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INDUCTIVE METHODS AND ZERO-SUM FREE SEQUENCES

GAUTAMI BHOWMIK, IMMANUEL HALUPCZOK, AND JAN-CHRISTOPH
SCHLAGE-PUCHTA

Abstract. A fairly long standing conjecture was that the Davenport constant

of a group G = Zn1 ⊕ · · · ⊕ Znk
with n1| . . . |nk is 1 +

∑

k

i=1
(ni − 1). This

conjecture is false in general, but the question remains for which groups it is
true. By using inductive methods we prove that for two fixed integers k and ℓ
it is possible to decide whether the conjecture is satisfied for all groups of the
form Z

ℓ

k
⊕ Zn with n co-prime to k.

We also prove the conjecture for groups of the form Z3 ⊕Z3n ⊕Z3n, where
n is co-prime to 6, assuming a conjecture about the maximal zero-sum free
sets in Z

2
n.

1. Introduction and Results

Let G be a finite abelian group written additively, a1, . . . , ak a sequence of el-
ements in G. This sequence contains a zero-sum if there is some non-empty sub-
sequence 1 ≤ i1 < i2 < · · · < iℓ ≤ k satisfying ai1 + · · · + aiℓ

= 0, otherwise it is
called zero-sum free. Denote by D(G) the least integer k such that every sequence
of length k contains a zero-sum, this number is usually called Davenport’s constant,
since the question of whether zero-sums exist was studied by Davenport in the con-
text of algebraic number theory (where G is the class group of some number field,
the elements ai are given ideal classes from which one wants to construct a principal
ideal). This line of research was continued in the study of domains with non-unique
factorisation, for an overview see [10]. Among applications, Brüdern and Godinho
[5] discovered that the existence of zero-sums can be used to simplify p-adic forms,
which led to considerable progress towards Artin’s conjecture on p-adic forms.

To avoid cumbersome notation we shall from now on always talk about multi-sets
instead of sequences; in the sequel all sets are multi-sets unless explicitly stated oth-
erwise. We shall write the multiplicity of an element as its exponent, e.g. {an, bm}
is a multi-set containing n+m elements, n of which are equal to a, and m are equal
to b. We believe that the imprecision implied by the non-standard use of equality
is more than outweighed by easier readability.

One approach to bound D(G) is the so called inductive method, which runs as
follows: If N < G is a subgroup and n an integer such that every sequence of
length n in G/N contains a system of D(N) disjoint zero-sums, then D(G) ≤ n. In
fact, each zero-sum in G/N defines an element in N , choosing a zero-sum among
these elements defines a zero-sum in G. Unfortunately, in general this method does
not give the exact value for D(G). For example, for G = Z2

3 ⊕ Z3n, Delorme,
Ordaz and Quiroz showed that D(G) ≤ 3n + 5, which is 1 more than the exact
value. The sub-optimality of this method stems from the fact that in general
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we have many ways to choose a system of disjoint zero-sums, and it suffices to
show that one of these systems yields a zero-sum in N . If the structure of all
zero-sum free subsets in N of size close to D(N) is sufficiently well understood
one can use this information to choose an appropriate system of subsets in G/N .
In this way one can show that for groups of the form G = Z2

3 ⊕ Z3n we always
have D(G) = 3n + 4 (confer [3]); the corresponding lower bound being given by
the mulitset {(1, 0, 0)2, (0, 1, 0)2, (0, 0, 1)3n−1}. In fact, this example immediately
generalises to arbitrary finite group: If G = Zn1 ⊕ · · · ⊕ Znk

with n1| . . . |nk, then

D(G) ≥ M(G) := 1 +
∑k

i=1(ni − 1). The conjecture that D(G) = M(G), which we
shall refer to as the main conjecture, is proven for groups of rank 2, and fails for
infinitely many groups of rank ≥ 4. It is not yet known whether it holds true for
all groups of rank 3.

In this note we generalise the improved inductive method to other sequences of
groups. We first give a decidability result. Suppose k, ℓ ∈ N are fixed. Then one
can check the main conjecture for all groups of the form Zℓ

k ⊕Zn at once (in a finite
amount of time), where n runs through all numbers co-prime to k. Note that in

our case in fact Zℓ
k ⊕ Zn

∼= Zℓ−1
k ⊕ Zkn. Moreover, we give a description of the set

of numbers n such that the main conjecture holds for Zℓ
k ⊕ Zn.

Theorem 1. Suppose k, ℓ are two integers. Let N be the set of integers n co-prime
to k such that the main conjecture holds for Zℓ

k ⊕ Zn, i.e. such that D(Zℓ
k ⊕ Zn) =

(ℓ − 1) · (k − 1) + kn.
Then either N is finite, or there exists an integer d > 0 and a set T of divisors

of d containing 1 such that N differs from the set

N ′ := {x ∈ N | (x, d) ∈ T }

only in finitely many elements.
In addition, there is an algorithm which, given k and ℓ, prints out N if the latter

is finite. Otherwise its output is d, T and the set of elements in which N and N ′

differ .

In principle, this means that a computer can be programmed to prove statements
of the form “the main conjecture is true for Zℓ

k ⊕ Zn for all n co-prime to k”. A
straight-forward application of our algorithm would require astronomical running
time even for very small k and ℓ, but we believe that by combining computer
search with manual arguments one can prove the main conjecture for certain series
of groups. In fact, in [3] the methods of this theorem have been explicitly applied
to prove the main conjecture in the case k = 3, ℓ = 3.

The proof of Theorem 1 makes much use of the simple structure of Zn where there
is essentially one single example of a large zero-sum free set. In our next theorem,
we would like to replace Zn by a larger group. However, for non-cyclic groups
the structure of maximal zero-sum free sets is less clear and there are essentially
different possibilities for such sets. Due to this complication, we can only deal
with groups of rank 2. Though the structure of maximal zero-sum free sets is not
known, there is a plausible conjecture concerning these sets. We say that an integer
n satisfies property B if every zero-sum free subset A ⊆ Z2

n contains an element a
with multiplicity ≥ n − 2.

Conjecture 2. Every integer n satisfies property B.
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Gao and Geroldinger [8] showed that all integers n ≤ 7 and all integers n of
the form 3 · 2k satisfy property B. In work under preparation we are substantially
extending this list. Here we will give an application of property B to Davenport’s
constant.

Theorem 3. Let n be an integer co-prime to 6 such that B(n) holds true. Then
D(Z3 ⊕ Z2

3n) = 6n + 1.

We remark that even the simplest case dealt by this theorem, that is Z3 ⊕ Z2
15,

was till now undecided .
Although we tried to prove as much as possible by hand , the proof of this

theorem needs a lemma on subsets of Z3
3 which we could only prove by massive

case distinction, which has been done by our computer.

2. Auxiliary results

For an abelian group G, we denote by Dm(G) the minimal n such that any subset
of G of cardinality n contains m disjoint zero-sums.

Lemma 4. (1) Let k and ℓ be integers. Then there exists a constant c(k, ℓ)
such that Dm(Zℓ

k) ≤ km + c(k, ℓ).
(2) We have Dm(Z2

3) = 3m + 2.

Proof. (1) Form as many zero-sums as possible which are of the form {ak} for some
a ∈ Zℓ

k. For each a ∈ Zℓ
k, there are at most k− 1 copies of a in A which we can not

use in this way, so c(k, ℓ) := (k − 1) · kℓ is certainly sufficient.
(2) It is easy to check that every subset of 5 elements contains a zero-sum, and

that every subset of 7 elements contains a zero-sum of length ≤ 3. Our claim now
follows by induction on m. �

Lemma 5. Let A ∈ Zk×ℓ, k ≤ ℓ, be a matrix, b ∈ Zk a vector. Then either there
exists an integer d, and a set T of divisors of d including 1, such that the system
Ax = b is solvable in Zn if and only if (d, n) ∈ T or there exists a finite set of
integers N , such that the above system is solvable if and only if n ∈ N .

If all entries in A are of modulus ≤ M , and all entries of b are of modulus ≤ N ,
then d ≤ k!Mk, and there is a constant c, independent of N and M , such that every
element x ∈ N satisfies x ≤ (cℓM)cℓ log M .

Proof. Computing the Smith normal form of the matrix A, we see that there exist
invertible matrices P, Q over Z, such that D = PAQ−1 has non-zero entries at most
on the diagonal dii , i ≤ k, and these entries satisfy dii|di+1,i+1. Since every matrix
invertible over Z is also invertible over Zn, the equation Ax = b is solvable in Zn if
and only if the equation Dx = b′ is solvable, where b′ = Pb. A necessary condition
for solvability is that in every row containing only zeros in D, the corresponding
entry of b′ vanishes, that is, n|b′j for every j such that j > m, where m is the
greatest integer such that dmm 6= 0. If one of these b′j does not vanish, then there
are at most finitely many n for which the equation is solvable, and our claim is
true. If all these b′j equal zero, the system is equivalent to the system diixi = b′i,

which is solvable if and only if (n, dii)|(n, b′i). Hence, we take d to be dmm and since
dii|d for each i ≤ m, we can express all these conditions in terms of (n, d), and our
claim is justified.

For the numerical bounds note that d equals the greatest common divisor of
all m × m sub-determinants of A. Since the Q-rank of A equals m, there exists
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a non-vanishing sub-determinant, containing only entries ≤ M , which is therefore
≤ m!Mm ≤ k!Mk.

To estimate the entries in the set N we have to estimate the entries of P . A gen-
eral estimate for the entries of the transformation matrices was obtained by Kannan
and Bachem [11, Theorem 5]. They showed that there exists a constant c such that
an ℓ × ℓ-matrix A with integral entries of modulus ≤ M can be transformed into
Smith normal form using matrices with entries of absolute value ≤ (cℓM)cℓ log M .
It follows immediately from their proof that the same estimate remains valid for
rectangular matrices, hence, the last claim follows as well. �

Corollary 6. Consider the system Ax = b as in the previous Lemma, and suppose
that there are infinitely many n such that this system is solvable in Zn. Let n0

be the least integer greater than 1 such that this system is solvable. Then n0 ≤

max
(

28, k log(kM)
log 2

)

.

Proof. If the system has infinitely many solutions, then there exists an integer
d ≤ k!Mk such that the system is solvable in Zn whenever (n, d) = 1. In particular,
d is divisible by all prime number p < n0. Since for x ≥ 29, the product of all prime
numbers up to x is ≥ 2x, our claim follows. �

The following result is essentially due to Bovey, Erdős and Niven [4].

Lemma 7. Let A ⊆ Zn be a zero-sum free multi-set containing N elements, where
N ≥ 2n/3. Then there exists an element a of Zn, which occurs in A with multiplicity
greater than 2N − n. Moreover, a is a generator of Zn.

Proof. The statement on the multiplicity is [4]. Now suppose that a is not a genera-
tor of Zn, and let H be the subgroup generated by a. Denote by m the multiplicity
of a. Among (Zn : H) elements of Zn/H we can choose a zero-sum, that is, among
the N − m elements of A \ {am} we can choose a system of ⌊ N−m

(Zn:H) ⌋ disjoint sets,

each one adding up to an element in H . Since A is zero-sum free, we cannot
obtain |H | elements in this way, that is, m + ⌊ N−m

(Zn:H)⌋ ≤ |H | − 1, which implies

(Zn : H)m + N − m < n. Since m ≥ 2N − n + 1, and (Zn : H) ≥ 2, we obtain
3N + 1 < 2n, contradicting N ≥ 2n/3. �

Corollary 8. Let A ⊆ Zn be a subset with |A| ≥ 3n/4. Then A is zero-sum free if
and only if 0 /∈ A and there exists some invertible α ∈ Z×

n , such that
∑

a∈A ι(α·a) ≤
n − 1, where ι : Zn → N is the map sending x to the least non-negative residue
contained in the class x.

Proof. Obviously, if 0 /∈ A and
∑

a∈A ι(α·a) ≤ n−1, then A is zero-sum free. Hence,
we assume that A is zero-sum free and bound the sum. In view of Lemma 7 we
may assume without loss that A contains the element 1 with multiplicity m > n/2.
If A contains an element in the interval [n/2, n], this element can be combined with
a certain multiple of 1 to get a zero-sum. Let x1, . . . , xk be the list of all elements
in A different from 1. Either

∑

ι(xi) ≤ n − m − 1, which is consistent with our

claim, or there is a least ℓ such that s =
∑ℓ

i=1 ι(xi) > n − m − 1. Since no single
xi satisfies ι(xi) > n/2, we have s ∈ [n − m, n− 1], hence, s can be combined with
a certain multiple of 1 to get a zero-sum, which is a contradiction. �
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3. Proof of Theorem 1

Proof of Theorem 1. Let k and ℓ be fixed once and for all. We want to describe the
set of n co-prime to k such that D(Zℓ

k ⊕Zn) = (ℓ − 1) · (k − 1) + kn holds. This is
equivalent to the non-existence of a zero-sum free set A ⊂ Zℓ

k ⊕ Zn of cardinality
(ℓ − 1) · (k − 1) + kn.

First note that such a set A can be described by its projection A onto Zℓ−1
k and

the multi-function f : A → Zn such that (a, f(a)) ∈ A is the preimage of a ∈ A.
Using this description, the existence of a set A as above is equivalent to the existence
of a set A ⊂ Zℓ

k of cardinality (ℓ− 1) · (k− 1)+ kn and a multi-function f : A → Zn

(call (A, f) a “candidate”) such that the following condition holds:
(*) For any zero-sum Z ⊂ A, the sum

∑

a∈Z f(a) is not equal to zero.
We will use the following terminology: A “constant” is a value which only de-

pends on k and ℓ (but not on n); “bounded” means bounded by a constant (in
the sense just described), and “almost all” means that the number of exceptions is
bounded.

Here is the main part of the proof. We initially skip the proofs of the three
following steps:

(1) Suppose (A, f) is a candidate and (Zi)i≤m is a system of m disjoint zero-

sum subsets of A. From this we can form the multi-set B := B((Zi)i) :=
{
∑

a∈Zi
f(a) | 1 ≤ i ≤ m} ⊂ Zn. If (A, f) satisfies (*), then B has to be

zero-sum free.
We will find a constant cdefect such that (A, f) satisfies (*) if and only

if for all systems of m := n − cdefect disjoint zero-sum subsets of A, the
corresponding set B((Zi)i) is zero-sum free. From now on, we fix m like
this.

(2) We will find a constant ccard such that if (*) holds for the candidate (A, f)
and (Zi)i is a system of m disjoint zero-sums of A, then at most ccard of
the sets Zi do not have cardinality k.

(3) We will show that when checking whether a pair (A, f) satisfying (*) exists,
it is enough to consider only certain pairs, the “main candidates”, which
are defined as follows. We will fix a suitable constant cdifferent. (A, f) is a
main candidate if there exists an element a0 ∈ Zl

k such that there are at

least |A| − cdifferent occurrences of a0 in A with f(a0) = 1
k
. Note that 1

k

does make sense as k and n are co-prime. (Right now, we could as well have
written f(a0) = 1 instead of f(a0) = 1

k
, but later, 1

k
will be more handy.)

The remainder of the proof goes as follows:

(4) We describe sets A which occur in some main candidate (A, f) “indepen-
dently of n” in the following way: in the next step we will choose a constant
cvar ≥ cdifferent. For any A ⊂ Zℓ

k suitable for a main candidate there is an

element a0 ∈ Zℓ
k and a tuple (aj)j ∈ (Zℓ

k)cvar such that A = A0 ∪A1, where

A0 := {aj | 1 ≤ j ≤ cvar} and A1 := {a
(ℓ−1)·(k−1)+kn−cvar

0 }.
In addition, if the set A of a main candidate (A, f) is given in that way,

then we may suppose f(a0) = 1
k

for all a0 ∈ A1. So to describe the function
f of such a main candidate it is sufficient to choose values fj := f(aj) ∈ Zn

for 1 ≤ j ≤ cvar.
(5) Suppose (A, f) is a main candidate which is given as in the previous step,

and suppose (Zi)i is a system of m disjoint zero-sum subsets of A. At
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least m − ccard − cdifferent =: m − ceq of the sets Zi are of the form {ak
0}

with f(a0) = 1
k

for all these occurrences of a0. So by choosing cvar in

such a way that |A1| = k(m− ceq), we may suppose that the sets (Zi)i≤ceq

form a system of ceq disjoint zero-sums of A0, and all remaining sets Zi

(ceq < i ≤ m) are subsets of A1 of the form {ak
0}.

Note that in this way, all systems of disjoint zero-sums which we have
to consider are described in a way which is independent of n.

(6) The set B := B((Zi)i) corresponding to such a system is of the form
{b1, . . . , bceq , 1

m−ceq}, where bi =
∑

a∈Zi
f(a) =

∑

{j|aj∈Zi}
fj. (Note that

this already resembles a system of linear equations.)
(7) Suppose m ≥ 3

4n, i.e. n ≥ 4cdefect. Then we can apply Corollary 8 to the
set B and get that it is zero-sum free if and only if bi 6= 0 for all i and
∑ceq

i=1 ι(bi) < n − (m − ceq) = cdefect + ceq. (Here ι : Zn → N is defined as
in Corollary 8.)

In particular, we get a set C0 ⊂ Zceq not depending on n such that B is
zero-sum free if and only if the tuple (bi)i lies in the image of C0 under the
projection π : Zceq ։ Z

ceq
n .

(8) Putting all this together, we have: For sufficiently large n, there exists a
pair (A, f) satisfying (∗) if and only if:

∨

(a0,(aj)j)∈(Zℓ
k
)1+cvar

∃(fj)j ∈ Zcvar
n

∧

(Zi)i system of
ceq disjoint

zero-sums in A0

∨

(ci)i∈C0

∧

1≤i≤ceq

∑

{j|aj∈Zi}

fj = π(ci)

We used big conjunctions and disjunctions
∧

and
∨

as notation for uni-
versal and existential quantifiers to emphasise that their range is finite and
independent of n.

Putting this formula into disjunctive normal form and moving the exis-
tential quantifier inside the

∨

, we get that there exists a pair (A, f) satis-
fying (∗) if and only if at least one of a finite number of systems of linear
equations has a solution in Zn.

By Lemma 5, each system either contributes only finitely many integers
n such that (A, f) satisfies (∗), or the contributed set has the form {n |
(n, d) ∈ T } for some integer d and some set T of divisors of d containing 1.
The union of sets of this form again has this form, so the first part of the
theorem is proven.

Concerning the algorithm it is enough to find computable bounds for the
following: a bound n0 such that the above formula holds for all n ≥ n0; a
bound n1 such that if the system of equations is solvable modulo n only for
finitely many n, then these n are at most n1; a bound d0 such that if the
system of equations is solvable for infinitely many n, then d ≤ d0.

Clearly, all bounds which appear in this proof are computable, so we
do get this result. In Section 3.1, we will even determine such bounds
explicitly.

Now let us fill in the three remaining steps.

(1) Let A ⊂ Zℓ
k be of cardinality (ℓ − 1) · (k − 1) + kn, and suppose Z ⊂ A is

any zero-sum subset. We want to construct a large system (Zi)i of disjoint
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zero-sums in A such that Z can be written as union of some of these zero-
sums Zi. This then implies the first step: if B((Zi)i) is zero-sum free, then
in particular the sum

∑

a∈Z f(a) is not zero.

By Lemma 4 we can find at least ⌊ |Z|−c(k,ℓ)
k

⌋ disjoint zero-sums in Z

and at least ⌊ |A\Z|−c(k,ℓ)
k

⌋ disjoint zero-sums in A \ Z. We may suppose
that Z is the union of the zero-sums we found inside. Together, we get

⌊ |Z|−c(k,ℓ)
k

⌋ + ⌊ |A\Z|−c(k,ℓ)
k

⌋ ≥ ⌊ |A|−2c(k,ℓ)
k

⌋ − 1 =: m =: n − cdefect disjoint

zero-sums in A. Note that cdefect does not depend on n.
(2) Now suppose A ⊂ Zℓ

k is a candidate satisfying (*). We want to show that

in systems of m disjoint zero-sums of A, almost all sets have exactly k
elements.

Suppose first that A contains N disjoint zero-sum sets which together
have only kN − c elements (for some value c). Then in the remaining
(ℓ − 1) · (k − 1) + k(n − N) + c elements of A, we can find (by Lemma 4)

⌊ (ℓ−1)·(k−1)+k(n−N)+c−c(k,ℓ)
k

⌋ = n−N + ⌊ (ℓ−1)·(k−1)+c−c(k,ℓ)
k

⌋ disjoint zero-
sums. If c ≥ c(k, ℓ) − (ℓ − 1) · (k − 1) =: cless + 1 these are n − N disjoint
zero-sums, and together with the other N ones, we get n disjoint zero-sums
Zi. But then the set of sums B((Zi)i) ⊂ Zn can not be zero-sum free,
which is a contradiction.

In particular, we just showed that there are at most cless disjoint zero-
sum subsets of A with cardinality less than k.

Now let (Zi)i be a system of m disjoint zero-sum sets. To see that
almost all of these sets have at most k elements, just note that there are
not so many elements in A left over to make the sets bigger. More precisely,
suppose that M of the sets Zi have more than k elements, i.e. at least k+1
elements each. The remaining m−M sets contain at least k(m−M)− cless

elements, so altogether we get the inequality M(k+1)+k(m−M)−cless ≤
|A| = (ℓ−1)·(k−1)+kn. This implies M ≤ (ℓ−1)·(k−1)+kn−km+cless =
(ℓ − 1) · (k − 1) + k · cdefect + cless =: cmore.

Putting both together, we get that no system of m disjoint zero-sums
has more than ccard := cmore + cless sets of cardinality different from k.

The third step requires some more work. We decompose it into several sub-
steps. We use two kinds of arguments: (a) if (A, f) is a candidate satisfying (*),
then (A, f) has some properties, and (b) if (A, f) is a candidate satisfying (*), then

there is also another candidate (A
′
, f ′) with some additional properties.

(3.1) Suppose that n is sufficiently large. Then for any system (Zi)i of m disjoint
zero-sums in A, almost all elements of the sum-set B := B((Zi)i) are equal
to one single element b ∈ Zn which generates Zn.

This follows from Lemma 7. We need |B| = n − cdefect ≥ 2
3n, i.e.

n ≥ 3cdefect. And we get an element with multiplicity at least 2|B|−n+1 =
m − cdefect + 1 =: m − cws. (ws = wrong sum.)

(3.2) If n ≫ 0, then the prevalent value b in B((Zi)i) is the same for any system
(Zi)i of m disjoint zero-sums of A.

Suppose (Zi)i and (Z ′
i)i are two different systems of disjoint zero-sums,

and denote the prevalent values is B((Zi)i) and B((Z ′
i)i) by b and b′ re-

spectively. We choose cws + 1 of the sets Zi which all have cardinality at
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most k and all have Zn-sum b. This is possible if m ≥ cmore + 2cws + 1.
Without loss, our chosen sets are Z1, . . . , Zcws+1.

Now we do the same for (Z ′
i)i, i.e. we choose Z ′

1, . . . , Z
′
cws+1 to have at

most k elements each and to have Zn-sum-values b′. But in addition, we
want that these sets Z ′

j (for j ≤ cws + 1) are disjoint from the sets Zi (for
i ≤ cws + 1). Each set Zi can intersect at most k of the sets Z ′

j , so the

additional condition forbids at most k ·(cws +1) of the m sets Zj. Therefore
we can find our desired sets if m ≥ cmore + 2cws + 1 + k · (cws + 1).

Now we use Lemma 4 to complete our chosen sets (Zi)i≤cws+1 and
(Z ′

i)i≤cws+1 to a system of m disjoint zero-sum sets. By (3.1), there is
a prevalent value b′′ for this system, which leaves out at most cws sets.
This implies that both b and b′ are equal to b′′.

Without loss, we will now suppose that the prevalent Zn-value of any m
disjoint zero-sums is 1.

(3.3) There exists a constant cdifferent such that for at most cdifferent of the ele-
ments a ∈ A, we have f(a) 6= 1

k
. In fact we will choose cdifferent such that

even a slightly stronger statement holds: for each a ∈ Zℓ
k, let ra be number

of copies of a in A with f(a) = 1
k
. Then

∑

a∈Z
ℓ
k
k · ⌊ ra

k
⌋ ≥ |A| − cdifferent.

Let us call a subset Z ⊂ A “neat” if it is of the form {ak} for some
a ∈ Zℓ

k.
We construct a system (Zi)i of m disjoint zero-sums with lots of neat

sets in the following way: for each element a ∈ Zℓ
k which appear with

multiplicity i in A, we form ⌊ i
k
⌋ disjoint sets of the form {ak}. If we get

more than m sets in this way, we choose m of them. If we get less than m
sets, then we use Lemma 4 on the remainder of A to complete our system.
Denote by κ the number of neat sets we got in that way.

The minimal value of κ is attained if the multiplicity in A of each a ∈ Zℓ
k

is congruent k−1 modulo k. So we get κ ≥ min{m, 1
k
(|A|− (k−1) ·kℓ)} =:

m − cnn (nn = not neat).
Among all systems of disjoint zero-sums in A which have κ neat sets

now choose a system (Zi)i where the number of neat sets Zi with sum
∑

a∈Zi
f(a) equal to 1 is minimal. At most cws sets have not sum 1 and

at most cnn are not neat, so even in this minimal choice we get at least
m − cnn − cws neat sets with sum 1.

Choose a ∈ Zℓ
k, and let N be the union of all neat sets Zi of the form

{ak} with Zn-sum 1. We claim that if there are at least two such neat sets,
then f is constant on N ; in particular this implies that the value of f on
N is 1

k
. Suppose f is not constant on N . Then there are two elements

a1, a2 ∈ N with f(a1) 6= f(a2) which belong to two different neat sets Zi1 ,
Zi2 . Modify the system (Zi)i by exchanging a1 and a2. Then Zi1 and Zi2

do not have sum 1 anymore, so the new system contradicts the assumption
that the old one had a minimal number of neat sets with sum 1.

In this construction, the number of elements a′ of A for which we proved
that f(a′) = 1

k
is minimal if for all but one a ∈ Zℓ

k, there is exactly one

neat set with Zn-sum 1 of the form {ak}. So there are at least m − cnn −
cws − (kℓ − 1) neat sets contributing elements with f(a′) = 1

k
, which yields

k · (m − cnn − cws − (kℓ − 1)) =: |A| − cdifferent such elements. As these
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elements are contributed in groups of k, we also get the slightly stronger
statement mentioned at the beginning of this step.

(3.4) The last part of step (3): if (A, f) satisfies (*), then there is also a main

candidate (A
′
, f ′) satisfying (*).

Remember that (A
′
, f ′) is a main candidate if there is an element a0 ∈ Zℓ

k

such that A
′
contains a lot of copies of a0 with f(a0) = 1

k
.

We construct (A
′
, f ′) out of (A, f) in the following way. As before for

a ∈ Zℓ
k let ra be number of copies a′ ∈ A of a with f(a′) = 1

k
. Choose

a0 ∈ Zℓ
k such that ra0 is maximal. Let (A

′
, f ′) be equal to (A, f) with the

following modification: For each a ∈ Zℓ
k, replace k · ⌊ ra

k
⌋ copies a′ ∈ A with

f(a′) = 1
k

by the same number of copies of a0 with f ′(a0) = 1
k

on these
copies. The previous step ensures that in this way, we indeed get a main

candidate (A
′
, f ′).

We are now only left to prove that for any system of disjoint zero-sums

(Z ′
i)i of (A

′
, f ′) we can find a system of disjoint zero-sums (Zi)i of (A, f)

such that B((Zi)i) = B((Z ′
i)i). (Then if (A

′
, f ′) does not satisfy (*) because

of (Z ′
i)i, we get that (A, f) does not satisfy (*) because of (Zi)i.)

So suppose (Z ′
i)i is given. Remove all sets of the form {ak

0}, where
f(a0) = 1 on all these copies of a0 and denote the remaining system by
(Zi)i. If the total number of elements in

⋃

i Zi which are copies of a0 and

which have f -value 1 is at most ra0 (the number of such elements in A),
then this (Zi)i can be seen as a system of subsets of A. This condition is

satisfied for n ≫ 0, as |
⋃

i Zi| is bounded whereas ra0 ≥ |A|−cdifferent

kℓ .

Finally add sets of the form {ak} ⊂ A for appropriate a ∈ Zℓ
k to (Zi)i,

where f(a) = 1
k

on all these copies of a, until we again get a system of m

disjoint zero-sums. This is possible as A and A
′
differ only by “groups of

k”.

�

3.1. Computation of the bounds. The proof of Theorem 1 actually gives a
little more than just decidability. In fact, for each k and ℓ, there is a computable
constant n0, such that the expected equation D(Zℓ

k ⊕ Zn) = (ℓ − 1) · (k − 1) + kn
holds true for all integers n co-prime to k if and only if it holds true for all integers
n ≤ n0 which are co-prime to k. In this section we compute an upper bound for n0.
Unfortunately, D(G) is computable only for very small groups G, while the value
for n0 obtained in this subsection is rather large. However, we still believe that
the algorithm given above can be performed for several small values of k and ℓ, in
particular if one does some manual improvements using the explicit knowledge of
k and ℓ.

A bound for Lemma 4: Denote by Dk(Zℓ
k) the least integer n such that every

multi-set consisting of n elements in Zℓ
k contains a zero-sum of length ≤ k. Then

c(k, ℓ) ≤ Dk(Zℓ
k)− k, since every multi-set containing k(m− 1) + Dk(Zℓ

k) elements
contains a system of m disjoint zero-sums each of length ≤ k. For Dk(Zℓ

k) we
have the trivial bound kℓ+1, but also the estimate Dk(Zℓ

k) ≤ (256ℓ log ℓ)ℓ · k due to
Alon and Dubiner [1]. For specific values of k and ℓ, great improvements on both
bounds are possible; it is probably at this point that our estimates can be improved



ZERO-SUM FREE SEQUENCES 11

most easily. To avoid some awkward expressions in the sequel, we shall express all
constants occurring in the proof of Theorem 1 explicitly in terms of k, ℓ and c(k, ℓ),
and give an explicit estimate using only the bound c(k, ℓ) ≤ kℓ+1.

Step (1): cdefect = 1 + ⌈ 2c(k,ℓ)−(ℓ−1)(k−1)
k

⌉ ≤ 2kℓ+1

Step (2): cless = c(k, ℓ) − (ℓ − 1)(k − 1) − 1 ≤ kℓ+1

Step (2): cmore = (ℓ − 1) · (k − 1) + k · cdefect + cless ≤ (2k + 2)kℓ+1

Step (2): ccard = cmore + cless ≤ (2k + 3)kℓ+1

Step (3.1): cws = cdefect − 1 ≤ 2kℓ+1

Step (3.1) needs n ≥ 3cdefect. So n ≥ 6kℓ+1 suffices.
Step (3.2) needs n ≥ cdefect + cmore +2cws +1+k · (cws +1). So n ≥ (4k +7)kℓ+1

suffices.
Step (3.3): cnn = max{0, (k−1) ·kℓ−1 − 1

k
(ℓ−1)(k−1)− cdefect}. The estimates

above yield cnn = 0, and we shall treat cnn as 0 in the sequel, however, using more
explicit estimates for c(k, ℓ) yields non-zero values for cnn as well.

Step (3.3): cdifferent = (ℓ−1)(k−1)+k(cdefect+cnn+cws)+k(kℓ−1) ≤ (4k+1)kℓ+1

Step (3.4): |
⋃

i Zi| ≤ (ℓ−1)(k−1)+k(cdefect+ccard+cdifferent); ra0 ≥ (ℓ−1)(k−1)+kn−cdifferent

kℓ .

Step (3.4) needs n ≥ kℓ−1(ℓ−1)(k−1)+kℓ(cdefect+ccard+cdifferent)+
1
k
cdifferent−

1
k
(ℓ − 1)(k − 1). So n ≥ (6k + 12)k2ℓ+1 suffices.

Step (5): ceq = ccard + cdifferent ≤ (6k + 4)kℓ+1

Step (5): cvar = (ℓ − 1) · (k − 1) + kcdefect + kceq ≤ (6k + 7)kℓ+2

Step (7) needs n ≥ 3cdefect. So n ≥ 8kℓ+1 suffices.
Step (7): The sum of all bi (right hand sides of a system of equations correspond-

ing to a single system of disjoint zero-sums) is less than cdefect + ceq ≤ (6k+6)kℓ+1.
Step (8): The number of variables in each system of equations is cvar.
Step (8): The total number of equations (after putting the formula into dis-

junctive normal form and removing duplicate equations) is equal to the number of
zero-sums in a set of cardinality cvar which are part of a system of ceq disjoint zero-

sums. Bounding this number by the number of all subsets gives 2cvar ≤ 2(6k+7)kℓ+2

.
Hence, we can apply Lemma 5 and Corollary 6 to obtain the following.

Proposition 9. There exists a constant c such that the following holds true. Let k, ℓ
be integers, such that there exists some n, co-prime to k, satisfying D(Zℓ

k ⊕ Zn) 6=

(ℓ− 1)(k − 1) + kn. Let n1 be the least such n. Then we have n1 ≤ 2c2(6k+9)kℓ+2

. If
there are infinitely many such n, then we have n1 ≤ (6k + 7)kℓ+2.

Proof. Using the estimates above and Corrolary 6, we obtain

n1 ≤ (c2cvar(cdefect + ceq))
c2cvar log(cdefect+ceq)

≤ (c2(6k+7)kℓ+2

(6k + 6)kℓ+1)c2(6k+7)kℓ+2
((ℓ+2) log k+log 9)

≤ 2c2(6k+9)kℓ+2

,

and our claim follows. �

Note that the smallest case of interest would be k = 4, ℓ = 3, that is, checking
D(Z2

4 ⊕Z4n) = 4n+6 for all odd n up to 31744 would imply that this equation has
only finitely many solutions. Unfortunately, even the case n = 3 has not yet been
decided , although it is within reach of modern computers.
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4. Proof of Theorem 3

In this section we prove that B(n) implies D(Z3 ⊕Z2
3n) = 6n+1 if n is co-prime

to 6. We suggest that before reading the following lemmas, the reader goes directly
to the main proof and starts reading it to get the main idea.

4.1. Lemmas needed in the proof.

Lemma 10. Among 17 arbitrary elements in Z3
3 there is a zero-sum of length at

most 3, and among 9 distinct elements there is a zero-sum of length at most 3.
Moreover, up to linear equivalence, there is precisely one set of 8 distinct elements
without zero-sums of length at most 3, which is given as {x, y, z, x+y, x+y+z, x+
2y + z, 2x + z, y + 2z}.

Proof. The second part is [3, Lemma 1 (ii)], the first part is folklore (and follows
immediately from the second part). �

Lemma 11. Suppose that n ≥ 5 is an integer having property B, and B is a subset
of Z2

n with either 2n − 3 or 2n − 4 points. Then, with one exception, there always
exists a group homomorphism F : Z2

n → Zn such that:

(1) In the case |B| = 2n − 3: For any c with B ∪ {c} zero-sum free, we have
F (c) = 1.

(2) In the case |B| = 2n− 4: For any c1, c2 with B ∪ {c1, c2} zero-sum free, we
have F (ci) ∈ {0, 1}, and at least one of F (c1) and F (c2) is equal to 1.

The exception is B = {bn−2
1 , bn−2

2 }, where b1 and b2 generate Z2
n.

Proof. Every completion of B to a zero-sum free set contains an element b with
multiplicity n − 2 or n − 1 such that all other elements of the completion are
contained in a Co-set of 〈b〉 which is a generator of Z2

n/〈b〉. We will call an element
of B important if it could get such an element after completion; i.e. an element
b ∈ B is important if its multiplicity is at least n−3 in the first case or n−4 in the
second case, if its order is n and if all other elements of B are contained in a Co-set
of 〈b〉 which is a generator of Z2

n/〈b〉. B contains at least one important element.
We will do case distinctions between the different possibilities for the important
elements of B. But before we start, let us have a closer look at what can happen if
B contains two important elements, say b1 and b2.

First note that these two elements generate Z2
n, as (by the importance of b1) b2

lies in a Co-set of 〈b1〉 generating Z2
n/〈b1〉. Now b2 fixes the Co-set of 〈b1〉 and vice

versa, so all elements of B other than b1 and b2 lie in both b2 + 〈b1〉 and b1 + 〈b2〉;
we get B = {bm1

1 , bm2
2 , (b1 + b2)

|B|−m1−m2}. In particular, B contains no third
important element.

First consider the case |B| = 2n − 3. We distinguish the following cases:

• B contains only one important element b. Then the other elements of B
define a Co-set L of 〈b〉, and all elements c completing B either are equal to
b or lie in L. If b has multiplicity n− 1, then c = b is impossible, so choose
F such that F (L) = 1. If b has multiplicity n − 2, then there are only two
possibilities for c: c = b and one other possibility on L (such that the sum
of c and the elements of B ∩ L is equal to b). Choose F to be 1 on these
two possibilies. If b has multiplicity n − 3, then only c = b is possible.
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In the remaining cases, B contains two important elements, so B = {bm1
1 , bm2

2 , (b1 +
b2)

m3} for some m1, m2, m3 satisfying and m1+m2+m3 = 2n−3. We may suppose
m1 ≥ m2.

• m1 = n − 1: All completions of B lie in b2 + 〈b1〉.
• m1 = m2 = n− 2, m3 = 1: There are two possible completions: c = b1 and

c = b2.
• m1 = n − 2, m2 = n − 3, m3 = 2: There are two possible completions:

c = b1 and c = b2 − b1.
• m1 = m2 = n − 3, m3 = 3: There is no possible completion.

Now consider the case |B| = 2n− 4. We distinguish the following cases:

• B contains only one important element b. Then the other elements of B
define a Co-set L of 〈b〉, and for all completions {c1, c2}, both ci lie in
L∪ {b}. If the multiplicity of b in B is n− 1 or n− 2, we can take F to be
the function which is 1 on L (and 0 on b). Otherwise at least one of the ci

is equal to b and the other one either es equal to b, too, or it lies on L and
is determined by B. So a function F exists.

Again, in the remaining cases B = {bm1
1 , bm2

2 , (b1 + b2)
m3} with m1 ≥ m2 and

m1 + m2 + m3 = 2n− 4.

• m1 = m2 = n−2, m3 = 0. This is the exception mentioned in the statement
of the lemma.

• m1 = n−2, m2 ≤ n−3: There are three types of completions: c1 = b1 and
c2 ∈ b2 + 〈b1〉; c1 = c2 = b2; both ci lie in b2 + 〈b1〉 with some condition on
c1 + c2. (Note that in the case m2 = n − 3, we have m3 = 1 and c1 = b2

implies c2 = b1.) So the function F which maps b2 + 〈b1〉 to 1 does the job.
• m1 = m2 = n−3, m3 = 2: There are four possible completions: {b2

1}, {b
2
2},

{b1, b2 − b1} and {b2, b1 − b2}. Take F to map b1 and b2 to 1.
• m1 = n− 3, n2 = n− 4, m3 = 3: There are two possible completions: {b2

1}
and {b1, b2 − 2b1}. (Note that {b2

2} does not work.) Take F to map b1 and
b2 − 2b1 to 1.

• m1 = m2 = n − 4, m3 = 4: No completion is possible.

�

We will need the following refined version of part 2 of Lemma 11:

Lemma 12. Suppose that n ≥ 5 is an odd integer having property B. Suppose
further that B is a subset of Z2

n with 2n − 4 points. Let C be the set of two-
element-sets {c1, c2} ⊂ Z2

n such that B ∪ {c1, c2} is zero-sum free. Then, up to an
automorphism of Z2

n, C is a subset of one of the following sets:

(1) C1 =
{

{(x1, 1), (x2, 1)} | x1, x2 ∈ Zn

}

.

(2) C2 = C′
2 ∪ C′′

2 with C′
2 =

{

{(1, 0), (x, 1)}, {(x, 1), (1 − x, 1)} | x ∈ Zn

}

and

C′′
2 =

{

{(0, 1), (1, y)}, {(1, y), (1, 1− y)} | y ∈ Zn

}

.

(3) C3 = C′
3∪C′′

3 with C′
3 =

{

{(1, 0)2}, {(1, 0), (−1, 1)}
}

and C′′
3 =

{

{(0, 1)2}, {(0, 1), (1,−1)}
}

.

Proof. As in the proof of Lemma 11, we consider the different possibilities for the
important elements. If B contains only one important element, we can suppose
that it is (1, 0) and that the other elements of B have y-coordinate one; we denote
the multiplicity of (1, 0) by m1. If there are two important elements, we suppose
that B = {(1, 0)m1 , (0, 1)m2 , (1, 1)m3} with m1 ≥ m2.
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• One important element, m1 = n − 1: C = C1.
• One important element, m1 = n − 2: apply an automorphism of Z2

n fixing
(1, 0) and mapping the sum of those n− 2 elements of B with y-coordinate
one to (0,−2). Then C = C′

2 ⊂ C2.
• One important element, m1 = n − 3: apply an automorphism fixing (1, 0)

and mapping the sum of those n − 1 elements of B with y-coordinate one
to (2,−1). Then C = C′

3 ⊂ C3.
• One important element, m1 = n − 4: C =

{

{(1, 0)2}
}

⊂ C3.
• Two important elements, m1 = m2 = n − 2, m3 = 0: C = C2.
• Two important elements, m1 = n − 2, m2 = n − 3, m3 = 1: apply an

automorphism fixing (1, 0) and mapping (0, 1) to (1
2 , 1). Then C = C′

2 ⊂
C2.

• Two important elements, m1 = n − 2, m2 = n − 4, m3 = 2: apply an
automorphism fixing (1, 0) and mapping (0, 1) to (1, 1). Then C = C′

2 ⊂ C2.
• Two important elements, m1 = m2 = n − 3, m3 = 2: C = C3.
• Two important elements, m1 = n − 3, m2 = n − 4, m3 = 3: apply an

automorphism fixing (1, 0) and mapping (0, 1) to (1, 1). Then C = C′
3 ⊂ C3.

• Two important elements, m1 = m2 = n − 4, m3 = 4: C = ∅.

�

In addition, we will need the two following lemmas:

Lemma 13. Suppose n is an integer co-prime to 6 and A ⊆ Z3
3 has 10 elements.

Suppose further that A has no zero-sum of length ≤ 3 and A has no two disjoint
zero-sums. Then there is no multi-function g : A → Zn (i.e. function which may
take different values on different copies of an element a ∈ A) such that for every
zero-sum Z ⊆ A we have

∑

z∈Z g(z) = 1.

Proof. If we would require g to be a real (i.e. single-valued) function, then this
would be [3, Theorem 1]. So the only thing we have to check is that the existence
of a multi-function g implies the existence of a real function g′ with the same
properties.

Define g′ by taking for g(a) the mean value of the values of g(a). Note first that
the maximal multiplicity of points in A is 2 (as A does not contain a zero-sum of
length 3), so g can have at most two values at any point. In particular the mean
value makes sense (because 2 ∤ n).

Now consider any point a ∈ A where g has two values. The modification does
not change

∑

z∈Z g(z) if Z does not contain a or if Z contains both copies of a.

However, no zero-sum Z can contain only one copy of A, for otherwise, we would
get two different values for

∑

z∈Z g(z), which contradicts
∑

z∈Z g(z) = 1. �

Lemma 14. Suppose n is an integer co-prime to 6, A ⊆ Z3
3 has 13 elements, and

f : A → Z2
n is a multi-function. Suppose further that A has no zero-sum of length

≤ 3 and A has no three disjoint zero-sums. Let C be the set of two-element-sets
{
∑

z∈Z1
f(z),

∑

z∈Z2
f(z)}, where Z1 and Z2 are two disjoint zero-sums in A. Then

C is not a subset of any of the three sets C1, C2 or C3 of Lemma 12.

Proof. This has been verified by our computer. For details on how this has been
done see Section 5.
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Note that concerning C1, this is just an unnecessarily complicated way of saying
that there is no function g : A → Zn which maps any zero-sum of A which is disjoint
to another zero-sum to one. �

4.2. The proof itself. We are now in a position to prove Theorem 3.

Proof of Theorem 3. Suppose n is co-prime to 6, B(n) holds true, G = Z3 ⊕ Z2
3n,

and A ⊆ G is a multi-set of M(G) = 6n + 1 elements. Suppose A contains no
zero-sum. We have to get to a contradiction.

Let A be the projection of A onto Z3
3, and let f : A → Z2

n be the multi-function
such that (a, f(a)) is the preimage of a ∈ Z3

3 in A under the projection.
We remove zero-sums of length ≤ 3 from A as long as possible, ending in a set

A
∗

with less than 17 points (by Lemma 10). Denote by B the multi-set in Z2
n

corresponding to the removed zero-sums: for each removed zero-sum Z ⊂ A, put
the element

∑

z∈Z f(z) into B. As A is zero-sum free, so is B. The strategy in the

remainder of the proof is to consider zero-sums Z ∈ A
∗

and their corresponding
elements c =

∑

z∈Z f(z) in Z2
n. If we find such a c such that B ∪ {c} does contain

a zero-sum, we have our desired contradiction. When using this strategy, we may

assume that while passing from A to A
∗

we never removed zero-sums of length < 3;

otherwise A
∗

only gets bigger and the proof gets easier.

Hence |A
∗
| has the form 3i + 1 and |B| = 2n − i. As B has no zero-sum, we

have |B| ≤ 2n− 2, so i ≥ 2 and |A
∗
| ≥ 7. If |A

∗
| = 7, then A

∗
itself still contains a

zero-sum, so this is not possible either. Therefore A
∗

consists of 10, 13 or 16 points.

Suppose first that we end with |A
∗
| = 16. Then we have 16 points without a

zero-sum of length ≤ 3. As 9 distinct points would contain such a zero-sum (by
Lemma 10) there are precisely 8 points taken twice. Since the only configuration of
8 distinct points without a zero-sum of length 3 is the one given in Lemma 10, we

find that A
∗

equals this set with each point taken twice. But this set contains four
disjoint zero-sums: {x, y, (x + y)2}, {x, z2, 2x+ z}, {y, x+ y + z, (x+ 2y + z)2} and
{x + y + z, 2x + z, (y + 2z)2}. So we can enlarge B to a set with 2n − 1 elements,
which is a contradiction.

Next, suppose that |A
∗
| = 10. Then B consists of 2n− 3 points in Z2

n, and each

zero-sum Z in A
∗

yields an element c =
∑

z∈Z f(z) of Z2
n such that B ∪ {c} is

zero-sum free. Since n satisfies property B (and is ≥ 5), we can apply Lemma 11
and obtain a linear function F : Z2

n → Zn such that for every c as above F (c) = 1.
But now g := F ◦ f is a contradiction to Lemma 13.

Finally, consider the case |A
∗
| = 13. Then B consists of 2n−4 points in Z2

n. We

check that A
∗

and f contradict Lemma 14. It is clear that A
∗

does not contain a

zero-sum of length ≤ 3 and that A
∗

does not contain three disjoint zero-sums.
Denote by C the set of two-element-sets {

∑

z∈Z1
f(z),

∑

z∈Z2
f(z)}, where Z1

and Z2 are two disjoint zero-sums in A
∗
. Each {c1, c2} ∈ C completes B to a

zero-sum free subset of Z2
n, so by Lemma 12, C is a subset of one of the three sets

Ci mentioned in that lemma. This is exactly what we need to get a contradiction
to Lemma 14. �

5. Computer proof of Lemma 14

Recall the statement of the lemma : we are given an integer n co-prime to 6, a
set A ⊆ Z3

3 consisting of 13 elements, and a multi-function f : A → Z2
n. We suppose
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that A has no zero-sum of length ≤ 3 and no three disjoint zero-sums. We let C
be the set of two-element-sets {

∑

z∈Z1
f(z),

∑

z∈Z2
f(z)}, where Z1 and Z2 are two

disjoint zero-sums in A. The statement is that C is not a subset of any of the three
sets C1, C2 or C3 of Lemma 12:

C1 =
{

{(x1, 1), (x2, 1)} | x1, x2 ∈ Zn

}

C2 =
{

{(1, 0), (x, 1)}, {(x, 1), (1− x, 1)} | x ∈ Zn

}

∪
{

{(0, 1), (1, y)}, {(1, y), (1, 1− y)} | y ∈ Zn

}

C3 =
{

{(1, 0)2}, {(1, 0), (−1, 1)}, {(0, 1)2}, {(0, 1), (1,−1)}
}

The program is divided into two parts. First find all possible multi-sets A (up
to automorphism of Z2

3), regardless of the function f , and then, for each fixed set
A and each i ∈ {1, 2, 3}, find all possible functions f : A → Z2

n such that C ⊂ Ci.
If no such f is found, then the lemma is proven.

5.1. Finding all multi-sets A. The program recursively tries every possibility for
A by starting with an empty set and successively adding elements. After adding
an element, it checks right away if A still fulfils the above conditions before adding
more elements.

To save some time, symmetry is exploited a bit. For example, if A contains
exactly two elements of multiplicity 2, then we can suppose that A contains (1, 0, 0)
and (0, 1, 0) with multiplicity 2 and (0, 0, 1) with multiplicity 1.

As we do not exploit symmetry completely (this would be too complicated), the
program finds a lot of solutions which are the same up to automorphism, so we need
an algorithm to check whether there is an automorphism turning one multi-set into
another one. It turns out that all solutions A do contain a basis of Z2

3 of elements
of order two, so it is enough to try those automorphisms which map this basis of
one of the sets to elements of order two of the other set.

The program finds the following 15 multi-sets. The three 3 × 3-grids represent
the three planes of the cube Z3

3; the element (0, 0, 0) is the lower left corner of the
left-most plane. The numbers in the grids indicate the multiplicity of that element;
empty squares mean that the element is not contained in the set.

2
2

1 2

2

2 2
2

2

2 2

2

1 2 1
2

2

2

2

2 2 1
2

2

2 2

2

2

2
2

2

2

2

1 2 2
2

2

1

2

2 2 2
2

2

2

2

2 1 2
2

2

1 2

2

2

2
2

2

2 2

2

1
2

2

2

2

2 2
1 2 1

2

2 2
1

2

1
2 2

2

2 2

2

1

2 2
2

1 2
1

2

1
2 2

2

1 1
2

2

1 2
2

2

2 2
1

2

5.2. Finding all functions f : A → Z2
n. Now fix a set A as above and fix C := C1,

C := C2 or C := C3. We have to check that there is no function f : A → Z2
n such

that for any pair of disjoint zero-sums Z1 and Z2 in A, the pair {
∑

z∈Z1
f(z),

∑

z∈Z2
f(z)}

is contained in C.
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This can be reformulated as follows. From A, we define the following graph
G = (V, E): the vertices V are the zero-sums Z ⊂ A such that there does exist
a second zero-sum Z ′ ⊂ A which is disjoint to Z, and the edges E are the pairs
Z1, Z2 ∈ V which are disjoint. The set C defines another graph G′ = (V ′, E′): V ′

consists of all elements which appear in some pair in C, and E′ = C, i.e. the edges
are just the pairs contained in C. Any function f : A → Z2

n satisfying the above
condition defines a graph homomorphism φ : G → G′, and a graph homomorphism
φ : G → G′ yields a function f if and only if the following system of linear equations
Lφ has a solution in Zn: we have two variables xi and yi (i ∈ {1, . . . , 13}) for the two

coordinates of each f(ai), ai ∈ A, and for each vertex zero-sum Z = {ai1 , . . . , aik
} ∈

V we have the two equations given by
∑k

j=1 aij
= φ(Z).

The idea of the algorithm is to try every graph homomorphism φ and to check
that the corresponding system of linear equations Lφ has no solution for any n
co-prime to 6. But before we can do that, we have to replace G′ by a simpler graph
G′′.

To simplify G′, we merge some of the points which differ only in one coordinate.
Thus a graph homomorphism φ : G → G′′ will give less equations in Lφ. We do not
ensure that these equations are enough to prove the existence of f ; we only need
that if the equations have no solution, then no f exists.

In the case of C1, all this graph homomorphism is overkill (as already noted
directly after Lemma 12), but let us formulate it anyway so that we can treat all
three cases similarly.

• Case C3: No simplification necessary; G′′ = G′.
• Case C1: Merge all points of G′ to one single point in G′′ with a loop edge.

Each zero-sum Z ∈ V mapped to that point (i.e. all Z ∈ V ) yields one
equation in Lφ saying that the sum of the y-coordinates is equal to one.

• Case C2: Merge all points (1, y) for y ≥ 2 into one point and all points
(x, 1) for x ≥ 2 into one point. So G′′ looks like this:

≥2 •
1 • • •
0 •

0 1 ≥2

Zero-sums which get mapped to (1, 0), (0, 1) or (1, 1) still yield two equa-
tions in Lφ. Zero-sums which get mapped to (1,≥ 2) or (≥ 2, 1) yield only
one equation saying that the sum of the x-coordinates resp. y-coordinates
is equal to 1. In addition, we get equations for each edge which is mapped
to the loop at (1,≥ 2) (and, analogously, at (≥ 2, 1)): if (1, y1) and (1, y2)
were connected in G′, then y1 + y2 = 1. So if Z1, Z2 ∈ V are connected
and are both mapped to (1,≥ 2), then the sum of the y-coordinates of all
points in Z1 ∪ Z2 is equal to 1.

Now our graph G′′ is of reasonable size and it does make sense to try every
possible homomorphism φ : G → G′′. This is done by recursively fixing images φ(Z)
for zero-sums Z ∈ V . After an image is fixed, the algorithm first checks whether
the equations we already have do already yield a contradiction before going on.

The only thing left to describe is how to check whether a system of linear equa-
tions has no solution in Zn for any n co-prime to 6. This could be done using the
Smith normal form as in the proof of Lemma 5, but this would probably be too
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slow. Instead, we use the following method, which proves in sufficiently many cases
that no solution exists. (Note that we do not need an if-and-only-if algorithm.)

We apply Gaussian elimination over Z to our system of equations and then
consider only the equations of the form “a = 0” for a 6= 0 which we get. Each such
equation is interpreted as a condition on n, namely “n divides a”. If, taking all
these equations together, we get that n has only prime factors 2 and 3, then we
have a contradiction.

The algorithm takes about one second in the case C1, 70 minutes in the case C2,
and 5 minutes in the case C3 (for all 15 sets A together).

One more practical remark: When recursively trying all possible maps φ : G →
G′′, we use a slightly intelligent method to choose which φ(Z) to fix next: if there is
a Z ∈ V for which there is only one possible image left, we take that one; otherwise,
we take a Z ∈ V with maximal degree.
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