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In the paper, we examine the behavior of the Newton's method in floating point arithmetic for the computation of a simple zero of a polynomial. We allow an extended precision (twice the working precision) in the computation of the residual. We prove that, for a sufficient number of iteration, the zero is as accurate as if computed in twice the working precision. We provides numerical experiments confirming this.

Introduction and notation

The key to compute an accurate solution to a nonlinear equation is the accurate evaluation of the function in use. In this paper, our purpose is to compute accurate simple zeros of univariate polynomials relying on Newton's method. To reach this aim, we need to focus on two important things:

• explaining what we mean by "accurate solution";

• having an accurate polynomial evalution algorithm to compute the residual in the Newton's iteration.

Let us explain now what we mean by "accurate solution". Let x be the computed solution of a problem (P ) whose exact solution is x. Suppose that the computations have been done with a t-bit floating point arithmetic. We will say the x is as accurate as if computed with twice the working precision if | x -x| |x| ≤ eps + Ceps 2 cond(P ). (1.1) where C is a moderate constant, eps = 2 -t , | • | is a norm on the space of the solution and cond(P ) is the condition number of the problem (P ). In the right-hand side of inequality (1.1), the second term reflects the computation in twice the working precision and the first one the rounding into the working precision. Relation (1.1) is what we called the compensated rule of thumb, the classic rule of thumb being [5, p.9] | x -x| |x| ≤ Ceps cond(P ).

Throughout the paper, we assume to work with a floating point arithmetic adhering to IEEE 754 floating point standard [START_REF]IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard[END_REF]. We assume that neither overflow nor underflow occur. The set of floating point numbers is denoted by F and the relative rounding error by eps. For IEEE 754 double precision we have eps = 2 -53 and for IEEE 754 single precision eps = 2 -24 .

We denote by fl(•) the result of a floating point computation, where all operations inside parentheses are done in floating point working precision. Floating point operations in IEEE 754 satisfy [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF] fl(a

• b) = (a • b)(1 + ε) = for • = {+, -, •, /} and |ε| ≤ eps.
This implies that

|a • b -fl(a • b)| ≤ eps|a • b| and |a • b -fl(a • b)| ≤ eps| fl(a • b)| for • = {+, -, •, /}.
We use standard notation for error estimations. The quantities γ n are defined as usual [START_REF] Nicholas | Accuracy and stability of numerical algorithms[END_REF] by

γ n := neps 1 -neps for n ∈ N,
where we implicitly assume that neps ≤ 1.

The rest of the paper is organized as follows. In Section 2, we recall some results on Horner scheme, error-free transformations and the Compensated Horner scheme. In Section 3, we present the condition number of a simple zero. In Section 4, we present the Newton's method for root-finding using the Compensated Horner scheme to compute the residual. In Section 5, we give some numerical experiments. Finally, we conclude by giving some hints about future work.

Accurate polynomial evaluation

In this section, we first recall the Horner scheme as well as give an error bound. We then recall the classic error-free transformations. We use these transformations for a Compensated Horner scheme which gives a result as accurate as if computed by the classic Horner scheme using twice the working precision and then rounded to the working precision.

Classic Horner Scheme

The classic method for evaluating a polynomial

p(x) = n i=0 a i x i
is the Horner scheme which consists in the following algorithm. s n = a n for i = n -1 : -1 : 0

s i = s i+1 • x + a i end res = s 0
A forward error bound is (see [5, p.95]):

|p(x) -Horner(p, x)| ≤ γ 2n n i=0 |a i ||x| i = γ 2n p(|x|) (2.2)
where p(x) = n i=0 |a i |x i .

Error-free transformations (EFT)

One can notice that a • b ∈ R and fl(a • b) ∈ F but in general we do not have a • b ∈ F.

It is known that for the basic operations +, -, •, the approximation error of a floating point operation is still a floating point number (see for example [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]):

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F, x = fl(a • b) ⇒ a • b = x + y with y ∈ F, (2.3) 
where no underflow is assumed for multiplication. These are error-free transformations of the pair (a, b) into the pair (x, y). Fortunately, the quantities x and y in (2.3) can be computed exactly in floating point arithmetic. For the algorithms, we use Matlab-like notations. For addition, we can use the following algorithm by Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF]Thm B. p.236].

Algorithm 2.2 (Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF]). Error-free transformation of the sum of two floating point numbers

function [x, y] = TwoSum(a, b) x = fl(a + b) z = fl(x -a) y = fl((a -(x -z)) + (b -z))
For the error-free transformation of a product, we first need to split the input argument into two parts. Let p be given by eps = 2 -p and define s = ⌈p/2⌉. For example, if the working precision is IEEE 754 double precision, then p = 53 and s = 27. The following algorithm by Dekker [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF] splits a floating point number a ∈ F into two parts x and y such that a = x + y and x and y nonoverlapping with |y| ≤ |x|. Algorithm 2.3 (Dekker [3]). Error-free split of a floating point number into two part function

[x, y] = Split(a, b) factor = fl(2 s + 1) c = fl(factor • a) x = fl(c -(c -a)) y = fl(a -x)
With this function, an algorithm from Veltkamp (see [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]) makes it possible to compute an error-free transformation for the product of two floating point numbers. This algorithm returns two floating point numbers x and y such that

a • b = x + y with x = fl(a • b).
Algorithm 2.4 (Veltkamp [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF]). Error-free transformation of the product of two floating point numbers function

[x, y] = TwoProduct(a, b) x = fl(a • b) [a 1 , a 2 ] = Split(a) [b 1 , b 2 ] = Split(b) y = fl(a 2 • b 2 -(((x -a 1 • b 1 ) -a 2 • b 1 ) -a 1 • b 2 ))
The following theorem summarizes the properties of algorithms TwoSum and TwoProduct. 

a • b = x + y, x = fl(a • b), |y| ≤ eps|x|, |y| ≤ eps|a • b|. (2.5)
The algorithm TwoProduct requires 17 flops.

We present now an error-free transformation for the polynomial evaluation with Horner scheme.

Algorithm 2.5 (Graillat, Langlois and Louvet [START_REF] Graillat | Compensated Horner scheme[END_REF]). Error-free transformation for the Horner scheme

function [h, p π , p σ ] = EFTHorner(p, x) s n = a n for i = n -1 : -1 : 0 [p i , π i ] = TwoProduct(s i+1 , x) [s i , σ i ] = TwoSum(p i , a i ) Let π i be the coefficient of degree i in p π Let σ i be the coefficient of degree i in p σ end h = s 0
The next theorem proves that Algorithm 2.5 is an error-free transformation.

Theorem 2.2 (Graillat, Langlois and Louvet [START_REF] Graillat | Compensated Horner scheme[END_REF]). Let p(x) = n i=0 a i x i be a polynomial of degree n with floating point coefficients, and let x be a floating point value. Let [h, p π , p σ ] = EFTHorner(p, x) (Algorithm 2.5). Then i) the floating point evaluation h = Horner(p, x) and ii) two polynomials p π and p σ of degree n -1 with floating point coefficients,

satisfies p(x) = h + (p π + p σ )(x). (2.6)
Algorithm 2.5 requires 23n flops.

Compensated Horner Scheme

From Theorem 2.2, the global forward error affecting the floating point evaluation of p at x according to the Horner scheme is

e(x) = p(x) -Horner(p, x) = (p π + p σ )(x).
The coefficients of these polynomials are exactly computed by Algorithm 2.5, together with Horner(p, x). Indeed, if [h, p π , p σ ] = EFTHorner(p, x), then p π and p σ are two exactly representable polynomials. The key to increase the accuracy of the computed result is to compute an approximate of the global error e(x) in working precision, and then to compute a corrected result res = fl(Horner(p, x) + e(x)).

We say that c = fl(e(x)) is a corrective term for Horner(p, x). The corrected result res is expected to be more accurate than the first result Horner(p, x).

Our aim is now to compute the corrective term c = fl ((p π + p σ )(x)). For that we evaluate the polynomial whose coefficients are those of p π + p σ rounded to the nearest floating point value. This process is described by Algorithm 2.6.

Algorithm 2.6. Evaluation of the sum of two polynomials.

function res = HornerSum(p, q, x) r n = fl(a n + b n ) for i = n -1 : -1 : 0 r i = fl(r i+1 • x + (a i + b i )) end
We can now describe the Compensated Horner Scheme. The following theorem proves that the result of a polynomial evaluation computed with the Compensated Horner scheme (2.7) is as accurate as if computed by the classic Horner scheme using twice the working precision and then rounded to the working precision.

Theorem 2.3 (Graillat, Langlois and Louvet [START_REF] Graillat | Compensated Horner scheme[END_REF]). Given a polynomial p = n i=0 a i x i of degree n with floating point coefficients, and x a floating point value. We consider the result CompHorner(p, x) computed by Algorithm 2.7. Then,

|CompHorner(p, x) -p(x)| ≤ eps|p(x)| + γ 2 2n p(x).
(2.7)

The Algorithm CompHorner requires 26n + 3 flops.

Condition number for root finding

Given a problem, we want to know how to measure the difficulty of solving it. This will be done via the notion of condition number. Roughly speaking, the condition number measures the sensitivity of the solution to perturbation in the data. Here is the classic definition for the condition number of root finding for simple roots.

Definition 3.1. Let p(z) = n i=0 a i z i be a polynomial of degree n and x be a simple zero of p. The condition number of x is defined by

cond(p, x) = lim ε→0 sup |∆x| ε|x| : |∆a i | ≤ ε|a i | .
In the previous definition, ∆x represents the variation of the zero x when the polynomial is perturbed by a polynomial ∆p(z) = n i=0 ∆a i z i . It means that x + ∆x is a zero of p + ∆p.

The following theorem gives an explicit formula to compute the condition number.

Theorem 3.1 (Chaitin-Chatelin and Frayssé [START_REF] Chaitin-Chatelin | Lectures on finite precision computations. Software, Environments, and Tools[END_REF]). Let p be a polynomial of degree n and x be a simple zero of p. The condition number of x is given by

cond(p, x) = p(|x|) |x||p ′ (x)| .
Proof. We recall the proof done in [START_REF] Chaitin-Chatelin | Lectures on finite precision computations. Software, Environments, and Tools[END_REF]. Let p(z) = n i=0 a i z i and consider the map

ϕ : C n+1 -→ C, (a 0 , . . . , a n ) T -→ z such that p(z) = 0, z simple.
From the definition of ϕ, it follows that p(ϕ(p)) = 0. The chain rule gives

∂ϕ ∂p i (p)p ′ (z) + z i = 0, i = 0 : n.
This implies that ϕ ′ (p) = -1 p ′ (z) z T . Using Taylor expansion, we obtain

x + ∆x = x - 1 p ′ (x) x T ∆p + O( ∆p 2 ). (3.8) From Definition 3.1, it follows that cond(p, x) = 1 |x||p ′ (x)| sup |x T ∆p|, |∆a i | ≤ |a i | . It is clear now that cond(p, x) = |x| T |p| |x||p ′ (x)| = p(|x|) |x||p ′ (x)| .

Accurate Newton's method

In this section, we present the analysis of [START_REF] Tisseur | Newton's method in floating point arithmetic and iterative refinement of generalized eigenvalue problems[END_REF] for the Newton's method in floating point arithmetic (see also [START_REF] Daniel | Adaptive multiprecision path tracking[END_REF]). We specialize the result from [START_REF] Tisseur | Newton's method in floating point arithmetic and iterative refinement of generalized eigenvalue problems[END_REF] in the case of an univariate polynomial with a simple root. We use the Compensated Horner scheme to accuratly compute the residual. In that case, we show that the computed result (an approximation of the simple root of the polynomial) is as accurate as if computed with twice the working precision via the classic Newton's method and then rounded back to the working precision.

General results on Newton's method

In [START_REF] Tisseur | Newton's method in floating point arithmetic and iterative refinement of generalized eigenvalue problems[END_REF], F. Tisseur provided a comprehensive analysis of the Newton's method in floating point arithmetic. We recall hereafter her analysis and her results (see also [5, chap.25]). Let F : R m → R m be continuously differentiable on R m and J the Jacobian matrix (∂F i /∂x j ) of F . We assume that J is Lipschitz continuous with constant β in R m , that is,

J(w) -J(v) ≤ β w -v for all v, w ∈ R m ,
where • denotes any vector norm and the corresponding operator norm. We denote by κ(J) = J J -1 the condition number of the matrix J. We aim at solving the system of nonlinear equations F (x) = 0 by Newton's method:

J(x i )(x i+1 -x i ) = -F (x i ), i ≥ 0, (4.9) 
for a given point x 0 . Equation (4.9) can be rewritten as

Solve J(x i )d i = -F (x i ), x i+1 = x i + d i .
Due to rounding errors in floating point arithmetic, we have

x i+1 = x i -(J( x i ) + E i ) -1 (F ( x i ) + e i ) + ε i ,
where

• e i is the error made during the computation of the residual F (x i ),

• E i is the error when forming J( x i ) and solving the linear system for d i ,

• ε i is the error made when adding d i to x i .

We assume that F ( x i ) is computed with extended precision eps ′ and then rounded back to working precision eps, and that d i , x i are computed at precision eps. Hence we assume that there exists a function ψ depending on F , x i , eps and eps ′ such that e i ≤ eps F ( x i ) + ψ(F, x i , eps, eps ′ ).

We assume that the error E i satisfies

E i ≤ epsϕ(F, x i , n, eps).
For the error ε i , we have ε i ≤ eps( x i + d i ).

Theorem 4.1 (Tisseur [9,Cor. 2.3]). Assume that there is an x such that F (x) = 0 and J = J(x) is nonsingular and satisfies eps κ(J) ≤ 1/8 where κ(J) = J J -1 denotes the condition number of the matrix J. Assume also that for ϕ, eps J( x i ) -1 ϕ(F, x i , n, eps) ≤ 1/8 for all i.

Then, for all x 0 such that β J -1 x 0 -x ≤ 1/8, Newton's method in floating point arithmetic generates a sequence of { x i } whose normwise relative error decreases until the first i for which

x i+1 -x x ≈ eps + J -1
x ψ(F, x i , eps, eps ′ ). (4.10)

Newton's method for polynomials

Let p be a given polynomial with simple zeros. We apply the Newton's method with F (x) = p(x) and so J(x) = p ′ (x). The classic Newton's method is Algorithm 4.1.

Algorithm 4.1. Classic Newton's method

x 0 = ξ x i+1 = x i -p(x i ) p ′ (x i )
Hereafter, we use the compensated Horner scheme to evaluate the residual p(x) in order to get a result as accurate as if computed in twice the working precision. We also assume that we already know that the root we are looking for belongs to [a, b] with a, b ∈ R. We also define

β = max x∈[a,b] |p ′ (x)|.
The accurate Newton's method is Algorithm 4.2.

Algorithm 4.2. Accurate Newton's method

x 0 = ξ x i+1 = x i -CompHorner(p,x i ) p ′ (x i )
In that case, using notation of

4.3

sub:newton, we have eps ′ = eps 2 and ψ(F, x i , eps, eps ′ ) = γ 2 2n p(x) thanks to Theorem 2.3. Moreover, using Theorem 4.1 and Theorem 3.1, it holds the following theorem. Theorem 4.2. Assume that there is an x such that p(x) = 0 and p ′ (x) = 0 is not too small. Assume also that eps cond(p, x) ≤ 1/8 for all i.

Then, for all x 0 such that β|p ′ (x) The theorem means that if we begin not too far from the simple root, the Newton's method gives an approximation of the root as accurate as if computed with twice the working precision.

The use of an accurate polynomial evaluation algorithm is essential. Indeed, if we use the classic Horner scheme, then, at the end of the iteration, we only have

|x i+1 -x| |x| ≈ γ 2n cond(p, x). ( 4 
.12)

Numerical experiments

All our experiments are preformed using the IEEE-754 double precision with Matlab 7. When needed, we use the Symbolic Math Toolbox to accuratly compute the roots of polynomials (in order to compute the relative forward error).

We test the Newton's iterations on the expanded form of the polynomial p n (x) = (x -1) n -10 -8 for n = 1 : 40. The condition number cond(p n , x) where x is the root 1 + 10 -8/n varies from 10 4 to 10 22 .

Figure 1 shows the relative accuracy | x-x|/|x| where x the exact root and x is the computed value by the two algorithms 4.1 and 4.2. We also plot the a priori error estimation (4.12) and (4.11).

As we can see in Figure 1, the accurate Newton's iteration exhibit the expected behavior, that is to say, the compensated rule of thumb. As long as the condition number is less that 10 15 , the accurate Newton's iteration produce results with full precision (forward relative error of the order of 10 -16 . For condition numbers greater thant 10 15 , the accurary decreases. In the paper, we have proved that the Newton's iteration makes it possible to compute a good approximation of a simple root; by good approximation, we mean as accurate as if computed with twice the working precision. We only dealt with simple roots. If the root has multiplicity m > 1, one can use the modified Newton's iteration as follows. Algorithm 6.1. Modified Newton's method

x 0 = ξ x i+1 = x i -m p(x i ) p ′ (x i )
A future work will be to see if we can get the same kind of results than for simple roots when we already know the multiplicty of the root.
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