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2Universitá di Padova, dipartimento di Fisica ”G. Galilei” (Italy)

3Complex Networks Lagrange Laboratory, ISI Foundation, Turin, Italy
(Dated: November 8, 2007)

We investigate different opinion formation models on adaptive network topologies. Depending
on the dynamical process, rewiring can either (i) lead to the elimination of interactions between
agents in different states, and accelerate the convergence to a consensus state or break the network
in non-interacting groups or (ii) counter-intuitively, favor the existence of diverse interacting groups
for exponentially long times. The mean-field analysis allows to elucidate the mechanisms at play.
Strikingly, allowing the interacting agents to bear more than one opinion at the same time drastically
changes the model’s behavior and leads to fast consensus.

PACS numbers: 89.75.-k, -87.23.Ge, 05.40.-a

In the recent years, agent based models have been more
and more used in the area of social sciences. Through a
rather simple modeling approach for the individual pro-
cesses of social influence, these models focus on the emer-
gence of social behavior at the global population level.
Statistical physics models and tools provide therefore a
natural framework for such studies, and have been widely
applied, leading to the appearance of the field called so-
ciophysics (see [1] for a recent review on the application
of statistical physics models to social dynamics).

The growing field of complex networks [2, 3, 4] has
moreover allowed to obtain a better knowledge of social
networks [5, 6], and in particular to show that the typical
topology of the networks on which social agents interact
is not regular. Many studies have therefore considered
the evolution of models of interacting agents when agents
are embedded on more realistic networks, and studied
the influence of various complex topologies on the cor-
responding dynamical behavior [7]. An additional fea-
ture of networks, that may have a strong impact on the
model’s behavior, lies in their dynamical nature. They
may indeed evolve on various timescales, and the evo-
lution of the topology and the dynamical processes can
drive each other with complex feedback effects. Stud-
ies of this coevolution are more recent and still limited
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], with many open
issues.

In this Letter, we provide new insights into such feed-
back effects by an investigation of Voter-like models
(VM), in which agents update their opinions by imitat-
ing their neighbors, and can also break and establish con-
nections with other agents. More precisely, we show how
slight modifications in the evolution rule, which have mi-
nor consequences if the topology of interactions is kept
fixed, can change drastically the model’s behavior as soon
as the topology can evolve on the same timescale as the
agents’ opinions. On the other hand, the simple fact of
allowing agents to have several opinions at the same time,
in the spirit of the Naming Game [18] or of the AB model
[19], leads to more robust behavior.

The Voter model [20] considers a population of size N

in which each individual i has an opinion characterized
by a binary variable si = ±1: only two opposite opinions
are here allowed (for example a political choice between
two parties) [25]. Starting from a random configuration
of opinions, the dynamical evolution of the direct VM (d-
VM) is the following: at each elementary step, an agent
(i) is randomly selected, chooses one of its neighbors (j)
at random and adopts its opinion, i.e. si is set equal to
sj (one timestep consists of N such updates). In the re-
verse case (r-VM), the first agent i instead convinces its
neighbor j (sj is set equal to si). The distinction between
d- and r-VM is necessary since the two interacting nodes
do not play the same role. Moreover, the degrees of the
first and the second chosen nodes have different distribu-
tions, and the second is a large-degree node with larger
probability [2]. The asymmetry in the opinion update
between the two interacting nodes can then couple to
the asymmetry between a randomly-chosen node and its
randomly-chosen neighbor, leading to different dynami-
cal properties. No important difference is expected on
homogeneous networks but, on heterogeneous networks,
the probability for a hub to update its state will vary
strongly from one rule to the other. The basic imitation
process of the VM mimics the homogenization of opin-
ions but, since interactions are binary and random, do
not guarantee the convergence to a uniform state. Since
a consensus in which all individuals share the same opin-
ion is an absorbing state of the dynamics, any finite pop-
ulation reaches a consensus, but the time needed tc(N)
depends on its size N and on the topology of interactions,
and diverges as N → ∞. On static networks, tc(N) grows
as a power-law of N , with an exponent depending on the
degree distribution, and on the updating rule [21, 22, 23].
On homogeneous networks in particular, tc(N) ∝ N for
both d- and r-VM.

In this Letter, we consider the scenario in which agents
can rewire their “unsatisfied” connections. More pre-
cisely, the initial configuration is given by a random ho-
mogeneous network of interacting agents, with average
number of neighbors 〈k〉 and random opinions. At each
timestep, an agent i and one of its neighbors j are cho-
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FIG. 1: (Color online) Convergence time for the r-VM as a
function of the population size, for various rewiring probabil-
ities. Throughout this paper, the data from simulations were
averaged over 100 realizations of the system. Inset: same for
the d-VM. Note the difference of scales.

sen. With probability Φ, an attempt to rewire the link
is made, if si 6= sj . A new agent k is then chosen at
random and the link (i, j) is rewired to (i, k)[26]. With
probability 1−Φ, an opinion update takes place instead.
The rewiring, which conserves the total number of links,
is made at random: the new link is established without
prior knowledge of the new neighbor’s opinion.

If the frequency of rewirings is small (Φ → 0), the
system still reaches a global consensus and the network
remains connected. For fast rewiring rates on the other
hand, (Φ → 1) the network breaks into (typically two for
the VM) separate connected components, each one with
a local consensus. These two regimes are separated by a
non-equilibrium phase transition at a critical value Φc of
the rewiring probability. Similar transitions have already
been reported in co-evolving models of opinion formation
[13, 16, 17] and we will not focus on this aspect here.

A more surprising aspect of the dynamics is revealed
by the behavior of the convergence time tc(N), which
grows linearly with N on a static network for both the d-
and the r-VM [22, 23]. Strikingly, the network’s adaptiv-
ity has completely opposed effects in these models (Fig.
1). Consensus is strongly favored in the d-VM, for which
tc(N) becomes ∝ lnN [27]; in contrast, for the r-VM
tc(N) grows exponentially with the system size. The sys-
tem therefore remains for exponentially long times in a
state in which two groups of different opinions co-exist
and remain connected to each other. It is noteworthy
that the system therefore is not frozen, with agents con-
tinuously updating their links and opinions.

In order to understand the different behavior of the
d- and r-VM on adaptive networks, we note that the
state of the system is characterized by three independent
quantities: (i) the density n+ of agents with opinion +1,
or equivalently the magnetization m = n+ − n

−
(n
−

=
1− n+ is the density of agents with opinion −1); (ii) the
number of links joining agents in the + opinion, Nl++;
and (iii) the number of links joining agents of opposite

opinions, i.e. of active links Nl
−+ = Nl+− (since the to-

tal number of links is preserved, 〈k〉/2 = l+++l+−+l
−−

).
At the mean-field (MF) level, we can derive the evolu-
tion equation of these quantities. Let us first consider
the magnetization: it changes of −2/N when an agent
changes its states from + to −, and of +2/N in the op-
posite case. For the d-VM, the probability of the first
event is proportional to the density n+ of agents in the
+ state, times the probability that it chooses to interact
with a neighbor that has − opinion, i.e. k+−/k+ where
k+ is the average degree of a + node, and k+− = l+−/n+

is the average number of − neighbors of a + node. The
probability of the second event (− → +) is obtained in
the same way, and finally

〈

dm

dt

〉

dVM

= −
2(1 − Φ)

N
l+−

(

1

k+

−
1

k
−

)

. (1)

In the case of the r-VM, the probabilities of the
two processes are simply interchanged: 〈dm/dt〉rVM =
−〈dm/dt〉dVM. On an adaptive network, it is essential
to distinguish k+ from k

−
: as shown in Fig. 2, one has

indeed k+ > 〈k〉 > k
−

if n+ > n
−

. In other words,
the nodes of the majority opinion have more neighbors.
This is a simple consequence of the rewiring dynam-
ics: if m > 0, any rewiring event (i, j) → (i, k) has
a higher chance to randomly pick a + node as a new
neighbor due to their larger number. Therefore, nodes
of the larger group gain new links with larger proba-
bility. Equation (1) then immediately shows that for
m > 0, 〈dm/dt〉dVM > 0 and 〈dm/dt〉rVM < 0. In sum-
mary, the coevolution of opinions and topology generates
a positive feedback for the d-VM driving the system to a
consensus state, mstable = ±1, and a negative feedback
for the r-VM resulting in mstable = 0. This readily ex-
plains the strong differences between these models. For
the d-VM the adaptivity leads to an accelerated consen-
sus, while it hinders the convergence for the r-VM and
keeps the system in a dynamically evolving state with
zero average magnetization.

It is moreover possible to write the evolution equations
for the various types of links. It is easy to understand
that, according to the model’s definition, the vector x =
(m, l+−, l++) can evolve in 4 ways at each elementary
update: x → x + va, a = 1, · · · , 4, with respective prob-
abilities wa. Let us start with the d-VM. The displace-
ment vectors and the associated probabilities read then:
Nv1 = (2, k

−−
− k

−+, k
−+), w1 = (1−Φ) n

−
k
−+/k

−
;

Nv2 = (−2, k++−k+−, −k++), w2 = (1−Φ) n+k+−/k+;
Nv3 = (0, − 1, 0), w3 = Φ n2

−

k
−+/k

−
; Nv4 =

(0, −1, +1), w4 = Φ n2
+ k+−/k+. v1 and v2 correspond

to opinion changes, for which the change in magnetiza-
tion (±2/N) is associated with changes in the densities
of links. For example, when a − node is transformed to
+, its −− links become +− and its +− links become
++ ones (hence l+− varies of (k

−−
− k+−)/N). The

corresponding probabilities w1 and w2 are obtained as
for Eq. (1). v3 and v4 correspond to rewiring events:
when a +− link is rewired it can be either transformed
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FIG. 2: (Color online) Top: k+/〈k〉 vs m for the VM. The
symbols correspond to averages obtained from numerical sim-
ulations with N = 1000, 〈k〉 = 10, while the continuous lines
are the numerical solution of the MF equations for the evo-
lution of x = (m, l+−, l++), starting from initial conditions
with m close to 0. Bottom: l++ and l+− vs m. The con-
tinuous black lines correspond to the numerical solution of
the MF equations. The red symbols and the grey and brown
lines correspond to single runs of the d- and r-VM, respec-
tively (N = 500, 〈k〉 = 10, Φ = 0.4). The inset in the middle
shows the evolution of m for the same runs (red symbols for
the d-VM and dashed line for the r-VM).

to −− (v3) or to ++ (v4). For the r-VM, the displace-
ment vectors are exactly the same as for the d-VM, but
the transition probabilities w1 and w2 are interchanged.
w3 and w4 remain the same since the rewiring rules are
the same for both models. Figure 2 shows the result
of the numerical integration of the evolution equations
dx/dt =

∑

a vawa, compared with numerical simulations
of the models. It is clear that these equations correctly
account for the difference between k+ and k

−
and for

the system’s evolution in the phase space. Of course, the
real systems are moreover submitted to fluctuations that
are not taken into account in the MF description. In
particular, looking at single runs (Fig. 2) shows clearly
the difference between the d- and r-VM. For the d-VM,
the density of active links decreases rapidly to 0 and the
system is driven to one of the consensus states. For the
r-VM on the contrary, the system performs a random
walk in a sort of potential well around m = 0 with a
non-zero density of active links, which ends only because
of a finite-size fluctuation which leads it into one of the
absorbing boundaries at m = ±1.

Let us now consider that agents cannot pass directly
from one opinion to another, but can keep both opinions
in their “memory”, being then in an intermediate state
that we call 0. This is the case in the Naming Game
(NG) model, in which agents try to agree on the name
to assign to a given object [18], or also of the AB model
[19]. If only two names are available (that we can call
+ and − for simplicity), the dynamical rules of the di-
rect NG (d-NG) are the following: at each timestep, an
agent i and one of its neighbors, j, are chosen at ran-
dom to be respectively Hearer (H) and Speaker (S). S
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FIG. 3: Convergence time for the direct (filled symbols) and
reverse (open symbols) NG.

proposes a name to H. If S has both names in memory, it
chooses one at random. Let us suppose for instance that
S proposes +. If H does not know the name uttered (i.e.,
it is in state −), it absorbs this possibility by changing
to the intermediate state, 0. If H instead has the name
in memory (i.e., it is in state + or 0), the interaction
is successful and both H and S agree on this particular
name and set in state + after the interaction. In the re-
verse case (r-NG), the first randomly selected agent is S
and its neighbor is H, and the update rules remain the
same [28]. When agents interact on a static topology,
these dynamical rules lead to a global consensus. On
homogeneous networks, we obtain tc(N) ∼ lnN (while
tc(N) ∼ N for the VM). The difference between the two
models is due to the fact that in the VM, consensus is
reached by a finite-size fluctuation of the average magne-
tization while in the NG, consensus is reached due to the
surface-tension introduced by the 0 states, which tends
to minimize the interface between the agents of different
opinions and hence drive the system to a homogeneous
consensus state [19, 24]. For adaptive networks, Fig. 3
clearly shows that the convergence time remains logarith-
mic for both the direct and reverse version, even if the
r-NG is slower. The MF analysis allows to understand
this strong difference with the VM. We can indeed write
the evolution equation for the magnetization n+ − n

−
,

by introducing the average degree of 0 nodes k0 and the
density of +0 and −0 links, as

〈

dm

dt

〉

dNG

=
1

2

〈

dm

dt

〉

dVM

+
1 − Φ

N

(

l+0

k0

−
l
−0

k0

)

(2)

〈

dm

dt

〉

rNG

=
1

2

〈

dm

dt

〉

rVM

+
1 − Φ

N

(

l+0

k+

−
l
−0

k
−

)

.(3)

The first terms on the rhs represent the change in the
magnetization mediated by the l+− links. The factor 1/2
stems from the fact that + and − nodes are not trans-
formed instantly to their opposite counterpart but to the
intermediate state 0. The remaining terms correspond to
the transformation of the 0 nodes to ± ones. For exam-
ple, in the d-NG, the second term on the right-hand side
is generated by the process when a 0 node is converted to
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FIG. 4: 〈dm/dt〉 vs m (symbols) for the r-NG. According to
Eq. (3), changes in the magnetization come from r-VM-like
interactions (dashed line) and those mediated by the 0-links,
l+0 and l

−0 (dash-dotted line). The upper inset gives l+0 and
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−
/〈k〉. Φ = 0.2, 〈k〉 = 10, N = 104.

+ by first picking a 0 node, with probability n0, then one
of its + neighbors, with probability k0+/k0, and so on.
Even though the first terms in Eq.-s (2) and (3) change
sign for the d- and the r- variants of the NG just as for
the VM, this effect is suppressed by the remaining terms
associated with the transitions (0 → ±) which will always
generate a positive feedback to the change of magnetiza-
tion. As shown in Fig. 4 indeed, l+0 − l

−0 is of the sign
of m, which is expected since then n+ > n

−
. This effect

overcomes the difference between k+ and k
−

; as a result,
〈dm/dt〉 remains of m’s sign even in the r-NG, leading
to logarithmic convergence times. Very interestingly, the
possibility for agents to remain in an intermediate state
before updating their opinion strongly enhances the trend

towards consensus.
In summary, we have shown how slight modifications

of the interaction rules can have drastic consequences in
the global behavior of opinion formation models in the
case of dynamically evolving networks. In the case of the
paradigmatic Voter model, adaptivity of the network can
either accelerate the convergence to consensus, or on the
contrary hinders it strongly, by maintaining the system
in a dynamically evolving state for exponentially long
times. A mean-field analysis allows to account for such
differences, which are due to the coupling of the asym-
metry between the interacting agents to the asymmetry
in their degrees. Such coupling is known to change the
scaling of the convergence time in heterogeneous static
networks, which however remains a power-law of time
[22, 23], and in fact does not have consequences in ho-
mogeneous networks. In strong contrast, and even if the
adaptive network remains homogeneous, the fact that the
majority has a slightly larger average degree suffices to
change from a very fast convergence in logarithmic time
for the d-VM to a dynamical state surviving for expo-
nentially long times for the r-VM. Interestingly, if the
agents cannot change opinion so easily, and have to go
through an intermediate state, such as in the NG or AB
models, convergence to consensus is enhanced also for
adaptive networks, and irrespective of the order of inter-
actions (d-NG vs. r-NG). The connections with nodes
in the intermediate state determine then the dominant
evolution of the magnetization, leading to a more robust
behavior.
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