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Two different formulae relating the index of refraction n of gases for atom waves to the scattering
amplitude have been published. We show here that these two formulae are not consistent with the
definition of the total scattering cross-section while the formula developed by one of us (C.C.) in
her thesis is in agreement with this standard knowledge. We discuss this result, in particular in
the neutron case for which such an index was first introduced. We finally evaluate the index of
refraction as a function of well known quantities and we discuss the order of magnitude of the ratio
of (n− 1)/nt, where nt is the gas density.

I. INTRODUCTION

To describe the propagation of matter waves through
a medium, it is possible to use an index of refraction, as
commonly done for light. This idea was first introduced
around 1940 for the propagation of neutrons through
matter (see the review papers by L. L. Foldy [1] and by
M. Lax [2]).

Atom interferometry has permitted to study the prop-
agation of an atom wave through a dilute gas and the
first measurements of the index of refraction of gases for
sodium waves were made in 1993 at MIT by J. Schmied-
mayer et al. [3, 4] who measured the attenuation and the
phase shift of the transmitted wave. Further works in the
same laboratory have led to the observation of glory os-
cillations of the index as a function of the sodium atom
velocity [5, 6, 7]. More recently, our group has measured
the index of refraction of several gases for lithium waves
[8].

Whatever is the nature of the wave and of the medium,
the index of refraction describes the modification of the
propagation of an incident wave due to the waves scat-
tered in the forward direction by the particles of the
medium: the scattered waves interfere with the incident
wave and modify its phase and its amplitude. The mod-
ification of the phase induces a modification of the wave
velocity, described by the real part of the index of refrac-
tion, while the modification of the amplitude is described
by its imaginary part.

In practice, the index of refraction is proportional to
the complex forward scattering amplitude [9, 10]. The
imaginary part of this amplitude is related to the total
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cross section, which is traditionally measured by beam
scattering experiments, whereas its real part can be mea-
sured only by atom interferometry. This amplitude ex-
hibits resonances, for a collision energy comparable to
the potential well depth, and glory oscillations, for larger
energies. Glory oscillations are the quantum consequence
of the existence of an undeflected classical trajectory due
to the compensation of attractive and repulsive forces
[11].

For atom waves, the forward scattering amplitude can
be calculated if the interaction potential between a par-
ticle of the wave and a particle of the target gas is
known. Several papers [12, 13, 14, 15, 16, 17, 18, 19, 20]
have discussed the theory of the index of refraction
for atom waves and their equations have been used
to compare calculated values of the index of refraction
[13, 14, 15, 16, 17, 21, 22, 23] with experimental results.
A detailed comparison is possible only if the thermal mo-
tion of the target gas is not neglected and we show here
that the formulae [15, 16] introduced to take into account
this motion disagree with collision physics. We propose
a formula developed by one of us (C. C.) in her thesis
[17]: this formula agrees with standard results of colli-
sion physics as well as with a recent calculation based on
quantum Boltzmann equation due to K. Hornberger [24].

In the present paper, we first recall the previous re-
sults concerning the index of refraction. Then, we explain
why these formulae are not in agreement with the Beer-
Lambert law and we extract from this discussion a new
formula giving the imaginary part of the index of refrac-
tion, which is generalized to the real part of the index
of refraction. We then discuss the differences between
the old and new formulae. We verify that our formula is
in agreement with the results concerning the index of re-
fraction for slow neutrons. Finally, we compare the order
of magnitude of the index of refraction of gases for light
and atomic waves. In the cases where the index of refrac-
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tion for atom waves has been measured, the values of the
ratio (n−1)/nt, nt being the target gas density, are very
close to the value of this ratio for the index of refraction
for ordinary gases for visible light. This similarity is in
fact a coincidence, without any physical meaning.

II. ORIGIN OF THE PROBLEM

When one compares light waves and atom waves inter-
acting with an atomic (or molecular) target gas, there is
a large difference, which is precisely related to the motion
of the target particles.

In the case of light, the photon velocity, almost equal
to c in dilute matter, is considerably larger than the tar-
get particle velocity. At the same time, the photon mo-
mentum is usually considerably smaller than the target
particle momentum. The atom motion induces Doppler
effect and the photon momentum induces atom recoil.
Because the velocity of light is usually so much larger
than the one of the target particles, these two effects
have small consequences on the index of refraction, if we
except the frequency range close to a sharp resonance
line. This simple idea remains true, even if the target
particles move rapidly in the laboratory, because one can
always study the problem in their rest frame.

In the case of atomic waves, the velocity of an atom of
the wave is usually comparable to the velocity of a target
particle and, at the same time, the scattering properties
depend rapidly on the relative velocity. Moreover, the
momentum of an atom of the wave and the one of a
target particle are usually of comparable magnitudes. In
practice, it is absolutely necessary to take into account
the target particle motion to make a realistic calculation
of the index of refraction.

III. NOTATIONS

In the laboratory frame, a plane wave of wavevector
kp describes the propagation in vacuum of a projectile p
of mass mp and velocity vp:

h̄kp = mpvp (1)

The projectile can be any massive particle described by
quantum mechanics, a neutron, an electron, an atom or
a molecule. This wave propagates through a gas of den-
sity nt made of target particles t of mass mt and velocity
vt, the target particles being also described by quantum
mechanics. The wavevector kr describes the relative mo-
tion of the projectile p in the center of mass frame for a
collision with a target particle t: kr = µvr/h̄, where vr =
|vp−vt| is the relative velocity and µ = mpmt/(mp+mt)
is the reduced mass. The present notations will be used
to write all previous formulae in order to facilitate com-
parison.

IV. INDEX FOR FIXED SCATTERING

CENTERS

When a plane wave of wavevector kp enters in a
medium made of target particles t, its propagation is
modified, with a different wavevector kp,m given by:

kp,m = nkp (2)

where n is the index of refraction. If the medium is de-
scribed by a random distribution of fixed scattering cen-
ters, the index of refraction n is given by:

n = 1 + 2πnt
f(kp)

k2
p

(3)

where f(kp) is the forward scattering amplitude of the
wave scattered by one scattering center. f(kp) has the
dimension of a length and, as usual, the index n is a
dimensionless quantity. A general derivation of this for-
mula is found in the paper of L. Foldy [1] (see also the
review of M. Lax [2] and references therein). Equation
(3) is the first order term of an expansion in powers of
the gas density nt and it is a good approximation if the
following conditions are fulfilled:

• the mean distance n
−1/3
t between nearest scatter-

ing centers must be considerably larger than the
projectile de Broglie wavelength λp = 2π/kp, i.e.

n
−1/3
t λp ≪ 1.

• the mean distance n
−1/3
t between scattering cen-

ters must be considerably larger than the range of
the interaction potential. Unfortunately, as real-
istic atom-atom interaction potentials V (r) vanish
only for an infinite distance r, the range has not a
clear definition for such potentials.

• the density nt of scattering centers is low enough
so that the mean field correction is negligible i.e.

(n − 1) ≪ 1. This last condition, which involves a
condition on kp and f(kp), depends on the interac-
tion potential and collision energy.

Practically, for thermal atoms waves and a target gas
near room temperature, with relative velocities of the or-
der of 103 m/s and target densities up to nt ≈ 1019 m−3

used in the experiments [3, 4, 5, 6, 7, 8], the mean in-

teratomic distance n
−1/3
t is larger than 5 × 10−7 m, the

index of refraction is of the order of |n− 1| <∼ 10−10 and
these three conditions are well fulfilled.

In the early days of atom interferometry, the target
particles were treated as fixed scattering centers and the
index was given by equation (3): this was the case of
the first paper [3] dealing with the index of refraction
for atom waves, written by J. Schmiedmayer et al. in
1993 and of the paper written by one of us (J.V.) in 1994
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[12]. As soon as experimental values [4] of the index
of refraction of gases for atomic waves became available
in 1995, it appeared necessary to take into account the
target gas thermal motion. The next section presents the
equations used by different groups.

V. FORMULAE GIVING THE INDEX OF A

GAS AT THERMAL EQUILIBRIUM

Three research groups have been involved in the calcu-
lation of the index of refraction of gas for atomic waves
and have worked on the proper way to take into account
the motion of the targets. For convenience and clarity,
the formulae used by each group are presented separately.

A. Publications of D. Pritchard and co-workers

After a first paper where targets were considered at
rest [3], this research group described in 1995 a set of
measurements of the index of refraction of gases for
sodium waves [4]. To interpret their experiment, these
authors use the following equation:

n = 1 + 2πnt
f(kr)

kpkr
(4)

where the thermal average is not explicitly discussed.
The same equation is also used in the review paper [5]
written by this group in 1997. A thermal average is taken
into account in the paper by T. D. Hammond et al. [6]
published in 1997, with an index of refraction given by:

n = 1 + 2π
nt

kp

〈

f(kr)

kr

〉

(5)

where the brackets 〈〉 mean the average over the velocity
distribution of the target particles.

B. Publications of A. Dalgarno and co-workers

Equation (5) appears for the first time in the paper of
R. C. Forrey et al. [15], written in 1995 and published in
1996. In their paper, R. C. Forrey et al. [15] calculate the
distribution of the relative wavevector kr and, for sake of
completeness, we reproduce this calculation in Appendix
A. The group of A. Dalgarno has published a series of
papers on the index of refraction for atom waves [20, 23]
or for electron waves [19] and this work was continued by
R. C. Forrey and co-workers [22].

In 2002, R. C. Forrey et al. published a paper [18]
entitled ’On the statistical averaging procedure for the
refractive index of matter waves’. In this paper, they do
not give a complete derivation of their formula but they
state that a key step is the Lorentz invariance of the ratio
f(kr)/kr = f(kp)/kp.

C. Publications of our research group in Toulouse

In 1995, E. Audouard et al. published a calculation
of the index of refraction of argon gas for sodium waves
[13]. This work was the first one by our group taking
into account the effect of thermal averaging. We have
made an error in the algebra which was corrected in [14].
The derivation of the thermal average formula was given
in a following paper by C. Champenois et al. [16]. Our
calculation was based on the Fizeau effect: this effect is
a frame dragging effect well known for light, which has
also been studied in the case of neutron matter waves
[25, 26, 27]. We had written:

kp,m = kp + 〈(nCM − 1)kr〉 (6)

with the center of mass index of refraction nCM given
by:

nCM = 1 + 2πnt
f(kr)

k2
r

(7)

As above, the brackets 〈〉 stand for the average over the
velocity distribution of the target particles. We will not
recall the final result [16] corresponding to a Boltzmann
distribution of the target gas, because this result is not
correct. After discussion with the group of A. Dalgarno
in 1998, whose results are presented above, we were con-
vinced that our formula was wrong, in particular because
our description of the Fizeau effect is not correct. In her
thesis [17], Caroline Champenois derived a new formula
(see equations V.78 and V.81):

n = 1 + 2πnt
mp +mt

mt

〈

f(kr)

k2
p

〉

(8)

As the derivation of this formula was very involved, we
will not reproduce it here but, in the next section, we
use a simpler argument to convince the reader that this
formula is the right one.

VI. DISAGREEMENT WITH CLASSIC

RESULTS AND A NEW FORMULA

In this part, we show that neither equation (5) pro-
posed by R. C. Forrey et al. nor our equations (6) and
(7) are in agreement with well accepted atomic collision
results. We first introduce the total scattering cross sec-
tion and relate it to the imaginary part of the index of
refraction.

A. The Beer-Lambert law

In nonrelativistic mechanics, the total scattering cross
section σ(vr) is related to the number of collisions dNcoll
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occurring during a time dτ in a volume dV between a
projectile p and a target t:

dNcoll

dτdV
= npntσ(vr)vr (9)

From this equation, we deduce the mean number of col-
lisions dNcoll,p/dτ encountered by a projectile p per unit
time:

dNcoll,p

dτ
= ntσ(vr)vr (10)

We now consider a beam of projectiles p crossing a slab
of target gas, with the velocity vp perpendicular to the
slab. A slab of thickness dL is crossed by a projectile p
in a time dτ = dL/vp and the mean number of collisions
for a projectile is given by:

dNcoll,p = ntσ(vr)
vr

vp
dL (11)

From this equation, one can deduce the transmission T
of the slab i.e. the fraction of the incoming flux which
has crossed the slab without any collision. For a finite
thickness L, the transmission T is obtained by a straight-
forward integration:

T = exp

[

−ntσ(vr)
vr

vp
L

]

(12)

This equation is the Beer-Lambert law, usually written
with an effective cross section σeff (vp) = σ(vr)vr/vp:

T = exp [−ntσeff (vp)L] (13)

If the target velocity is spread, with a normalized distri-
bution P (vt) (i.e. verifying

∫

P (vt)d
3
vt = 1), we must

replace the effective cross section σeff (vp) in equation
(13) by its average 〈σeff (vp)〉 given by:

〈σeff (vp)〉 =

∫

P (vt)σ(vr)
vr

vp
d3

vt. (14)

B. Wave-like description of the attenuation of a

beam by a slab

We are going to calculate the transmission T of the
beam through the same slab of length L, using the wave
point of view. Let ψinc be the incident wave and ψtrans

the transmitted wave given by:

ψtrans = ei(n−1)kpLψinc = teiϕψinc (15)

with t = exp [−Im(n− 1)kL] and ϕ = Re(n−1)kL. The
transmission in intensity is T = t2, which depends solely
on the imaginary part of (n− 1):

T = exp [−2Im(n− 1)kpL] (16)

C. Consequences for the index of refraction

ASs the attenuation of the beam calculated in the two
formalisms must be the same, the imaginary part of the
index of refraction is related to the effective cross section
by the following equation:

Im(n− 1) =
nt〈σeff (vp)〉

2kp
(17)

The total cross section is related by the optical theorem
to forward scattering amplitude [10]:

σ(vr) = 4π
Im(f(kr))

kr
(18)

Using this relation and equations (14) and (17), we ob-
tain a formula giving the imaginary part of the index of
refraction in agrement with Beer-Lambert law:

Im(n− 1) = 2πnt
mp +mt

mt

〈

Im(f(kr))

k2
p

〉

(19)

where the brackets 〈〉 mean the average over the target
velocity distribution P (vt). Once we have an expression
for the imaginary part of (n− 1), we get the real part by
a simple generalization:

n = 1 + 2πnt
mp +mt

mt

〈

f(kr)

k2
p

〉

(20)

This equation agrees with the result derived by C. Cham-
penois in her thesis [17]. It agrees also with a result re-
cently obtained by K. Hornberger using the formalism
of the quantum Boltzmann equation [24]. We want to
point out that equation (20) can be applied with any
type of velocity distributions, as could be produced by
a gas flow or a molecular beam, and not only with a
Maxwell-Boltzmann distribution corresponding to ther-
mal equilibrium.

D. Comparison of the new and previous formulae

The new formula, equation (20), differs from equation
(5) established by R. C. Forrey et al. [15, 18]:

- the denominator is krkp in equation (5) and k2
p in

equation (20);
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- the mass ratio (mp +mt)/mt present in equation (20)
is absent from equation (5).

- from equation (5), we deduce an effective cross section
given by:

〈σeff (vp)〉 =

∫

P (vt)σ(vr)dvt (21)

This expression of 〈σeff (vp)〉 differs from equation (14)
and in the vp ≪ α limit, where α is the thermal velocity
defined in Appendix A, the effective cross section given
by equation (21) is independent of the projectile velocity
vp, while the correct behavior given by equation (14) is
〈σeff (vp)〉 ∝ 1/vp. This is a well known result, recog-
nized in everyday’s life: we run under the rain to get less
wet!

However, in the opposite limit when the target gas
temperature vanishes, vt = 0 so that vr = vp and kr =
µvp, it is easy to verify that equation (20) and equation
(5) are then equivalent. This equivalence suggests that,
even when the temperature does not vanish, the index
calculated by these two formulae will not differ strongly
as long as α≪ vp.

VII. DISCUSSION OF THE NEUTRON CASE

It is also interesting to apply equation (20) to the well
known case of neutron waves. Neutrons are scattered
only by nuclei, if we except the case of ferromagnetic
materials in which the magnetic interactions of the neu-
tron spin cannot be neglected. In the low energy domain
where the formalism of the index of refraction is useful,
the neutron-nucleus scattering process is almost always
dominated by s-wave scattering [28, 29].

The index of refraction is frequently calculated as the
consequence of an effective potential which is related to
the scattering length of the neutron-nucleus interaction
potential. However, there are few papers devoted to the
theoretical relation between scattering theory and the in-
dex of refraction for neutrons, in which the motion of the
nuclei is taken into account. This is the case of the papers
by B. A. Lippmann and J. Schwinger [30] and also of a
brief note by D. Kleinman and G. Snow [31], who state:
“This derivation of the index clearly shows that there is
no Doppler effect due to the motion of the nuclei, because
the λ in the formula is the neutron wavelength relative
to the boundary of the slab”.

Obviously, the neutron case differs from the case of
atom waves only by the fact that s-wave (l = 0) scattering
dominates the forward scattering amplitude, which, in
this case, is given by:

f(kr) =
exp (iδ0) sin δ0

kr

≈ −a(1 − ikra) (22)

where δ0 is the s-wave phase shift, a is the scattering
length defined by a = −lim (tan δ0/kr) when kr → 0. If
we keep only the leading term in equation (22), f(kr) ≈
−a, our formula (20), is equivalent to the result of D.
Kleinman and G. Snow [31]:

n = 1 − 2πnt
mp +mt

mt

a

k2
p

(23)

As kr is absent from the result, there is no Doppler ef-
fect on the index of refraction. However, if we take into
account the first order term in kr in equation (22), the
forward scattering amplitude has a non-vanishing imagi-
nary part, Im (f(kr)) ≈ kra

2. As this imaginary part is
linear in kr, the imaginary part of the index of refraction
is sensitive to the motion of the target particles but this
imaginary part, which is very small, is usually ignored.
The kr-dependence of the imaginary part of the index of
refraction has no practical consequences but this remark
proves that the absence of Doppler effect on the index of
refraction of matter for neutrons is a very special prop-
erty valid only for the real part of the index of refraction
in the s-wave limit.

VIII. COMPARISON OF THE ORDER OF

MAGNITUDE OF THE INDEX OF REFRACTION

OF GASES FOR LIGHT AND MATTER WAVES

Up to now, we have not discussed the numerical value
of the index of refraction of gases for matter waves. A
somewhat surprising feature is that the index of refrac-
tion of gases for matter waves [4, 8] and the index of
refraction of transparent gases for light has similar val-
ues, when the gas density nt is the same. In this section,
we calculate the value of the (n − 1)/nt ratio from first
principles in both cases and we compare the results, in
order to understand the origin of this similarity.

J. Schmiedmayer et al. [4] give the values of the real
and imaginary parts of (n−1) of several gases at T = 300
K for sodium matter waves with a velocity vp = 1000
m/s. All the values of Re(n− 1) or of Im(n− 1) are in
the range (0.14 − 2.49) × 10−10 for a gas pressure equal
to 1 mTorr at T = 300 K. This pressure corresponds to a
gas density nt ≈ 3.2× 1019 m−3 from which we find that
the ratio Re(n − 1)/nt of Im(n − 1)/nt is in the range
(0.4 − 8) × 10−30 m3. Our results for lithium waves [8]
are somewhat larger, in the range 1 − 2 × 10−29 m3.

It is well known that the index of refraction of air for
visible light is almost purely real with its value given by
(n−1) ≈ 2.8×10−4 at ordinary pressure and a tempera-
ture of 288 K, with a density nt ≈ 2.55×1025 m−3. From
these values, we calculate a ratio (n−1)/nt ≈ 1.1×10−29

m3 for air. Similar values will be obtained for other trans-
parent gases.

The ratio (n−1)/nt has comparable values for light or
matter waves, although the only common feature is that
they involve an index of refraction. We now evaluate
these two ratio from first principles.
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In optics, the index of refraction of an atomic or molec-
ular gas is dominated by the electric dipole transitions,
with its value given by:

n(ω) = [1 + 4πntα(ω)]
1/2

≈ 1 + 2πntα(ω) (24)

where nt is the gas density, α(ω) the atomic or molecular
electric polarizability for an angular frequency ω. In the
visible region of the spectrum, where ω is usually smaller
than the angular frequency of the main resonance tran-
sitions, α(ω) is close to its static value α(0). We now use
atomic units, with α(0) = a3

0αau(0), where a0 is the Bohr
radius (a0 ≈ 0.529× 10−10 m) and we get:

n(ω) − 1

nt
≈ 2πa3

0αua(0) (25)

Tabulated values of αau for atoms [32] vary from 1.4 a.u.
for Helium up to 450 a.u. for Francium and the polariz-
ability of small molecules has similar values (for instance,
nitrogen dimer N2 has a polarizability αua(0) ≈ 11.9
[33]).

For matter waves, the index of refraction is given by
equation (20). The imaginary part Im(n−1) is related to
the total cross-section σ(vr) and, for a purely attractive
−C6/r

−6 potential, there is a closed form expression of
σ(vr) [9]:

σ(vr) = 8.08

[

C6

h̄vr

]2/5

(26)

The 8.08 factor is the numerical value of a complicated
expression involving gamma function. This result is valid
in an intermediate range of energy, with many partial
waves contributing to the scattering amplitude [11]. This
result does not explain the glory oscillations, which ex-
ists only when the potential is attractive at long range
and repulsive at short range, but this result gives the
correct value of the cross-section averaged over the glory
oscillations. As we want only an order of magnitude, we
will make some simplifications, by neglecting the ther-
mal motion of the target particle and by assuming that
mp ≪ mt, so that we can replace vr by vp. We thus get
an expression of the imaginary part of (n− 1)/nt:

Im(n− 1)

nt
=

4.04

kp

[

C6

h̄vp

]2/5

(27)

For a purely attractive −C6/r
−6 potential, the real and

imaginary parts have similar values: Schmiedmayer et

al. [4] calculated the ratio ρ = Re(n− 1)/Im(n− 1) and
found that it is constant and equal to ρ = 0.7265 (see also
[16]). We can now express Im(n − 1)/nt, using atomic
units for C6 = C6aumec

2α2
fsa

6
0 (me is the electron mass

and αfs ≈ 1/137.037 is the fine-structure constant). We
get:

Im(n− 1)

nt
= 4.12 × 10−3a3

0

(

me

mp

) (

c

vp

)7/5

(C6ua)2/5

(28)
Tabulated values of the atom-atom C6au coefficient span
the range from 1.47 for Helium up to ca. 7260 a.u. for
Cesium [33, 34] (we quote these references which pro-
vide a large set of C6 values). The comparison of equa-
tion (25) and (28) proves that, the index of refraction of
gases for light and matter waves have very different ex-
pressions and, if they have comparable values as in the
cases discussed above, this must be considered as a pure
coincidence. The index for matter waves has a rapid ve-

locity dependence in v
−7/5
p in a large velocity range and

it would be considerably larger for lower projectile ve-
locities, provided that the target gas velocity can still be
neglected.

IX. CONCLUSION

In this paper, we have shown that the equations pro-
posed by R. C. Forrey et al. [15, 18] and by our group
[16] to take into account the motion of the gas particles
in the calculation of the index of refraction for matter
waves are not consistent with the traditional definition
of a cross-section. Following the result obtained by C.
Champenois in her thesis [17], we propose a new formula
for the index of refraction:

n = 1 + 2πnt
mp +mt

mt

〈

f(kr)

k2
p

〉

(29)

This formula is consistent with classic results of collision
theory and it is also in agreement with a result recently
obtained by K. Hornberger using the formalism of the
quantum Boltzmann equation [24]. We have used this
formula when comparing our measurement of the index
of refraction of gases for lithium waves with theoretical
values [8]. Equation (29) agrees also with the formula
giving the index of refraction of matter for neutrons.

Finally, in the limiting case where the thermal velocity
α of the gas is considerably smaller than the projectile
velocity vp, equation (29) and equation (5) proposed by
R. C. Forrey et al. [15, 18] are equivalent but they differ
considerably in the opposite limit vp ≪ α.
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XI. APPENDIX A

We calculate the distribution P (vr) of the relative ve-
locity vr, starting from a normalized Maxwell-Boltzmann
distribution of the target velocity vt:

PMB(vt)d
3
vt =

1

π3/2α3
exp

(

−v
2
t /α

2
)

d3
vt (30)

with α =
√

2kBT/mt, kB being the Boltzmann constant
and T the temperature. Using vt = vp − vr, we can
write:

P (vr)d
3
vr =

1

π3/2α3
exp

[

−(vp − vr)
2/α2

]

d3
vr (31)

We take the z axis along to the projectile velocity vp,
we use spherical coordinates for vr, vr being its modu-
lus, θ its angle with the z-axis θ and and ϕ its azimuth.
Integration over ϕ and θ is easy and we get:

P (vr)dvr =
2vr

π1/2αvp
exp

[

−
v2

p + v2
r

α2

]

sinh

[

2vpvr

α2

]

dvr

(32)
which is normalized,

∫

∞

0 P (vr)dvr = 1.
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