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POISSON BRACKETS IN HYDRODYNAMICS

BORIS KOLEV

Abstract. This paper investigates different Poisson structures that have been proposed
to give a Hamiltonian formulation to evolution equations issued from fluid mechanics.
Our aim is to explore the main brackets which have been proposed and to discuss the
difficulties which arise when one tries to give a rigorous meaning to these brackets. Our
main interest is in the definition of a valid and usable bracket to study rotational fluid

flows with a free boundary. We discuss some results which have emerged in the literature
to solve some of the difficulties that arise. It appears to the author that the main
problems are still open.

1. Introduction

The aim of this paper is to present a discussion of numerous attempts to use the
Hamiltonian formalism of classical mechanics in hydromechanics and especially in the
study of water waves. My motivation for this critical review came after a common work
with David Sattinger [13] and some discussions with Adrian Constantin about some of
his work on water waves with vorticity [9, 8].

The interest for this subject goes back to Zakharov [24] who showed that irrotational
gravity waves could be given a Hamiltonian canonical structure. It was also influenced by
the success of the Hamiltonian formulation for one dimensional evolution equations such
as the Korteweg-de Vries equation, a theme which has been extremely intensive in the
seventies.

The Hamiltonian structure we refer to in this paper is that of general Poisson brackets
which gives a more general framework in the sense that Hamiltonian systems can be
defined which are not necessarily canonical. If this structure is well understood on finite
dimensional manifolds, it is not the case for functional spaces. These structures have been
defined at a formal level, in the context of variational calculus. In infinite dimension, the
brackets are not defined for all “smooth functionals” as it is the case for Poisson brackets
on finite dimensional manifolds, but only for a subclass of such functionals. This leads
therefore to two natural questions: is the bracket closed for the class of functionals on
which it is defined and is the Jacobi identity1 satisfied by this bracket ?

It appears that until recently, these questions have not been considered carefully and
that Poisson brackets in functional spaces were defined up to boundary terms as has been
pointed out by Soloviev [20] for instance.

It is however a fundamental question to check that a proposed bracket is a valid Hamil-
tonian structure if one intends to go further than just a formal rewriting of the equations.

2000 Mathematics Subject Classification. 53D20 53D17 37K05 37K65.
Key words and phrases. Poisson structures, Hamiltonian formalism in infinite dimension.
1The Jacobi identity is the fundamental equation which must be fulfilled by a Poisson bracket:

{{f, g }, h } + {{g, h }, f } + {{h, f }, g } = 0.
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To illustrate this fact I will just quote the work of Arnold [1] who was able to formulate
a stability theorem for plane flows using a method now known as the Energy-Casimir
method. This work relies on the existence of Casimir functions2 for the underlying struc-
ture.

Besides, one could suggest that the ultimate goal of introducing Hamiltonian formalism
in hydrodynamical problems and especially in the study of water waves would be to
derive from it new results (like e.g. Arnold’s stability theorem [1] or some recent results
on particle trajectories [4, 5]). To achieve this, one cannot however avoid the difficult
question of defining a valid Hamiltonian structure.

This paper proposes to discuss this question with a critical review of the main Hamilton-
ian structures which have been proposed in the literature (up to the author’s knowledge).

The content of the paper is as follows. In Section 2, we review the basic material
on Poisson structures for finite dimensional manifolds. In Section 3, we extend these
definitions to functional spaces and raise the main difficulties which appear when one
tries to define valid brackets in this more general context. In Section 4, we discuss
Hamiltonian structures on the space of smooth functions on the circle, where things work
well. Section 5 is devoted to Arnold’s bracket, a formulation of the Lie-Poisson bracket
for the Lie algebra of divergence free vector fields on a compact domain and which is the
background structure for the motions of an ideal fluid with a fixed boundary. Several
versions of this bracket are proposed and discussed. In the final section, Section 6, we
discuss some brackets which were introduced in [14] to study the difficult problem of fluids
with vorticity and free boundary. It appears that the proposed bracket is not closed.

2. Poisson brackets in finite dimension

2.1. Symplectic and Poisson manifolds. A symplectic manifold is a pair (M,ω),
where M is a smooth manifold and ω is a closed and nondegenerate 2-form on M . Such
structures appear naturally in mechanics (see [11]). If N is the configuration manifold of
a mechanical system, its phase space is the cotangent bundle T ∗N and is equipped with
the canonical 2-form given by: ∑

i

dpi ∧ dq
i.

Since a symplectic form ω is nondegenerate, it induces an isomorphism TM → T ∗M .
The inverse of this isomorphism defines a skew-symmetric bilinear form P on the cotangent
space T ∗M and a skew-symmetric bilinear mapping on C∞(M), the space of smooth
functions f : M → R, given by

(1) {f, g } = P (df, dg), f, g ∈ C∞(M),

called the Poisson bracket of the functions f and g. For example, when M = T ∗N is a
cotangent bundle, the corresponding bracket, known as the canonical bracket is given by:

{f, g } =
∑

i

∂f

∂pi

∂g

∂qi
−
∂g

∂pi

∂f

∂qi

The observation that a bracket like (1) could be introduced on C∞(M) for a smooth
manifold M , without the use of a symplectic form, leads to the general notion of a Poisson
structure.

2A Casimir function is a smooth function whose bracket with every over smooth function vanishes.
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Definition 2.1. A Poisson structure on a smooth manifold M is a skew-symmetric bi-
linear mapping (f, g) 7→ {f, g } on the space C∞(M), which satisfies the Jacobi identity

(2) {{f, g }, h } + {{g, h }, f } + {{h, f }, g } = 0,

as well as the Leibnitz identity

(3) {f, gh } = {f, g }h+ g{f, h }.

Each Poisson bracket {, } corresponds to a smooth field P of bivectors, called the
Poisson bivector of (M, {, }) and such that

{f, g } = P (df, dg),

for all f, g ∈ C∞(M). The Jacobi identity implies that the bivector field P must satisfy a
certain condition, namely that [P, P ] = 0, where [ , ] is the Schouten-Nijenhuis bracket3.

The Hamiltonian vector field of a smooth function f on M is defined by

Xf = P df

so that {f, h } = Xh · f . The Jacobi condition on P insures that

X{f,g } = −[Xf , Xg]

as in the symplectic case.
A Casimir function is a smooth function C on M such that

{C, f } = 0, ∀f ∈ C∞(M).

These functions play an important role in the study of the stability of equilibrium of
Hamiltonian vector fields. Notice that in the symplectic case, the only Casimir functions
are the constants.

2.2. Poisson reduction. Let us now explain how these Poisson structures appear nat-
urally in mechanics. Let N the configuration manifold of a mechanical system and
M = T ∗N its corresponding phase space. It often happens that the system has some
symmetries represented by the (left) action of a Lie group G on N . This action lifts to a
symplectic action of G on M = T ∗N , that is each diffeomorphism induced by an element
g ∈ G is a canonical transformation of M = T ∗N . If the group G acts freely and properly
on M , the reduced phase space M/G is a manifold and we may ask which structure from
M is inherited by the quotient space M/G.

For that purpose, let π : M → M/G be the canonical projection. Notice that ker π′(x)
is the tangent space to the G-orbit through x. Let ω be a 2-form on M , P a bivector field
on M and recall the following criterions

(1) There exists a bivector field P̄ on M/G such that π′ ◦ P = P̄ ◦ π if and only if

(g∗P )(x) − P (x) ∈ ker π′(x)

for each point x ∈M .
(2) There exists a 2-form ω̄ on M/G such that π∗ω̄ = ω if and only if

g∗ω = ω and iXω = 0

for each vector X ∈ ker π′.

3The Schouten-Nijenhuis bracket is an extension of the Lie bracket of vector fields to skew-symmetric
multivector fields, see [23].
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Notice that, unless G is a discrete group, the second condition on ω is never satisfied
and hence the symplectic structure on M = T ∗N cannot get down on M/G. However,
condition (1) is fulfilled by the Poisson bivector P of any Poisson structure on M invariant
under G, and leads naturally to the existence of a reduced Poisson structure on M/G such
that π : M →M/G is a Poisson map, i.e. such that

{f ◦ π, g ◦ π } = {f, g } ◦ π

for all f, g ∈ C∞(M/G). This process is known as the Poisson reduction [15].

2.2.1. Lie-Poisson structure. The main illustration of this reduction process leads to the
Lie-Poisson bracket. Let G be a Lie group and g its Lie algebra. The left action on G
lift to a symplectic action on T ∗G ≃ G × g

∗ (equipped with the canonical symplectic
structure) and induces a Poisson structure on T ∗G/G ≃ g

∗ given by

(4) {f, g }(m) = −m([dmf, dmg])

for m ∈ g
∗ and f, g ∈ C∞(g∗)4. The corresponding Poisson bivector P is given by

Pm(df, dg) = ad∗dfm(dg)

where ad∗ is the coadjoint action of g on g
∗.

2.2.2. Euler equation. The Lie-Poisson structure is the framework for the evolution equa-
tion known as the Euler equation on a Lie group G. Consider a one-sided (left or right)
invariant Riemannian metric < ·, · > on G. The geodesic flow corresponds to the flow of
the Hamiltonian vector field on T ∗G equipped with the canonical structure and Hamil-
tonian

H(Xg) =
1

2
< Xg, Xg >g, Xg ∈ T ∗G.

The reduced Hamiltonian function HA and the reduced Hamiltonian vector field XA on
g
∗ are

HA(m) =
1

2
(m,A−1m), XA(m) = ad∗A−1mm, m ∈ g

∗

where A : u 7→< u, · >e is called the inertia operator.

Example 2.2 (The rigid body). Euler equations of motion of a rigid body:

ω̇1 =
I2 − I3
I1

ω2ω3, ω̇2 =
I3 − I1
I2

ω1ω3, ω̇3 =
I1 − I2
I3

ω1ω2

are the basic example of Euler equations. In that case, the group G is the rotation group
SO(3). The Lie-Poisson bracket on so(3)∗ ≃ R

3 is given by

{f, g} (m) = m · (grad f(m) ∧ grad g(m)), f, g ∈ C∞(R3),

and the Hamiltonian is

H(m) = I−1
1 m2

1 + I−1
2 m2

2 + I−1
3 m2

3,

where I1, I2, I3 are the principal moments of inertia of the rigid body and mk = Ikωk.

4Here, dmf , the differential of a function f ∈ C∞(g∗) at m ∈ g
∗ is to be understood as an element of

the Lie algebra g.
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3. Poisson brackets in functional spaces

Several authors have tried to extend the notion of Poisson brackets for functional spaces
in order to study evolution equations, see [17] for an excellent overview of the subject.
There are however serious difficulties to handle when one enters into the details of these
constructions as was pointed out in [18], [19], [20], [21], [22].

In this section, we will review some of these difficulties. We consider Poisson brackets
for smooth functionals defined on the the space C∞(M) of smooth functions on a manifold
M or more generally on the space of smooth sections Γ(E) of a vector bundle over M (for
simplicity, we will suppose that M is the closure of an open subset of the Euclidean space
R

n with smooth boundary).

3.1. Directional derivative versus variational derivative. Let F be a smooth real
function on some Fréchet vector space C∞(M,E) where E is a finite dimensional vector
space. The directional derivative or Fréchet derivative of F at u in the direction X ∈
C∞(M,E) is defined as

DXF (u) =
d

dε

∣∣∣∣
ε=0

F (u+ εX).

In general, the directional derivative X 7→ DXF (u) of a smooth functional F is nothing
more than a continuous linear functional on C∞(M,E). Sometimes, this linear functional
can be represented as

DXF (u) =

∫

M

δF

δu
(u) ·X dV, ∀X ∈ C∞(M,E)

where

u 7→
δF

δu
(u),

is a smooth map (vector field) from C∞(M,E) to C∞(M,E). The vector field δF/δu is
unique and we call it the L2 gradient of F .

There is another notion of derivative, whose origin comes from variational calculus

DF (u).δu =
d

dε

∣∣∣∣
ε=0

F (u+ εδu)

where the variation δu has compact support and is subject to various boundary conditions.
We call it the variational derivative of F . At first, it seems that the two definitions are
the same. Of course, this is the case if M is a compact manifold without boundary, but
in general it is not.

A function F on C∞(M,E) is called a local functional if

F (u) =

∫

M

f(x, u(r)) dV

depends of u through a smooth function f (the Lagrangian density of F ) which depends
only on x and the r-jet of u up to a certain order r. In that case, the Fréchet derivative
of F is

DδuF (u) =
d

dε

∣∣∣∣
ε=0

F (u+ εδu) =

∫

M

∑

J,k

∂Jf

∂uJ
k

(x, u(r)) δu
(J)
k (x) dV
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where u1, . . . , up are the components of u and

u
(J)
k =

∂|J |uk

∂j1x1 · · ·∂jnxn
, |J | = j1 + · · · + jn.

Using Leibnitz rule repeatedly [17], we can show that

∑

J,k

∂Jf

∂uJ
k

(
x, u

(J)
k (x)

)
δu

(J)
k =

∑

k

Ek(f) δuk + divP

where Ek is the Euler operator defined by

Ek =
∑

J

(−D)J

∂

∂uJ
k

, (−D)J = (−Dj1) · · · (−Djn
),

P is a (functional) vector field

P (x, u(s)) =
(
P1(x, u

(s)), . . . , Pn(x, u(s))
)

and the divergence of P is defined by

divP = D1P1 +D2P2 + · · · +DnPn,

where Di = d/dxi is the total derivative with respect to xi.
Therefore, the variational derivative of a local functional F can always be put in a

gradient form

DF (u).δu =

∫

M

δF · δu dV

where
δF = (E1(f), . . . ,Ep(f)).

However, when the manifold M has non-empty boundary, the variational derivative and
the Fréchet derivative may differ by a boundary term. A local functional does not have
necessarily a L2 gradient relatively to its Fréchet derivative.

Example 3.1. This may happen for instance for a local functional given by

F (u) =

∫

M

divP dV =

∫

∂M

P · n dS

The variational derivative of F is identically zero but the Fréchet derivative of F has
no reason to vanish and may not be put into L2 gradient form. This problem arises
because in the definition of the Fréchet derivative we allow all smooth variations whereas
in the definition of the variational derivative we allow only variations subject to boundary
conditions.

A Poisson bracket {F,G } is first of all a bilinear map depending on the first derivative
of F andG. Contrary to the finite dimensional case, it seems extremely difficult to define a
tractable Poisson bracket on the set of all functionals. The reasonable thing is to restrict
the definition of the bracket to a subclass of functionals. For instance, in the formal
variational calculus [17], a Poisson bracket is defined on the subclass of local functionals
through a bilinear map on their variational derivatives but this bracket appears to be
defined up to divergence terms. When the manifold is compact without boundary this
may lead to a coherent Poisson bracket but when the manifold has non-empty boundary
some difficulties arise.
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Example 3.2 (The Gardner bracket). It was discovered by Gardner, [10], that the Korteweg-
de Vries equation

ut = uxxx + uux

can be written as a Hamiltonian equation using the bracket

{F,G }(u) =

∫

S1

δF

δu
Dx

δG

δu
dx.

and the Hamiltonian

H(u) =

∫

S1

(
−

1

2
u2

x +
1

6
u3

)
dx.

3.2. Closure of the Poisson bracket and Jacobi identity. As we have just seen,
there is no well-defined Poisson bracket on the space of all smooth functionals. The
known brackets are defined on a subclass A of functionals, called admissible functionals.

When the manifold M is compact without boundary, it is possible to choose for A the
whole space of local functionals. We may then define a Poisson bracket {F,G } on A
using an expression like

{F,G } =

∫

M

δF

δu
P
δG

δu
dV

where P is a linear differential operator (witch may depend of the r-jet of u), as in the
Gardner bracket. This gives us a well-defined bilinear map

A×A → A

since the expression we have for {F,G } is itself a local functional.
When M has non-empty boundary this is not sufficient and some other boundary

conditions have to be introduced (see Section 5). Now this leads to an immediate other
question: If F and G satisfy this boundary conditions, is this true for {F,G }? In other
words is the class A of admissible functionals (verifying the boundary conditions) closed
under the bracket ? As we shall see this is not at all obvious.

Finally and last but not least, if all these required conditions are satisfied, we have to
check that the bracket verifies the Jacobi identity

{{F,G }, H } + {{G,H }, F } + {{H,F }, G } = 0.

This last verification can be very tedious but the real difficulty remains however the closure
of the bracket.

3.3. Hamiltonian structures. All these considerations lead us to introduce the follow-
ing scheme to define a Poisson bracket on a functional space. First define a subspace A
of smooth functionals (local functionals for instance, if ∂M = ∅, or local functionals with
some boundary conditions otherwise). Then we introduce the following definition of a
Hamiltonian structure5 on A.

Definition 3.3. A Hamiltonian structure on A is a bilinear operation {·, · } on A such
that for any F,G,H ∈ A we have:

(1) {F,G } ∈ A,
(2) {G,F } = −{F,G },
(3) {{F,G }, H } + {{G,H }, F } + {{H,F }, G } = 0.

5The terminology Hamiltonian structure is commonly used instead of Poisson structure for functional
spaces.



8 B. KOLEV

Remark 3.4. Notice that the Leibnitz rule has been eliminated from the definition of a
Hamiltonian structure. In fact, there is no well-defined commutative product on local
functionals.

In the following sections, we review some well-known brackets that have been proposed
in the literature (see also [12, 7]).

4. The Lie-Poisson bracket on Vect∗(S1)

In this section we will consider the Lie-Poisson bracket on the “dual” of the Lie algebra
of smooth vector fields on the circle Vect(S1) ≃ C∞(S1). Recall that the canonical Lie-
Poisson structure on the dual g

∗ of a Lie algebra g is given by

{F,G }(m) = −m ([dmF, dmG]) .

To give a sense to this expression, we have first to define an injection from g to g
∗.

4.1. The regular dual. Since the topological dual of the Fréchet space Vect(S1) is too
big and not tractable for our purpose, being isomorphic to the space of distributions on
the circle, we restrict our attention in the following to the regular dual g

∗, the subspace
of Vect∗(S1) defined by linear functionals of the form

u 7→

∫

S1

mudx,

for some function m ∈ C∞(S1). The regular dual g
∗ is therefore isomorphic to C∞(S1)

by means of the L2 inner product6

< u, v >=

∫

S1

uv dx.

4.2. Local functionals. A local functional F on Vect∗(S1) ≃ C∞(S1) is given by

F (m) =

∫

S1

f(x,m,mx, . . . , m
(r)
x ) dx.

Since there are no boundary terms, its functional derivative DF (m) is equal to its varia-
tional derivative

DF (m).δm =

∫

S1

δF

δm
δmdx, m ∈ C∞(S1).

where

δF

δm
=

r∑

j=0

(−Dx)
j ∂f

∂mj
.

The map m 7→ δF/δm can be considered as a vector field on C∞(S1), called the gradient
of F for the L2-metric. In other words, a local functional on C∞(S1) has a smooth L2

gradient.

6In the sequel, we use the notation u, v, . . . for elements of g and m, n, . . . for elements of g
∗ to

distinguish them, although they all belong to C∞(S1).
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4.3. Hamiltonian structures on the regular dual. To define a Poisson bracket on
the space of local functions on Vect∗(S1), we consider a one-parameter family of linear
operators Pm (m ∈ C∞(S1)) whose coefficients are smooth function of x, m and a finite
number of its derivatives and set

(5) {F,G }(m) =

∫

S1

δF Pm δG dx.

where δF and δG stand here for the variational derivatives δF/δm and δG/δm. The
operators Pm must satisfy certain conditions in order for (5) to be a valid Hamiltonian
structure on the set A of local functionals on the regular dual Vect∗(S1). First it must
be a skew-symmetric operator (relatively to the L2 inner product).

∫

S1

δF Pm δG dx = −

∫

S1

δGPm δF dx, ∀F,G ∈ A.

Since the expression for {F,G } is a local functional, the class of local functional is closed
under this bilinear operation. Therefore we need only a criteria on P to ensure that Jacobi
identity is satisfied, in order to obtain a Hamiltonian structure.

Lemma 4.1. The Jacobi identity for (5) is equivalent to the condition

(6) 	

∫

S1

δF (DPδHP ) δG dx = 0

for all F,G,H ∈ A where 	 indicates the sum over circular permutations of F,G,H and
DδmP is the Fréchet derivative of P in the direction δm.

Remark 4.2. Notice first that since P is a linear differential operator whose coefficients
are smooth functions of x,m,mx, . . . , the Fréchet derivative of P in the direction δm is
just the linear differential operator obtained by replacing the coefficients of P by there
Fréchet derivatives in the direction X. Since P is assumed to be skew-symmetric, so is
DδmP .

Proof. We already know that {F,G } is a local functional and hence its variational deriv-
ative δ{F,G } is an L2 gradient for {F,G }, that is

Dδm{F,G } =

∫

S1

δ{F,G } δmdx.

By definition of the bracket, we have

{{F,G }, H } =

∫

S1

δ{F,G }PδH dx = DPδH{F,G }.

Using the fact that the second Fréchet derivative is a symmetric operator and the fact
that P is skew-symmetric, we get

Dδm{F,G } =

∫

S1

[(DδmδF )PδG− (DPδF δG) δm+ δF (DδmP ) δG] dx

and hence

{{F,G }, H } =

∫

S1

[(DPδHδF )PδG− (DPδF δG)PδH + δF (DPδHP ) δG] dx.

Taking the sum over circular permutations of F,G,H , the two first terms of the right
hand side of the last equation cancel and we obtain the equivalence of Jacobi identity
with (6), which ends the proof. �
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To check (6) is still tedious in practice. Following Olver [17], it is preferable to use the
technique of functional bivectors, which generalizes the notion of Poisson bivectors and
Schouten-Nijenhuis brackets. First, given a functional density f(x,m(r)), define

θ(f) = f, θx(f) = Dxf, θxx(f) = D2
xf, . . .

where Dx stands for the total derivative relative to x. Extending the action of the differ-
ential operator P on θ in an obvious way, we can write

{F,G } =
1

2

∫

S1

{θ(δF )(Pθ)(δG) − θ(δG)(Pθ)(δF )} dx =
1

2

∫

S1

(θ ∧ Pθ)(δF, δG) dx

so that

Θ =
1

2

∫

S1

{θ ∧ Pθ} dx

appears as the analogue of the Poisson bivector for finite dimensional Poisson brackets.

Example 4.3. For the Gardner bracket we have

Θ =
1

2

∫

S1

{θ ∧ θx} dx.

Proposition 4.4 (Olver [17]). A skew-symmetric linear differential operators P (with
coefficients depending on x, m, mx, ...) defines a Hamiltonian structure on the space A
of local functionals on Vect∗(S1) if and only if it satisfies

∫

S1

{θ ∧ (DPθP ∧ θ)} dx = 0.

Remark 4.5. Notice that the preceding expression is an alternate trilinear expression on
functional densities. Note also that the two wedges have different meanings. The first one
corresponds to wedging the ordinary multiplication of two functional densities whereas the
second one is the wedging relative to the non-abelian bilinear operation (f, g) 7→ (DPfP ) g.

Proof. Let F,G,H be local functionals and δF, δG and δH their variational derivatives.
Then

1

2

∫

S1

{θ ∧ (DPθP ∧ θ)} (δF, δG, δH)dx = 	

∫

S1

δF (DPδHP ) δG dx.

Hence the proposition is just a corollary of lemma 4.1. �

Example 4.6. The Gardner bracket or more generally the bracket obtained from a skew-
symmetric differential operator P with constant coefficients satisfies Jacobi identity since
the Fréchet derivative of such operators in any direction is zero and hence DPθP = 0.

Example 4.7. The canonical Lie-Poisson structure on Vect∗(S1) is given by

(7) {F,G }(m) =

∫

S1

m [δF, δG] = −

∫

S1

δF (mD +Dm) δG dx

It is represented by the skew-symmetric operator

P = − (mD +Dm) = − (2mD +mxI)

where D = d/dx. We get

DPθP = (4mθx + 2mxθ)D + (2mθxx + 3mxθx +mxxθ) I.
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hence

DPθP ∧ θ = 2mxθ ∧ θx + 2mθxx ∧ θ + 3mxθx ∧ θ

and

θ ∧ (DPθP ∧ θ) = 0.

Example 4.8 (Burgers equation). The inviscid Burgers equation

ut = −3uux

can be written as an Euler equation on Vect∗(S1) with the Lie-Poisson bracket (7). It
corresponds to the inertia operator m = Au = u and Hamiltonian

H(m) =
1

2

∫

S1

m2 dx.

Example 4.9 (Camassa-Holm equation). The Camassa-Holm equation [3]

ut − utxx + 3uux − 2uxuxx − uuxxx = 0

can be written as an Euler equation on Vect∗(S1) with the Lie-Poisson bracket (7). It
corresponds to the inertia operator m = Au = u− uxx and Hamiltonian

H(m) =
1

2

∫

S1

mudx,

cf. [16] - see also the discussion in [6].
Notice however that H is not a local functional of m since it depends on m by

the intermediary of the non local operator A−1. To overcome this difficulty, one may
try to extend the Hamiltonian structure (7) for functionals which are local expressions
x, u, ux, m,mx, . . . where u = A−1m rather than x,m,mx, . . . . But this space of function-
als is not closed under the preceding bracket and the space of functionals generated by
successive brackets of such functionals seems tedious to describe.

In that case however, it is possible to overcome these difficulties by extending the
Hamiltonian structure to the whole space of smooth functionals which have a L2 smooth
gradient, that is

DδmF (m) =

∫

S1

δF (m) δmdx

where m 7→ δF (m) is a smooth smooth map from C∞(S1) to C∞(S1). The first two
axioms which define a Hamiltonian structure are verified. Indeed, the bracket of two such
functionals has itself a smooth gradient, namely

δ{F,G } = DPδF δG−DPδG δF + δGDxδF − δF DxδG.

Finally, Jacobi identity is also verified for this extension. In fact, Lemma 4.1 and Propo-
sition 4.4 are still valid for those more general functionals.

5. Poisson brackets for ideal fluids in a fixed domain

Let Ω be a relatively compact domain in R
2 or R

3 with a smooth boundary. We let
SDiff(Ω) be the group of volume-preserving smooth diffeomorphisms of Ω and SVect(Ω)
the lie algebra of divergence-free vector fields on Ω, tangent to the boundary, which can
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be interpreted as the Lie algebra of SDiff(Ω). In a famous article [2], Arnold showed that
the Euler equations of perfect incompressible fluid flows in a fixed domain

(8)
∂u

∂t
+ ∇uu = − grad p, div u = 0, u · n = 0 on ∂Ω

could be interpreted as a the Euler equation of the right-invariant (weak) Riemannian
metric

(9) < uϕ, vϕ >=

∫

Ω

uϕ · vϕ dV

where uϕ, vϕ are vector fields over ϕ ∈ SDiff(Ω) (Lagrangian velocities).

The regular dual of SVect(Ω), noted SVect∗(Ω), consists of linear functionals on SVect(Ω)
with smooth density α ∈ Ω1(Ω)

u 7→

∫

Ω

α(u) dV.

Since exact one-forms are L2-orthogonal to divergence-free vector fields, a one-form α ∈
Ω1(Ω) represents an element of SVect∗(Ω) only up to total differential. Each element
of SVect∗(Ω) is therefore represented by a class [α] in Ω1(Ω)/dΩ0(Ω). If moreover, Ω
is a simply connected domain, Ω1(Ω)/dΩ0(Ω) is isomorphic to dΩ1(Ω) via the exterior
derivative d and the class [α] is completely represented by the two-form ω = dα, called
the vorticity.

5.1. Arnold bracket. The bracket, now known as Arnold bracket, is defined for smooth
functionals F on SVect∗(Ω) whose Fréchet derivative can be written as

(10) D[δα]F (ω) =

∫

M

δα

(
δF

δω

)
dV where

δF

δω
∈ SVect(Ω),

in other words, for those functionals which have a L2 gradient in the Lie algebra SVect(Ω).
It is given by the formula7

(11) {F,G }(ω) = −

∫

M

α

([
δF

δω
,
δG

δω

])
dV =

∫

M

ω

(
δF

δω
,
δG

δω

)
dV.

Proposition 5.1. The bracket defined by equation (11) is a valid Hamiltonian struc-
ture on the space of smooth functionals on SVect∗(Ω) which have a smooth gradient in
SVect(Ω).

Proof. We have to check the three properties of Definition 3.3. Expression (11) is clearly
skew-symmetric. To show that the bracket is closed, we recall first that the symmetry of
the second Fréchet derivative leads to

∫

Ω

δα
(
D[δβ]δF

)
dV =

∫

Ω

δβ
(
D[δα]δF

)
dV

7The equality of the two formulations results from

dα(u, v) = u · gradα(v) − v · grad α(u) − α([u, v]).
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for every admissible functional F . From this property, we deduce that for every admissible
function F and G, we have

D[δα]{F,G }(ω) =

∫

Ω

δα
(
D[iδF ω]δG−D[iδGω]δF − [δF, δG]

)
dV,

that is {F,G } is also admissible with gradient

δ{F,G } = D[iδF ω]δG−D[iδGω]δF − [δF, δG] .

It remains to check Jacobi identity. We can write

{F,G }(ω) =

∫

Ω

δF (ω) · Pω δG(ω) dV

where

Pω : SVect(Ω) → SVect(Ω), u 7→ −Proj (iuω)

and Proj is the projection from Ω1(Ω) onto SVect(Ω), which associates to a one-form α
the unique divergence free vector field v, tangent to the boundary, such that

∫

Ω

α(w) dV =

∫

Ω

v · w dV, ∀w ∈ SVect(Ω).

With these notations, we get as in Lemma 4.1

	 {{F,G }, H } = − 	

∫

Ω

[δF, δG] · PδH dV

= 	

∫

Ω

ω(δH, [δF, δG]) dV

= − 	

∫

Ω

α([δH, [δF, δG]]) dV = 0

where ω = dα. �

5.1.1. Euler-Helmholtz equation. Arnold’s bracket (11) can be used to interpret Euler’s
equations of perfect incompressible fluid flows (8) in their Helmholtz or vorticity repre-
sentation

(12) ∂tω = curl(u× ω), ω = curl u

as the Euler equation of the L2 metric (9).
Recall that the curl of a vector field u is defined as the unique vector ω such that

iω vol = du♭

where u♭ is the covariant representation of u. Therefore, SVect∗(Ω), the space of exact
two-forms can be identified with the space of curls and the inertia operator of the L2

metric (9) can be described as

A : SVect(Ω) → SVect∗(Ω), u 7→ curl u.

This operator is invertible. Let ω ∈ SVect∗(Ω) be a curl. Then u = A−1ω is the unique
solution of the problem

curl u = ω, div u = 0, u · n = 0 on ∂Ω.
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The Hamiltonian is given by

H(ω) =
1

2

∫

Ω

∥∥u2
∥∥ dV, u = A−1ω.

We have

D[δα]H(ω) =

∫

Ω

u · δu dV, δα = (δu)♭

and hence H is an admissible functional with gradient

δH(ω) = u = A−1ω.

Euler equation Ḟ = {F,H }, for all admissible functional8 F gives
∫

Ω

∂tu · δF dV =

∫

Ω

ω · (δF × u) dV =

∫

Ω

δF · (u× ω) dV,

that is
∂tu = u× ω, modulo a gradient

and taking the curl, we get
∂tω = curl(u× ω).

Remark 5.2. We could have restricted the definition of Arnold’s Poisson bracket for local
functionals which have a L2 gradient. In fact this space is closed under the bracket. But
this would not have permitted us to treat the hydrodynamic problem since the Hamil-
tonian is not a local functional (see Example 4.9 for a similar situation in dimension
1).

Remark 5.3. In several papers, the Arnold bracket is written as

{F,G }(u) =

∫

Ω

curl u ·

(
δF

δu
×
δG

δu

)
dV.

for smooth functionals with smooth L2 gradient on the Lie algebra SVect(Ω) rather than
SVect∗(Ω). This is just the “pullback” of (11) by the inertia operator A. The fact that
this bracket preserves the space of functionals which have a L2 gradient is less obvious
to see on this expression because of the term curl u which leads to an integration by
parts, but in fact it works. The advantage of using variables u instead of ω is that the
Hamiltonian becomes a local functional in these variables. In that case, the Hamiltonian
equation, Ḟ = {F,H } for all admissible F , leads directly to equations (8).

Remark 5.4. A third interpretation of Arnold bracket was given in [17]. It is defined, in
the context of formal variational calculus (where boundary terms are ignored) for local
functionals on SVect∗(Ω). The gradient of a functional F is defined here as

DF (ω).δω =

∫

Ω

δF

δω
· δω dV

where the gradient, δF/δω is a divergence free vector field and the variation δω is assumed
to vanish on the boundary. Notice that the definition of the gradient given here is quiet

8Each vector field u ∈ SVect(Ω) can be realized as the gradient of an admissible functional, namely of
the linear functional

F (ω) =

∫

Ω

α(u) dV, dα = ω.
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different from the previous definition (10). Indeed the two definitions differ through a
boundary term

∫

Ω

δF

δω
· δω dV =

∫

Ω

δα

(
curl

δF

δω

)
dV +

∫

∂Ω

(
δF

δω
× δu

)
· n dS

where δω = curl δu and δα = (δu)♯. Therefore we cannot conclude that both Poisson
structure are rigorously equivalent.

For two-dimensional flows, the Hamiltonian operator P is represented as

P = ωxDy − ωyDx

and the gradient of the Hamiltonian

H(ω) =
1

2

∫

Ω

∥∥u2
∥∥ dV, u = A−1ω.

δH/δω is the stream function ψ of the velocity u. It was shown in [17] that in this context,
the Jacobi identity was satisfied and that the Hamiltonian equation Ḟ = {F,H } was
equivalent to Euler-Helmholtz equation (12). We insist on the fact that the computations
which leads to these results relies on the vanishing of the variations on the boundary.

5.1.2. Enstrophy. This Poisson bracket (11) has been rejected by the authors in [14] be-
cause for two-dimensional flows, the generalized enstrophy functional

C(ω) =

∫

Ω

φ(ω) dx ∧ dy

which is known to be invariant under the coadjoint action of SDiff(Ω) on SVect∗(Ω) is
not a Casimir function for this bracket. Indeed

D[δα]C(ω) =

∫

Ω

δα
(
curl(φ′(ω)k̂)

)
dx ∧ dy +

∮

∂Ω

φ′(ω)δα

has some boundary terms and is therefore not an admissible functional for (11).

5.2. Second LMMR bracket. Since Casimir functions play a fundamental role in the
study of stability of two-dimensional flows as it has been shown in [1], the authors in
[14] have proposed to improve the definition of Arnold’s bracket by taking into account
boundary terms so that the enstrophy becomes a Casimir function.

They have derived this bracket using the same reduction process which has been used
for Arnold’s bracket. The difference lies in a different choice of admissible functionals.

The starting point is the Lagrangian description of the problem. For an incompressible
fluid moving in a fixed domain Ω, the configuration space is the group of volume-preserving
diffeomorphisms SDiff(Ω). The phase space, T ∗SDiff(Ω) has to be understood as the set
of pairs (ϕ, µ) where ϕ ∈ SDiff(Ω) is the “base point” and µ is a one-form over ϕ (i.e. for
each x, µ(x) ∈ T ∗

ϕ(x)Ω).
The class of admissible functionals F , previously limited to smooth functionals which

have smooth L2 gradient, is now extended to ones whose “gradients” can be written as

δF

δϕ
=
δ∧F

δϕ
+ δ∂Ω

δ∨F

δϕ
,

δF

δµ
=
δ∧F

δµ
+ δ∂Ω

δ∨F

δµ
,
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where δ∂Ω is the Dirac measure on Ω concentrated on ∂Ω 9. A Poisson bracket can be
defined for those functionals using the formal canonical bracket on T ∗SDiff(Ω)

{F,G } =

∫

Ω

(
δF

δϕ

δG

δµ
−
δG

δϕ

δF

δµ

)
dV

provided that the boundary condition

(13)
δ∨F

δϕ

δ∨G

δµ
−
δ∨G

δϕ

δ∨F

δµ
= 0

is satisfied to avoid squares of delta functions.
The Lie-Poisson reduction of the phase space T ∗SDiff(Ω) by the gauge group SDiff(Ω)

(corresponding to relabeling fluid particles) leads to the Second LMMR bracket [14] de-
fined for functionals on Vect∗(Ω) whose Fréchet derivative can be written as

DF (u).δu =

∫

Ω

δ∧F

δu
· δu dV +

∫

∂Ω

δ∨F

δu
· δu dS

The expression for the resulting bracket is quite complicated and will not be given
here. It must be stated, however that this bracket is well-defined for a pair of admissible
functionals (F,G) only if condition (13) is satisfied. This will be the case if one if one of
the functionals F or G satisfy δ∨F/δu = 0. It was shown in [14] that for two-dimensional
flows, the generalized enstrophy was a Casimir function for this bracket in the sense that
{C, F } = 0 for all functions admissible function F such that δ∨F/δu = 0.

We will not try to check that this second LMMR bracket is a valid Hamiltonian struc-
ture. The boundary condition (13) which ensures that the bracket is well-defined for a
couple of functionals forbids us to formulate properly what means exactly that the bracket
is closed.

5.3. Soloviev bracket. In a series of papers, [18], [21], [22], Soloviev tried to define a
Poisson bracket for local functionals which avoids this tedious boundary condition (13).
The idea introduced in [18] is to define a bracket involving not only the ”first gradient”
(the factor of δu) but the complete set of ”higher order gradients” (the factor of (δu)(J))
of a local functional.

Using Leibnitz rule but making no integration by parts, we can write the Fréchet
derivative of a local functional F as

DF (u).δu =

∫

Ω

∑

J,k

∂Jf

∂uJ
k

(
x, u(r)

)
δu

(J)
k (x) dV =

∫

Ω

∑

J,k

DJ

(
EJ

k (f)δuk

)
dV

where the higher Eulerian operators10 EJ
k are defined by

EJ
k (f) =

∑

K⊃J

(
K
J

)
(−D)K\J

∂f

∂u
(K)
k

,

the binomial coefficients for multi-indices are(
K
J

)
=

(
k1

j1

)
· · ·

(
kr

jr

)

9Notice however that this decomposition is not unique.
10Notice that all the sums are finite since only a finis number of derivatives appear in all these formula.

the zero order higher Eulerian operator E0

k
is just the ordinary Euler operator Ek.
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and
(−D)K = (−1)|K|DK .

The following formula was derived by Soloviev in [18] to define a Poisson bracket on the
class of all local functionals

{F,G } =
∑

J,K

∑

p,q

∫

Ω

DJ+K

(
EJ

p (f)IpqE
K
q (g)

)
dV

where the operator Ipq are subject to certain conditions to satisfy Jacobi identity.

Example 5.5. In [21], this method was illustrated for the formulation of Arnold’s bracket
presented in Remark 5.4 for 2 dimensional flows. The antisymmetric operator I was given
in this case by

I = θ(ωxDy − ωyDx) +
1

2
(Dyθωx −Dxθωy),

where the derivative of the characteristic function θ = θΩ has to be understood in the
sense of distributions using certain rules [21]. It was shown that, up to these rules, we
obtain a valid Poisson structure. There is however one objection on this example: up
to my understanding, Soloviev’s formalism was developed for local functionals but the
Hamiltonian giving rise to the Euler equations in this case is

H(ω) =
1

2

∫

Ω

‖u‖2 dS, ω = curl u,

which is not a local functional of the variable ω.

6. Poisson brackets for ideal fluids with a free boundary

In 1968, Zakharov [24] showed that Euler’s equations for irrotational gravity waves
could be written as a canonical Hamiltonian system. The Hamiltonian is

H =
1

2

∫∫∫

D

(gradϕ)2 dV +
1

2
λ

∫∫

R2

ζ2(x, y, t) dS.

The Poisson brackets implicit in Zakharov’s observation are the canonical brackets

{F,G } =

∫∫

R2

(
δF

δϕ

δG

δζ
−
δF

δζ

δG

δϕ

)
dS;

the Hamiltonian flow is then the canonical flow

ζt =
δH

δϕ
, ϕt = −

δH

δζ
.

The Hamiltonian H is regarded as a functional of (ϕ̃, ζ) where ζ = ζ(x, y, t) is the
height of the free surface, and ϕ̃ = ϕ|∂D is the trace of the harmonic function ϕ on the
free surface, with ∂nϕ = 0 on the bottom. The evolution takes place in the space of
harmonic functions on D. Zakharov’s result is verified by calculating the gradients of H
with respect to ζ and ϕ.

In [14], a generalization of this Hamiltonian structure was proposed for incompressible
fluid flows with possible vorticity. It is however no longer a canonical structure. The
approach used in [14] to derive a Hamiltonian structure is essentially the same as the
one used to derive Arnold’s bracket (fixed domain): using a Poisson reduction process
of the canonical symplectic structure on the phase space by the gauge group (relabelling



18 B. KOLEV

of particles). The main difference is that in the free boundary case, the gauge group no
longer acts transitively on the configuration space (the space of embeddings of a reference
domain in R

n).

6.1. First LMMR bracket. This structure, known as the first LMMR bracket is defined
on the space of pairs (v,Σ), where Σ is the free surface and v is the spatial velocity field,
a divergence free vector field defined on DΣ, the region bounded by Σ. The surface Σ is
assumed to be compact and diffeomorphic to the boundary of a reference region D.

The class A of functionals F : N → R on which this bracket is defined is formed by
functionals with the following properties:

(1) A variation δv is just a divergence free vector field on DΣ and we assume that
there exists a divergence free vector field δF/δv defined on DΣ such that for all
variations δv:

DvF (v,Σ) · δv =

∫

DΣ

δF

δv
· δv dV

where DvF is the derivative of F holding Σ fixed.
(2) A variation δΣ, which is a function on Σ, has to be understand as an infinitesimal

variation of Σ in its normal direction. Since only volume preserving variations
are allowed, δΣ has zero integral over Σ. We assume that there exists a smooth
function δF/δΣ such that for all variations δΣ:

DΣF (v,Σ) · δΣ =

∫

Σ

δF

δΣ
δΣ dS

where DΣF is the derivative of F holding v constant 11.

The Poisson bracket on functions F,G ∈ A is defined by

{F,G } =

∫

DΣ

ω ·

(
δF

δv
×
δG

δv

)
dV +

∫

Σ

(
δF

δΣ

δG

δφ
−
δG

δΣ

δF

δφ

)
dS

where ω = curl v and
δF

δφ
=
δF

δv

∣∣∣∣
Σ

· n.

This last term corresponds to the variational derivative of F taken with respect to varia-
tions of v by potential flows.

It has been checked in [14] that the Hamiltonian equation Ḟ = {F,H } is equivalent to
the equations of a liquid drop

∂v

∂t
+ ∇vv = − grad p,

∂Σ

∂t
= v · n, div v = 0, p|Σ = τκ,

where κ is the mean curvature of the surface Σ and τ is the surface tension. The Hamil-
tonian is taken to be

H(v,Σ) =
1

2

∫

DΣ

‖v‖2 dV + τ

∫

Σ

dS.

11This definition requires to extend smoothly v in a neighborhood of Σ. One can check that δΣ is
independent on the way v is extended and that it is determined up to an additive constant.



POISSON BRACKETS IN HYDRODYNAMICS 19

However this bracket does not define a valid Hamiltonian structure since it is not closed.
To show that, we will compute the bracket of two specific admissible functionals and show
that the bracket is not an admissible functional. Let

F (v,Σ) =
1

2

∫

DΣ

f(‖v‖2) dV, G(v,Σ) =
1

2

∫

DΣ

g(‖v‖2) dV,

where f and g are smooth real functions. Those functionals are admissible and we have

δF

δv
= Xf ,

δF

δΣ
=

1

2
f(‖v‖2)|Σ,

δG

δv
= Xg,

δG

δΣ
=

1

2
g(‖v‖2)|Σ,

where Xf (resp. Xg) is the (L2)-orthogonal projection of the vector field f ′(‖v‖2)v (resp.

g′(‖v‖2)v onto the space of divergence free vector fields.

Proposition 6.1. {F,G } is not an admissible function.

Proof. We have

H(v,Σ) = {F,G }(v,Σ)

=

∫

DΣ

curl v · (Xf ×Xg) dV +
1

2

∫

Σ

{
f(‖v‖2)(Xg · n) − g(‖v‖2)(Xf · n)

}
dS

=

∫

DΣ

curl v · (Xf ×Xg) dV +

∫

DΣ

{
f ′(‖v‖2)(v ·Xg) − g′(‖v‖2)(v ·Xf)

}
dV.

Let’s denote the first integral in this expression by H1 and the second one by H2. We
have

DvH2 · δv =
1

2

∫

DΣ

{(
∂2f

∂v2
· δv

)
·Xg −

(
∂2g

∂v2
· δv

)
·Xf

+
∂f

∂v
· (DvXg · δv) −

∂g

∂v
· (DvXf · δv)

}
dV

which can be rewritten as

DvH2 · δv =
1

2

∫

DΣ

{(
∂2f

∂v2
·Xg

)
· δv −

(
∂2g

∂v2
·Xf

)
· δv

+ (DvXg ·Xf) · δv − (DvXf ·Xg) · δv
}
dV,

using the property of symmetry of second Fréchet derivative. That is the partial Fréchet
derivative of H2 relative to v admit a gradient. Therefore, this will be the case for H if
and only if this is true for H1. We have

DvH1 · δv =

∫

DΣ

curl(δv) · (Xf ×Xg) dV

+

∫

DΣ

curl v · ([DvXf · δv] ×Xg) dV +

∫

DΣ

curl v · (Xf × [DvXg · δv]) dV.

In this expression, the last two terms are of gradient type because of the symmetry of the
second Fréchet derivative. The first term can be rewritten as∫

DΣ

{δv · curl(Xf ×Xg) + div(δv × (Xf ×Xg))} dV,
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which is definitely not of gradient type because of the divergence term. This achieves the
proof that {F,G } is not an admissible function. �

Remark 6.2. The second LMMR bracket presented in Section 5.2 can also be defined for
free boundary problems with the same difficulties, that is the necessity of a non trivial
boundary condition in the definition of admissible functionals. Is it possible to define a
usable and valid bracket for free boundary problems using the method of Soloviev ?
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