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Abstract

In the paper, we examine the behavior of the Newton’s method in floating point arith-
metic for the computation of a simple zero of a polynomial. We allow an extended precision
(twice the working precision) in the computation of the residual. We prove that, for a
sufficient number of iteration, the zero is as accurate as if computed in twice the working
precision. We provides numerical experiments confirming this.
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arithmetic
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1 Introduction and notation

The key to compute an accurate solution to a nonlinear equation is the accurate evaluation of
the function in use. In this paper, our purpose is to compute accurate simple zeros of univariate
polynomials relying on Newton’s method. To reach this aim, we need to focus on two important
things:

e explaining what we mean by “accurate solution”;

e having an accurate polynomial evalution algorithm to compute the residual in the New-
ton’s iteration.

Let us explain now what we mean by “accurate solution”. Let T be the computed solution
of a problem (P) whose exact solution is z. Suppose that the computations have been done
with a t-bit floating point arithmetic. We will say the Z is as accurate as if computed with twice
the working precision if

|7 — x|

|z
where C' is a moderate constant, eps = 27, | - | is a norm on the space of the solution and
cond(P) is the condition number of the problem (P). In the right-hand side of inequality (1.1),
the second term reflects the computation in twice the working precision and the first one the

< eps + Ceps?® cond(P). (1.1)
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rounding into the working precision. Relation (1.1) is what we called the compensated rule of
thumb, the classic rule of thumb being [5, p.9]

|z — x|

7] < Ceps cond(P).
x

Throughout the paper, we assume to work with a floating point arithmetic adhering to IEEE
754 floating point standard [6]. We assume that neither overflow nor underflow occur. The set
of floating point numbers is denoted by F and the relative rounding error by eps. For IEEE
754 double precision we have eps = 2773 and for IEEE 754 single precision eps = 2724,

We denote by fI(+) the result of a floating point computation, where all operations inside
parentheses are done in floating point working precision. Floating point operations in IEEE 754
satisfy [5]

fllacb) = (aob)(1+¢)= foro={+,—,-,/} and |¢| < eps.
This implies that
laob—fl(aob)| <epslaob| and |[aob—fl(aob)| < eps|filaocbh)| for o ={+,—,-,/}.

We use standard notation for error estimations. The quantities -, are defined as usual [5] by

neps

Y = for n € N,

1 —neps

where we implicitly assume that neps < 1.

The rest of the paper is organized as follows. In Section 2, we recall some results on Horner
scheme, error-free transformations and the Compensated Horner scheme. In Section 3, we
present the condition number of a simple zero. In Section 4, we present the Newton’s method
for root-finding using the Compensated Horner scheme to compute the residual. In Section 5,
we give some numerical experiments. Finally, we conclude by giving some hints about future
work.

2 Accurate polynomial evaluation

In this section, we first recall the Horner scheme as well as give an error bound. We then recall
the classic error-free transformations. We use these transformations for a Compensated Horner
scheme which gives a result as accurate as if computed by the classic Horner scheme using twice
the working precision and then rounded to the working precision.

2.1 Classic Horner Scheme

The classic method for evaluating a polynomial

is the Horner scheme which consists in the following algorithm.
Algorithm 2.1. Polynomial evaluation with Horner’s scheme

function res = Horner(p, z)
Sp = Qn
fori=n—1:-1:0

8 = Siy1 T+ a
end
res = Sy



A forward error bound is (see [5, p.95]):

n
[p(x) — Hornex(p, )| < 420 ) _ laille[* = y2u5(|]) (2:2)
i=0

where p(z) = Y1 a|2’.

2.2 Error-free transformations (EFT)

One can notice that a ob € R and fl(a 0 b) € F but in general we do not have a o b € F.
It is known that for the basic operations +, —, -, the approximation error of a floating point
operation is still a floating point number (see for example [3]):

r=fa+d) = axtb=x+y withyeF,

r=1fl(a-b) = a-b=zxz+y withyekF, (2:3)

where no underflow is assumed for multiplication. These are error-free transformations of the
pair (a,b) into the pair (z,vy).

Fortunately, the quantities  and y in (2.3) can be computed exactly in floating point
arithmetic. For the algorithms, we use Matlab-like notations. For addition, we can use the
following algorithm by Knuth [7, Thm B. p.236].

Algorithm 2.2 (Knuth [7]). Error-free transformation of the sum of two floating point num-
bers

function [z,y] = TwoSum(a, b)
x =fl(a+0b)
z="{l(z —a)
y=1M((a—(z-2))+(b-2)

For the error-free transformation of a product, we first need to split the input argument
into two parts. Let p be given by eps = 27?7 and define s = [p/2]. For example, if the working
precision is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by
Dekker [3] splits a floating point number a € F into two parts x and y such that

a=x+y and z and y nonoverlapping with |y| < |z|.
Algorithm 2.3 (Dekker [3]). Error-free split of a floating point number into two part

function [z,y] = Split(a,bd)
factor =fl(2° + 1)
¢ = fl(factor - a)
x=1fl(c— (c—a))
y=1fl(a —x)

With this function, an algorithm from Veltkamp (see [3]) makes it possible to compute an
error-free transformation for the product of two floating point numbers. This algorithm returns
two floating point numbers = and y such that

a-b=xz+y with x =fl(a-b).

Algorithm 2.4 (Veltkamp [3]). Error-free transformation of the product of two floating point
numbers



function [x,y] = TwoProduct(a,b)
x=1l(a-b)
[a1,a2] = Split(a)
[bl, bg] = Split(b)
y:ﬂ(ag'bg—(((Cﬂ—al-bl)—ag'bl)—al'bg))

The following theorem summarizes the properties of algorithms TwoSum and TwoProduct.

Theorem 2.1 (Ogita, Rump and Oishi [8]). Let a,b € F and let x,y € F such that
[z,y] = TwoSum(a,b) (Algorithm 2.2). Then,

a+b=a+y, w=f(a+b), |yl <epsle, |yl < epsla+b. (2.4)

The algorithm TwoSum requires 6 flops.
Let a,b € F and let x,y € F such that [x,y] = TwoProduct(a,b) (Algorithm 2.4). Then,

a-b=z+y, x=1M(a-b), |y <epslz|, [yl <eps|a-b|. (2.5)
The algorithm TwoProduct requires 17 flops.

We present now an error-free transformation for the polynomial evaluation with Horner
scheme.

Algorithm 2.5 (Graillat, Langlois and Louvet [4]). Error-free transformation for the
Horner scheme

function [h, pr, ps] = EFTHorner(p, x)
Sp = ap
fori=n—1:-1:0
[pi, ;] = TwoProduct(s;i1,)
[si,0i] = TwoSum(p;, a;)
Let m; be the coefficient of degree i in p,
Let o; be the coeflicient of degree i in p,
end
h = S0

The next theorem proves that Algorithm 2.5 is an error-free transformation.

Theorem 2.2 (Graillat, Langlois and Louvet [4]). Let p(z) = .1 ja;z" be a polynomial
of degree n with floating point coefficients, and let x be a floating point value. Let [h,pr,ps| =
EFTHorner(p,x) (Algorithm 2.5). Then

i) the floating point evaluation h = Horner(p,x) and

i) two polynomials pr and p, of degree n — 1 with floating point coefficients,
satisfies

p(x) = h+ (px + po)(x). (2.6)

Algorithm 2.5 requires 23n flops.



2.3 Compensated Horner Scheme

From Theorem 2.2, the global forward error affecting the floating point evaluation of p at x
according to the Horner scheme is

e(x) = plx) — Horner(p,) = (px + ps) (@),

The coefficients of these polynomials are exactly computed by Algorithm 2.5, together with
Horner(p,x). Indeed, if [h,pr,ps| = EFTHorner(p,z), then p, and p, are two exactly repre-
sentable polynomials. The key to increase the accuracy of the computed result is to compute
an approximate of the global error e(z) in working precision, and then to compute a corrected
result

res = fl(Horner(p, x) + e(x)).

We say that ¢ = fl(e(x)) is a corrective term for Horner(p,z). The corrected result res is
expected to be more accurate than the first result Horner(p, z).

Our aim is now to compute the corrective term ¢ = fl ((pr + p,)(z)). For that we evaluate
the polynomial whose coefficients are those of p, + p, rounded to the nearest floating point
value. This process is described by Algorithm 2.6.

Algorithm 2.6. Evaluation of the sum of two polynomials.

function res = HornerSun(p, ¢, x)
rn = fl(an + by)
fori=n—1:-1:0

ri = f(rig1 - + (a; + bi))
end

We can now describe the Compensated Horner Scheme.
Algorithm 2.7 (Graillat, Langlois and Louvet [4]). Compensated Horner scheme

function res = CompHorner(p, x)
[h, px,Ps) = EFTHorner(p, z)
¢ = HornerSum(p;, po, )
res = fl(h + ¢)

The following theorem proves that the result of a polynomial evaluation computed with the
Compensated Horner scheme (2.7) is as accurate as if computed by the classic Horner scheme
using twice the working precision and then rounded to the working precision.

Theorem 2.3 (Graillat, Langlois and Louvet [4]). Given a polynomial p = Y 1" ,a;z’ of
degree n with floating point coefficients, and x a floating point value. We consider the result
CompHorner(p, z) computed by Algorithm 2.7. Then,

|CompHorner(p, x) — p(z)| < eps|p(z)| + 73,5(). (2.7)

The Algorithm CompHorner requires 26n + 3 flops.



3 Condition number for root finding

Given a problem, we want to know how to measure the difficulty of solving it. This will be
done via the notion of condition number. Roughly speaking, the condition number measures
the sensitivity of the solution to perturbation in the data. Here is the classic definition for the
condition number of root finding for simple roots.

Definition 3.1. Let p(z) = >_" a;Z" be a polynomial of degree n and z be a simple zero of p.
The condition number of x is defined by

A
cond(p, x) = ;iir(l]sup {% CAai] < e|ai|} .

In the previous definition, Ax represents the variation of the zero x when the polynomial is
perturbed by a polynomial Ap(z) =>"" ; Aa;z'. It means that  + Az is a zero of p + Ap.

The following theorem gives an explicit formula to compute the condition number.

Theorem 3.1 (Chaitin-Chatelin and Frayssé [2]). Let p be a polynomial of degree n and
x be a simple zero of p. The condition number of x is given by

N ()
1e-2) = L@

Proof. We recall the proof done in [2]. Let p(z) = Y1 ;a;2* and consider the map
crtl — C,
L { (ag,...,a,)T +—— 2z such that p(z) =0, z simple.
From the definition of ¢, it follows that p(p(p)) = 0. The chain rule gives
9y
op;

(p)p'(2)+ 2 =0, i=0:n.

This implies that ¢'(p) = —p,%z)gT. Using Taylor expansion, we obtain

1
T+ Az=x— p,(x)gTAp—l—(’)(HApHQ). (3.8)
From Definition 3.1, it follows that
1
cond(p,x) = 2 @)l sup {@TAp], |Aa;| < ail} -
It is clear now that . B
cond(p.z) — 2L _ (=)

el @) el ()]

4 Accurate Newton’s method

In this section, we present the analysis of [9] for the Newton’s method in floating point arithmetic
(see also [1]). We specialize the result from [9] in the case of an univariate polynomial with a
simple root. We use the Compensated Horner scheme to accuratly compute the residual. In that
case, we show that the computed result (an approximation of the simple root of the polynomial)
is as accurate as if computed with twice the working precision via the classic Newton’s method
and then rounded back to the working precision.



4.1 General results on Newton’s method

In [9], F. Tisseur provided a comprehensive analysis of the Newton’s method in floating point
arithmetic. We recall hereafter her analysis and her results (see also [5, chap.25]).

Let FF : R™ — R"™ be continuously differentiable on R™ and J the Jacobian matrix
(OF;/0z;) of F. We assume that J is Lipschitz continuous with constant 5 in R™, that is,

|J(w) — J(v)|| < B|lw — | for all v,w € R™,

where || - || denotes any vector norm and the corresponding operator norm. We denote by
k(J) = ||J||||J7!|| the condition number of the matrix J. We aim at solving the system of
nonlinear equations F'(z) = 0 by Newton’s method:

(@) (@ip1 — i) = —F(xi), =0, (4.9)

for a given point xy. Equation (4.9) can be rewritten as
Solve J(z;)d; = —F(x;),
Tip1 = i+ d;.
Due to rounding errors in floating point arithmetic, we have
Tiy1 =i — (J(@) + E) T (F(@) + &) + &,
where

e ¢; is the error made during the computation of the residual F'(z;),
e F; is the error when forming J(Z;) and solving the linear system for d;,

e ¢g; is the error made when adding c/l\l to 7;.

We assume that F(Z;) is computed with extended precision eps’ and then rounded back to
working precision eps, and that d;, T; are computed at precision eps. Hence we assume that
there exists a function ¢ depending on F, x;, eps and eps’ such that

llesll < eps|| F'(:)|| + «(F, %, eps, eps’).
We assume that the error F; satisfies
IE; || < epsp(F,Z;,n,eps).
For the error &, we have ||g5|| < eps(||Zi]| + ||dq|)-
Theorem 4.1 (Tisseur [9, Cor. 2.3]). Assume that there is an x such that F(z) = 0 and
J = J(z) is nonsingular and satisfies
epsk(J) <1/8

where r(J) = ||J||[|J || denotes the condition number of the matriz J. Assume also that for
P>
eps||J(Z;) "' ||¢(F, Zi, n, eps) < 1/8 for all i.
Then, for all xo such that
BT o — || < 1/8,

Newton’s method in floating point arithmetic generates a sequence of {T;} whose normuwise
relative error decreases until the first i for which

[in —all ooy 17

(F,7;, eps, eps’). (4.10)
] ] Z




4.2 Newton’s method for polynomials

Let p be a given polynomial with simple zeros. We apply the Newton’s method with F'(x) = p(x)
and so J(z) = p/(z). The classic Newton’s method is Algorithm 4.1.

Algorithm 4.1. Classic Newton’s method

xo=¢§
plZq
wip1 = w; — 29

P’ (i)

Hereafter, we use the compensated Horner scheme to evaluate the residual p(z) in order to
get a result as accurate as if computed in twice the working precision. We also assume that we
already know that the root we are looking for belongs to [a,b] with a,b € R. We also define
f = max,cpqp [p'(z)]. The accurate Newton’s method is Algorithm 4.2.

Algorithm 4.2. Accurate Newton’s method

rg=§

C H i
Tis1 =i — ompHorner (p,z;)

P (%)

In that case, using notation of

4.3

submewton, we have eps’ = eps? and (F,Z;, eps, eps’) = ~3,p(z) thanks to Theorem 2.3.
Moreover, using Theorem 4.1 and Theorem 3.1, it holds the following theorem.

Theorem 4.2. Assume that there is an x such that p(x) = 0 and p'(x) # 0 is not too small.
Assume also that
eps cond(p,z) < 1/8 for all i.

Then, for all xo such that
Bl (@) Hlwo — 2| < 1/8,

Newton’s method in floating point arithmetic generates a sequence of {x;} whose normwise
relative error decreases until the first i for which

|l“z‘+1 - $|

7] ~ eps + 73, cond(p, z). (4.11)
x

The theorem means that if we begin not too far from the simple root, the Newton’s method
gives an approximation of the root as accurate as if computed with twice the working precision.

The use of an accurate polynomial evaluation algorithm is essential. Indeed, if we use the
classic Horner scheme, then, at the end of the iteration, we only have

Tiy1 —
% A Yo, cond(p, x). (4.12)

5 Numerical experiments

All our experiments are preformed using the IEEE-754 double precision with MATLAB 7. When
needed, we use the Symbolic Math Toolbox to accuratly compute the roots of polynomials (in
order to compute the relative forward error).



We test the Newton’s iterations on the expanded form of the polynomial p,(z) = (x —1)" —
108 for n = 1 : 40. The condition number cond(p,,z) where z is the root 1 4+ 10~8/" varies
from 10* to 10?2,

Figure 1 shows the relative accuracy |z —x|/|x| where x the exact root and Z is the computed
value by the two algorithms 4.1 and 4.2. We also plot the a priori error estimation (4.12) and
(4.11).

As we can see in Figure 1, the accurate Newton’s iteration exhibit the expected behavior,
that is to say, the compensated rule of thumb. As long as the condition number is less that
10'5, the accurate Newton’s iteration produce results with full precision (forward relative error
of the order of 10716, For condition numbers greater thant 10!, the accurary decreases.

Condition number and relative forward error
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Figure 1: Accuracy of the classic Newton iteration and the accurate Newton iteration

6 Conclusion and future work

In the paper, we have proved that the Newton’s iteration makes it possible to compute a good
approximation of a simple root; by good approximation, we mean as accurate as if computed
with twice the working precision.

We only dealt with simple roots. If the root has multiplicity m > 1, one can use the modified
Newton’s iteration as follows.

Algorithm 6.1. Modified Newton’s method

rg=§

Tip1 = @ —mBE

p'(@i)
A future work will be to see if we can get the same kind of results than for simple roots
when we already know the multiplicty of the root.
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