) into a solution g(I, S ′ ) ∈ Sol(I);

• c transforms ratio ρ ′ (f (I), S ′ ) into ρ(I, g(I, S ′ )) = c(ρ ′ (f (I), S ′ )).
A basic property of an approximation preserving reduction Π ≤ R Π ′ is that:

• if Π ′ is approximable within ratio ρ ′ , Π is approximable within ratio ρ = c(ρ ′ );
• on the other hand, if, under a likely complexity hypothesis, Π is not approximable within ratio ρ, then (provided that c is invertible) Π ′ is not approximable within ratio ρ ′ = c -1 (ρ).

Every reduction can be seen as a binary hardness-relation among problems. Study and use of approximation preserving is interesting and relevant for both theoretical computer science and operational research communities for two main reasons.

The first reason is "structural". By means of these reductions, one refines the class of NPhard problems by drawing a hierarchy of classes in the interior of NP-hard. This hierarchy can be seen as a sequence of strata, each stratum containing problems of "comparable approximability hardness (or easiness)". Indeed, any stratum C draws the capacity of its problems to be approximable within the approximation level represented by C and, simultaneously, the limits to the approximability of these problems. For instance let us refer to Figure 10. Assume two strata C' and C" representing two approximation levels and suppose, w.l.o.g. that C' is the class APX and C" is the class Log-APX. Suppose also that a new problem Π, for which no approximation result was known, has been reduced to a problem Π ′ ∈ Log-APX by a reduction preserving logarithmic approximation ratios. An immediate corollary is then that also Π belongs to Log-APX and, unless a stronger positive result is proved for it, does not belongs to APX. The second reason is "operational". Approximability preserving reductions represent a kind of alternative in the achievement of new approximation results for particular hard problems. When one tries to approximately solve a new problem Π (or to improve existing approximation results for it) a possible way is to operate autonomously by undertaking a thorough and "fromthe-beginning" study of the approximability of Π. However, another way to apprehend Π is to put in contribution not only the structural characteristics of this problem but also the whole knowledge dealing with all the problems "similar" to Π. instance, assume that there exist two approximation preserving reductions R from Π to a problem Π ′ and Q from a problem Π ′′ to Π and that we know a positive approximation result for Π ′ (i.e., an algorithm achieving approximation ratio r ′ for it), and a negative result for Π ′′ i.e, an assertion that Π ′′ is not approximable within some ratio r ′′ , unless an unlikely complexity-theoretical assumption (for example, P = NP) holds. Then, according to the particular characteristics of R and Q, one derives that Π is approximable within ratio, say c ′ (r ′ ), but it is not approximable within ratio c ′′ (r ′′ ), where c ′ and c ′′ are positive real functions depending on R and Q, respectively (see the definition of an approximability preserving reduction given above).

NP-hard

Log-APX

There exist a lot of approximability preserving reductions devised today for several combinatorial optimization problems. Let us give two very simple examples.

Example 1. max independent set and max clique 11 . It is very well-known from graph theory that an independent set in a graph G becomes a clique of the same size in Ḡ and vice-versa. Assume now that we know an approximation A for max independent set achieving an approximation ratio expressed as function of n (the size of the input-graph). Assume also that we want to approximately solve max clique in a graph G. Then, we can build Ḡ and run A on it. Algorithm A will return an independent set of Ḡ that becomes a clique seen in G. This clique has the same size as the independent set initially computed and since G and Ḡ have the same size, the approximation ratio achieved for max independent set is also achieved for max clique. The inverse is also true.

Example 2. min coloring and min partition into cliques 12 . Using the relation between a clique and an independent set in Example 1, it can be easily seen that a coloring in G becomes a partition into cliques (of the same size) in Ḡ. So, an approximation algorithm A for say min coloring achieving an approximation ratio expressed as function of n can be used in the same way as previously to solve min partition into cliques (and vice-versa) with the same approximation ratio in both standard and differential paradigms.

For a long time, approximability-preserving reductions have been considered as a kind of "universal" tools allowing us to produce any kind of results and for any kind of approximation ratios (i.e., independently on their forms and parameters). But this is absolutely not true. In fact, reductions are not universal. Most of them cannot preserve neither every value nor every form of approximation ratio.

Let us revisit the reduction of Example 1. If, as we did there, we assume that the ratio is function of n, then preservation works. The same would hold if the ratio assumed was a constant. If, on the other hand, this ratio is a function of, say, ∆(G), then things become complicated, since no general relation exists between ∆(G) and ∆( Ḡ). So, reduction of Example 1 does not preserve ratios functions of the maximum degree of the input graph. The same observation can be also made for Example 2.

Let us finally note that most of the reductions known are devised to preserve approximation ratios that are "better than constants".

As a last example, let us consider the following classical reduction between max weighted independent set13 and max independent set ( [START_REF] Simon | On approximate solutions for combinatorial optimization problems[END_REF]).

Let us consider an instance (G(V, E), w) of max weighted independent set and suppose, in order that the reduction that follows is polynomial, that weights are polynomial with the order n of G. We transform it into an instance G ′ (V ′ , E ′ ) of max independent set as follows:

• we replace every vertex v i ∈ V by an independent set W i of w i new vertices;

• we replace every edge (v i , v j ) ∈ E by a complete bipartite graph among the vertices of the independent sets W i et W j in G ′ (see Figure 11 where the vertices v i and v j have respectively weights 3 and 2).

This transformation is polynomial since the resulting graph G ′ has n i=1 w i vertices and every w i is polynomial with n.

v i v j 3 2 (a) An edge of G W i W j (b) The same edge in G ′ Figure 11: Transformation of an instance (G(V, E), w) of max weighted independent set into an instance G ′ (V ′ , E ′ ) of max independent set.
Let us now consider an independent set S ′ of G ′ and w.l.o.g. let us assume it is maximal with respect to inclusion (in case it is not, we can easily add vertices until we reach a maximal independent). Then, S ′ = ∪ k j=1 W i j , i.e., there exists a k such that S ′ consists of k independent sets

W i j , j = 1, . . . , k, corresponding to k independent vertices v i 1 , . . . , v i k ∈ V . So, |S ′ | = k j=1 w i j .
Hence, consider an independent set S ′ of G ′ . If W i , i = 1, . . . , k, are the independent sets that form S ′ (|S ′ | = k i=1 w i ), then an independent set S for G can be built that contains all corresponding vertices v 1 , . . . , v k of V with weights w 1 , . . . , w k , respectively. The total weight of S is then k i=1 w i = |S ′ | Let us now suppose that we have a polynomial time approximation algorithm A with ratio r for max independent set and consider an instance of (G(V, E), w) of max weighted independent set. Then the following algorithm is a polynomial time approximation algorithm for max weighted independent set, denoted by WA:

• construct G ′ as previously;

• run A on G ′ ; let S ′ be the computed independent set;

• construct an independent set S of G as explained before.
From what has been discussed just above from any solution for S ′ in G ′ we can build a solution S for G of value (total eight) |S ′ |. So, the same ratio achieved by A on G ′ is also guaranteed by WA on G.

It is easy to see that this reduction preserves constant approximation ratios. But, it is also easy to see that a ratio f (∆(G)) (i.e., function of ∆(G)) for max independent set transforms into a ratio O(f (∆(G)w max )) (where w max is the maximum weight-value) and not into f (∆(G)) for max weighted independent set. Hence, the reduction does not preserve ratios functions of ∆. The same observation immediately holds for ratios functions of the order of the input-graph.

Some words on inapproximality

Study of approximability properties of a problem includes two complementary issues: the development of approximation algorithms guaranteeing "good" approximation ratios and the achievement of inapproximability results. The goal of an inapproximability result is to provide answers to a global question, addressed this time not to a single algorithm but to a combinatorial optimization problem Π itself. This stake does not only consist of answering if the analysis of a specific approximation algorithm for Π is fine or not but, informally, if the algorithm devised is the best possible (with respect to the approximation ratio it guarantees); in other words, it provides answers to questions as: "do there exist other better algorithms for Π?". Or, more generally, "what is the best approximation ratio that a polynomial algorithm could ever guarantee for Π?". Hence, the goal is to prove that Π is inapproximable within some ratio r unless a very unlikely complexity hypothesis becomes true (the strongest such hypothesis is obviously P = NP).

This type of results is very interesting and adds new insights to computationally hard problems. An important characteristic of complexity theory is that very frequently knowledge is enriched more by impossibility proofs than by possibility ones, even if the latter introduce some pessimism.

"When we exclusively see things from a positive point of view, very frequently we elude fine and efficient approaches, we ignore or we cannot see large avenues that lead to new areas and open new possibilities. When we try to prove the impossible we have to firstly apprehend the complete spectrum of the possible ( [START_REF] Papadimitriou | T o χαµóγǫλo τ oυ Turing (Turing's smile). N ǫα Σύνoρα[END_REF], translation from Greek by the author).

There exist three fundamental techniques to prove inapproximability results: the GAP-reductions, the PCP theorem and the approximability preserving reductions. In what follows we shortly explain the former of these techniques, that is the older technique for proving such results. For the PCP theorem, the interested reader can be referred to [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] as well as to [START_REF] Ausiello | Complexity and approximation[END_REF][START_REF] Th | Complexité et approximation polynomiale[END_REF][START_REF] Vazirani | Approximation algorithms[END_REF].

As we have already mentioned, an inapproximability result for an NPO problem Π consists of showing that if we had an approximation algorithm achieving some approximation ratio r, then this fact would contradict a commonly accepted complexity hypothesis (e.g., P = NP). How can we do this? Let us consider the following example showing that min coloring is not approximable within standard-ratio less than 4/3ǫ, for any ǫ > 0.

Example 3. Revisit the NP-completeness proof for the decision version of min coloring given in [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF]. The reduction proposed there constructs, starting from an instance ϕ e3sat14 , a graph G such that if ϕ is satisfiable then G is 3-colorable (i.e., its vertices can be colored by 3 colors), otherwise G is at least 4-colorable.

Suppose now that there exists a polynomial algorithm for min coloring guaranteeing standard-approximation ratio (4/3)ǫ, with ǫ > 0. Run it on the graph G constructed from ϕ. If ϕ is not satisfiable, then this algorithm computes a coloring for G using more than 4 colors. On the other hand, if ϕ is satisfiable (hence G is 3-colorable), then the algorithm produces a coloring using at most 3((4/3)ǫ) < 4 colors, i.e., a 3-coloring. So, on the hypothesis that a polynomial algorithm for min coloring guaranteeing approximation ratio (4/3)ǫ exists, one can in polynomial time decide if a formula ϕ, instance of e3sat, is satisfiable or not, contradicting so the NP-completeness of this problem. Hence, min coloring is not ((4/3)ǫ)-standardapproximable, unless P = NP.

The reduction of Example 3 is a typical example of a GAP-reduction. Via such reductions, one tries to create a gap separating yes-instances (i.e., the instances of the problem where answer is yes) of a decision problem from no-instances (i.e., the instances of the problem where answer is no). More generally, denoting, for some decision problem Π, by O Π the set of its yes-instances, the basic idea of a GAP-reduction is the following.

Consider a decision problem Π that is NP-complete and an NPO problem Π ′ (suppose that goal(Π ′ ) = min). If we devise a polynomial reduction from Π to Π ′ such that, there exist c, r > 1 for which:

• if I is a yes-instance of Π, then opt(I ′ ) c, • if I is a no-instance of Π, then opt(I ′ ) > rc,
then, the reduction above is a GAP-reduction proving that Π ′ is inapproximable within standardratio r.

Indeed, if Π ′ was approximable within r, then:

• ∀I ∈ O Π (the set yes-instances), m(f (I), S ′ ) rc;

• ∀I ∈ I Π \ O Π (the set no-instances), m(f (I), S ′ ) opt(f (I)) > rc.

Consequently, we would have a separation criterion, i.e., a gap also Figure 12), checkable in polynomial time, between the yesand the no-instances of Π. Such a criterion is impossible since Π is NP-complete. How can we extend such results to other problems? Assume, for example, that a GAPreduction is devised between an NP-complete decision problem Π and an NPO problem Π ′ , deriving that Π ′ is not approximable within ratio better than r. Suppose also that an approximability preserving reduction (f, g, c) (see Section 5) is devised from Π ′ to some other NPO problem Π ′′ . Then Π ′′ is not approximable within better than c -1 (r).

We conclude this short section with another example of GAP-reduction settling min tsp.

Example 4. ( [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF][START_REF] Sahni | P-complete approximation problems[END_REF]) Let us prove that (general) min tsp is not approximable within any constant standard-approximation ratio, unless P = NP. Suppose a contrario, that min tsp is polynomially approximable within standard-approximation ratio r for some constant r, denote by A an approximation algorithm achieving this ratio and consider a graph G(V, E) of order n, instance of the hamiltonian cycle 15 problem. Starting from G construct an instance of min tsp as follows:

• complete G in order to build a complete graph K n ;

15 Given a graph G hamiltonian cycle consists of deciding is G contains a Hamiltonian tour (see footnote 8); this problem in NP-complete ( [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF]).

if for any Π

′ ∈ C, Π ′ ≤ R Π. In other words, a problem Π is C-complete if and only if Π ∈ C and Π is C-hard.
The above general definitions can be immediately applied to approximability classes defined in Section 3 in order to produce strong inaprroximability results but also in order to create a structure for these classes. In fact, even if approximability preserving reductions mainly concern transfer of results among pairs of problems, we can use them as mentioned, in order to complete the structure of approximability classes.

Consider some approximability preserving reduction R and suppose that it preserves membership in, say, PTAS, in other words, if a problem Π R-reduces to Π ′ and if Π ′ ∈ PTAS, then Π ∈ Consider now approximation class that contains PTAS, say APX and assume that the existence of a problem Π that is APX-complete under R-reduction has been proved. If Π admits a polynomial time approximation schema then, since R-reduction preserves membership in PTAS, one can deduce the existence of polynomial time approximation schemata for any problem that is R-reducible to Π, hence, in particular, for any problem in APX. In other words, by the assumptions just made, we have:

Π ∈ PTAS =⇒ APX = PTAS
Since, under the hypothesis P = NP, PTAS APX, one can conclude that, under the same hypothesis, Π ∈ PTAS.

The above schema of reasoning can be generalized for any approximation class. Let C be a class of problems. We say that a reduction R preserves membership in C, if for every pair of problems Π and Π ′ :

Π ∈ C and Π ′ ≤ R Π =⇒ Π ′ ∈ C
We then have the following proposition. Obviously, if the strict inclusion of classes is subject to some complexity hypothesis, the conclusion Π ∈ C ′ is subject to the same hypothesis.

The analogy with NP-completeness is immediate. The fundamental property of Karp-(or Turing-) reduction is that it preserves membership in P. Application of Proposition 1 to NPcompleteness framework simply says that NP-complete problems can never be in P, unless P = NP.

When the problem of characterizing approximation algorithms for hard optimization problems was tackled, soon the need arose for a suitable notion of reduction that could be applied to optimization problems in order to study their approximability properties.

What is it that makes algorithms for different problems behave in the same way? Is there some stronger kind of reducibility than the simple polynomial reducibility that will explain these results, or are they due to some structural similarity between the problems as we define them? ( [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF]).

The first answer to the above questions was given by [START_REF] Ausiello | Structure preserving reductions among convex optimization problems[END_REF][START_REF] Ausiello | Lattice-theoretical ordering properties for NPcomplete optimization problems[END_REF] where the notion of structure preserving reduction is introduced and for the first time the completeness of max variable-wsat (a weighted version of max sat) in the class of NPO problems is proved. Still it took a few more years until suitable kinds of reductions among optimization problems were introduced by [START_REF] Orponen | On approximation preserving reductions: complete problems and robust measures[END_REF]. In particular, this paper presented the so-called strict reduction and provided the first examples of complete problems under approximation preserving reductions (min variable-wsat, min 0-1 linear programming and min tsp).

After [START_REF] Orponen | On approximation preserving reductions: complete problems and robust measures[END_REF] a large variety of approximation preserving reductions have appeared in the literature. The introduction of powerful approximation preserving reductions and the beginning of the structural theory of approximability of optimization problems can be traced back to the fundamental paper by [START_REF] Crescenzi | Completeness in approximation classes[END_REF] where the first PTAS preserving reductions (the PTAS-reduction) is introduced and the first complete problems in APX under such of reductions are presented. Unfortunately the problem which is proved APX-complete in this paper is quite artificial, max variable-wsat-B, a version of max variable-wsat in which, given a constant B, the sum of weights of variables is contained between B and 2B.

Along a different line of research, during the same years, the study of logical properties of optimization problems has led to the syntactic characterization of an important class of approximable problems, the class Max-SNP (see [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF]) strongly based upon characterization of NP by [START_REF] Fagin | Generalized first-order spectra and polynomial-time recognizable sets[END_REF]. Completeness in the class Max-SNP has been defined in terms of L-reductions and natural complete problems (e.g., max 3sat, max 2sat, min vertex cover etc.) have been found. The relevance of such approach is related to the fact that it is possible to prove that Max-SNPcomplete problems do not allow polynomial time approximation schemata, unless P = NP ( [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF]).

The two approaches have been reconciled by [START_REF] Khanna | On syntactic versus computational views of approximability[END_REF], where the closure of syntactically defined classes with respect to an approximation preserving reduction were proved equal to the more familiar computationally defined classes. As a consequence of this result any Max-SNPcompleteness result appeared in the literature can be interpreted as an APX-completeness result. In this paper a new type of reduction is introduced, the E-reduction. This reduction is fairly powerful since it allows to prove that max 3sat is APX-complete. On the other side, it remains somewhat restricted because it does not allow the transformation of PTAS problems (such as max knapsack) into problems belonging to APX-PB (the class of problems in APX whose solution-values are bounded by a polynomial in the size of the instance) such as max 3sat. In [START_REF] Khanna | On syntactic versus computational views of approximability[END_REF], completeness in approximability classes beyond APX, as Log-APX and Poly-APX has been also tackled and completeness results for subclasses of them (Log-APX-PB and Poly-APX-PB, respectively, where problems have solution-values bounded by a polynomial in the size of the instance) have been proved. Existence of natural complete problems for the whole classes Log-APX and Poly-APX has been proved in [START_REF] Escoffier | Completeness in approximation classes beyond apx. Theoret[END_REF][START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF], respectively, under FT-reduction and MPTAS-reduction.

The final answer to the problem of finding the suitable kind of reduction (powerful enough to establish completeness results both in NPO and APX) is the AP-reduction, introduced by [START_REF] Crescenzi | Structure in approximation classes[END_REF].

A large number of other reductions among optimization problems have been introduced throughout the years. Overviews of the world of approximation preserving reductions and completeness is approximability classes can be found in [START_REF] Ausiello | Reductions, completeness and the hardness of approximability[END_REF][START_REF] Ausiello | Reductions that preserve approximability[END_REF][START_REF] Crescenzi | A short guide to approximation preserving reductions[END_REF][START_REF] Crescenzi | Structure in approximation classes[END_REF].

On the other hand, a structural development analogous to the one that has been carried on for the standard paradigm has been elaborated also for the differential paradigm that is much younger than the former since it has been defined at the beginning of the 90's by [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF]. In [START_REF] Ausiello | Completeness in differential approximation classes[END_REF] and in [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF] the approximability classes DAPX and DPTAS are introduced, suitable approximation preserving reductions are defined and complete problems in NPO, 0-DAPX, DAPX, DPTAS and Poly-DAPX, under such kind of reductions, are shown.

Finally, in [START_REF] Escoffier | Completeness in approximation classes beyond apx. Theoret[END_REF], together with the existence of complete problems for Log-APX and Poly-APX, completeness in class Exp-APX is also proved and tools for proving completeness in classes Log-DAPX and Exp-DAPX, where no natural problems are still proved to belong to, are given.

We conclude this tour d'horizon, with a synthesis of the several completeness results briefly presented just above for the combinatorially defined approximability classes seen given in Section 3 (excluding so the synatctically defined class Max-SNP).

For the standard-approximation paradigm:

• NPO-complete: several versions of variable-weighted sat ( [START_REF] Ausiello | Structure preserving reductions among convex optimization problems[END_REF][START_REF] Ausiello | Lattice-theoretical ordering properties for NPcomplete optimization problems[END_REF][START_REF] Orponen | On approximation preserving reductions: complete problems and robust measures[END_REF]);

• Exp-APX-complete: min tsp ( [START_REF] Escoffier | Completeness in approximation classes beyond apx. Theoret[END_REF]);

• Poly-APX-complete: max independent set ( [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF]);

• Log-APX-complete: min set cover ( [START_REF] Escoffier | Completeness in approximation classes beyond apx. Theoret[END_REF]);

• APX-complete: max 3-sat, min vertex cover-B 16 , max independent set-B17 , min tsp with edge-weights 1 and 2 . . . ([24, 23, 49], etc.);

• PTAS-complete: min planar vertex cover, max planar set ( [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF]).

For the differential-approximation paradigm:

• 0-DAPX-complete: min independent dominating set, . . . ( [START_REF] Ausiello | Completeness in differential approximation classes[END_REF]);

• Exp-DAPX-complete: no natural problem is still known to be in Exp-DAPX;

• Poly-DAPX-complete: max independent set, min vertex cover, min set cover, max clique, . . . ( [START_REF] Escoffier | Completeness in approximation classes beyond apx. Theoret[END_REF]);

• Log-DAPX-complete: the same as for class Exp-DAPX holds;

• DAPX-complete: min vertex cover-B, max independent set-B, . . . ( [START_REF] Ausiello | Completeness in differential approximation classes[END_REF]), min coloring ( [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF]);

• DPTAS-complete: min planar vertex cover, max planar independent set ( [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF]), bin packing, . . ( [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF]).

Further remarks

Polynomial approximation is a research area in the boundaries several research fields the main among them being combinatorial optimization and theoretical computer science. For more than thirty years, it constitutes a very active research programme that has rallied numerous researchers all over the world. Furthermore, it has inspired several new approaches in both operational research and computer science. One of these new approaches is a dynamic computation model, called online approximation, where the basic hypotheses are that instance to be solved is revealed step-by-step and the algorithm supposed to solve it has to maintain a feasible solution for the part of the instance already revealed. The quality of such an algorithm is measured by means of its competitive ratio defined as the ratio of the value of the solution computed during instance's revealing divided by the value of the optimal solution of the whole instance (called offline solution). Extensions of online computation can deal not only with data arrival but also with data elimination.

Another approach is the so-called reoptimization. Here we suppose that we have an optimal solution for an instance (no matter how this solution is produced) and some new data arrive. Can we operate a fast transformation of the solution at hand in order to fit the augmented instance? Is the new solution optimal or not? If not, does it achieves some good approximation ratio?.

Notions and tools from polynomial approximation are also used in a relatively new research field that is actually in full expansion: the algorithmic game theory. The so-called price of anarchy is fully inspired from polynomial approximation.

What are the mid-and long-term perspectives of this area? Certainly, producing new operational and structural results are such perspectives. For instance, syntactic classes, as class Max-SNP is not yet fully studied in this paradigm. Also, optimal satisfiability problems, central problems in the standard paradigm, deserve further research in differential approximation.

But, to our opinion, major long-term perspective is to match polynomial approximation with exact computation. Indeed, another very active area of combinatorial optimization is the development of exact algorithms for NP-hard problems with non-trivial worst-case running times. For example, it is obvious that an exhaustive method for max independent set will run in time at most 2 n . But can we go faster? Such faster algorithms with improved worst-case complexity have been recently devised for numerous NPO problems. Polynomial approximation and exact computation (with worst case upper time-bounds) can be brought together in several ways. For instance, are we able to produce approximation ratios "forbidden" for polynomial algorithms (e.g., constant ratios for max independent set, or ratios smaller than 2 for min vertex cover) by exponential or super-polynomial algorithms running in times much lower than those for the exact computation for the corresponding problems? And, in a second time, can we adapt the concept of approximability preserving reductions to fit this new issue?
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 8 Figure 8: Tightness of the 2_OPT approximation ratio for n = 1. Consider a K 12 constructed as described just above (for n = 2). Here, d(1, 2) = d(3, 4) = d(5, 6) = d(7, 8) = d(9, 10) = d(11, 12) = d(1, 4) = d(6, 3) = d(5, 8) = d(7, 10) = d(9, 12) = d(11, 2) = 1, while all the other edges are of distance 2. In Figures 8(a) and 8(b), T * and T ω , respectively, are shown (T = {1, . . . , 11, 12, 1}). Hence, in K 2n+8 considered, the differentialapproximation ratio of 2_OPT is equal to 1/2.The best differential-approximation ratio for min tsp is 3/4 ([START_REF] Escoffier | Better differential approximation for symmetric tsp[END_REF]) but it does not admit a polynomial time differential-approximation schema ([START_REF] Monnot | Approximation algorithms for the traveling salesman problem[END_REF][START_REF] Monnot | Differential approximation results for the traveling salesman problem with distances 1 and 2[END_REF]. So, min tsp definitely belongs to DAPX. Furthermore, it is proved in[START_REF] Monnot | Approximation algorithms for the traveling salesman problem[END_REF] that min tsp and min metric tsp are equiapproximable for the differential approximation.Dealing with the standard approximation paradigm min tsp is in Exp-APX (see Section 6). On the other hand, min metric tsp is approximable within standard-approximation ratio 3/2 by the celebrated Christofides algorithm ([START_REF] Christofides | Worst-case analysis of a new heuristic for the traveling salesman problem[END_REF]) while the most famous relaxation of min metric tsp, that is when edge-weights are either 1 or 2 is approximable within 8/7 ([START_REF] Berman | 8/7-approximation algorithm for (1,2)-tsp[END_REF]). Finally, min euclidean tsp is in PTAS ([START_REF] Arora | Polynomial time approximation schemes for Euclidean TSP and other geometric problems[END_REF]).
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 1 Steps 3 and 4 of Algorithm COLOR optimally color a graph G with α(G) = 2.
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Proposition 1 .

 1 Let C and C ′ be two problem-classes with C ′ C. If a problem Π is C-complete under some reduction preserving membership in C ′ , then Π ∈ C ′ .

We properly define this problem in Section 4.1.

Given a graph G(V, E), a coloring of V consists of coloring the vertices of V in such a way that no two adjacent vertices receive the same color; in other words, a color has to be an independent set and a coloring of V is, indeed, a partition of V into independent sets.

Given a graph G(V, E), a matching is a subset M ⊆ E such that no two edges in M share a common endpoint; a matching is maximal (for inclusion) if it cannot be augmented remaining a matching.

A simple cycle passing through all the vertices of Kn.

The order of a graph is the cardinality |V | of its vertices.

Given a graph G(V, E), the complementary graph Ḡ(V, Ē) of G is the graph having the same set of vertices V as G and Ē = {(vi, vj ) : i = j and (vi, vj ) / ∈ E}.

Given a graph G(V, E), max clique consists of determining a maximum-size subsetV ′ ⊆ V such that G[V ′ ] is a complete graph.

Given a graph G, min partition into cliques consists of determining a minimum partition of the vertex-set of G into sets each of them inducing a complete subgraph of G, i.e., a clique.

Given a vertex-weighted graph G, the objective is to determine an independent set maximizing the sum of the weights of its vertices.

Given a set of m clauses over a set of n variables, sat consists of finding a model for the conjunction of these clauses, i.e., an assignment of truth values to the variables that simultaneously satisfies all the clauses; e3sat is the restriction of sat to clauses with exactly three literals.

This is min vertex cover in graphs with maximum degrees bounded above by a fixed constant B.

This is max independent set in graphs with maximum degrees bounded above by a fixed constant B.

• for every e ∈ E(K n ) (the edge-set of K n ) set:

Consider now the following two cases depending on the fact that G is Hamiltonian (i.e., it has a Hamiltonian cycle) or not:

1. G is Hamiltonian; then, opt(K n ) = n, since the edges of the Hamiltonian cycle of G exist in K n and have all weights equal to 1; in this case, Algorithm A will produce a solution (tour) T for min tsp of value m(K n , T ) rn;

2. G is Hamiltonian; then, obviously, no tour in K n can only use edges weighted by 1 (if such tour existed, it would be a Hamiltonian cycle in G) so, any tour will use at least one edge of weight rn; hence, opt(K n ) rn n -1 > rn and, since A will produce something worse than the optimum, m A (K n , T ) opt(K n ) > rn.

We so have a gap between Hamiltonian graphs, deriving min tsp-solutions of value at most rn, and non-Hamiltonian graphs implying min tsp-solutions of value greater than rn. So, on the hypothesis that min tsp is approximable within standard-approximation ratio r, one could polynomially solve hamiltonian cycle as follows:

• starting from an instance G of hamiltonian cycle, construct instance K n of min tsp as described;

• run A on K n and if A returns a tour of value at most rn, answer yes to hamiltonian cycle, otherwise answer no.

Since everything in the transformation of G into K n is polynomial and, furthermore, Algorithm A is assumed to be polynomial, the whole algorithm for hamiltonian cycle is also polynomial, contradicting so the fact that this latter problem is NP-complete.

Inapproximability result of Example 4 can be importantly strengthened. Indeed, observe that the only case where transformation of G into K n is not polynomial, is when parameter r (the approximation ratio of the polynomial algorithm assumed for min tsp) is doubly exponential. Otherwise, even if r is exponential, say of the form 2 p(n) for any polynomial p of n, the described transformation remains polynomial since any number k can be represented using O(log k) bits. So, the following result finally holds and concludes the section.

Theorem 9 . Unless P = NP, min tsp cannot be approximately solved within standardapproximation ratios better than 2 p(n) for any polynomial p.

A quick "tour d'horizon" about completeness in approximability classes

Given a set C of problems and a reduction R, it is natural to ask if there exist problems Π ∈ C such that any problem Π ′ ∈ C, R-reduces to Π. Such "maximal" problems are called in complexity theory problems. Let C a class of problems and R be a reduction. A problem Π ∈ C is said to be C-complete (under R-reduction) if for any