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The critical behaviour of the Ising model in the absence of an external magnetic field can be
specified either through spontaneous symmetry breaking (thermal criticality) or through cluster
percolation (geometric criticality). We extend this to finite external fields for the case of the Potts’
model, showing that a geometric analysis leads to the same first order/second order structure as
found in thermodynamic studies. We calculate the Kertész line, separating percolating and non-
percolating regimes, both analytically and numerically for the Potts model in presence of an external
magnetic field.
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INTRODUCTION

The critical behaviour in certain spin systems, such
as the Ising model, can be specified in two equivalent,
though conceptually quite different ways. In the absence
of an external magnetic field, decreasing the temperature
leads eventually to the onset of spontaneous symmetry
breaking and hence to the singular behaviour of deriva-
tives of the partition function. On the other hand, the
average size of clusters of like-sign spins also diverges at a
certain temperature, i.e., there is an onset of percolation.
The relation between these two distinct forms of singular
behaviour has been studied extensively over the years,
and it was shown that for the Ising model on the latticeZd, with d ≥ 2, implemented with a suitable cluster def-
inition using temperature dependent bond weights, the
two forms lead to the same criticality: the critical tem-
peratures Tc as well as the corresponding critical expo-
nents coincide in the two formulations [1, 2].

In the presence of an external field H , the Z2 symme-
try of the Ising model is explicitly broken and hence there
is no more thermodynamic critical behaviour. Geomet-
ric critical behaviour persists, however; for T ≤ Tp(H),
there is percolation, while for T > Tp(H), the average
cluster size remains finite. In the T − H plane, there
thus exists a line Tp(H), the so-called Kertész line, sepa-
rating a percolating from a non-percolating “phase” [3].
Given the mentioned correct cluster definition, it starts
at Tp(0) = Tc, i.e., at the thermodynamic critical point.

We want to show here that the equivalence of ther-

modynamic and geometric critical behaviour can be ex-
tended to the case H 6= 0. Since in the case of continu-
ous thermodynamic transitions, such as those of the Ising
model, the introduction of an external field excludes sin-
gular behaviour (for the case d = 2 this is shown analyt-
ically [4]), our problem makes sense only for first order
transitions, for which the discontinuity remains over a
certain range of H , even though for H 6= 0, the symme-
try is broken. The ideal tool for such a study is the q-state
Potts’ model on a lattice Zd, with q ≥ 3 and d ≥ 3. In
this case, we have a thermodynamic phase diagram of the
type shown in Fig. 1a, with a line of first order transi-
tions starting at Tc(0) and ending at a second order point
Tc(Hc) [5]; the transition at this endpoint is found to be
in the universality class of the 3-d Ising model. In terms
of the energy density ǫ(H) of the system (the energy per
lattice volume), the phase diagram has the form shown in
Fig. 1b; for H = 0, the coexistence range ǫ2 ≤ ǫ(0) ≤ ǫ1
corresponds to the critical temperature Tc(0). The av-
erage spin m(ǫ) as order parameter vanishes for ǫ ≥ ǫ1
and becomes finite for smaller ǫ. We want to show that
in the temperature range Tc(0) ≤ T (H) ≤ Tc(Hc), the
corresponding Kertész line Tp(H) (see Fig. 1c) coincides
with that of the thermal discontinuity and that it also
leads to the same first order/second order phase struc-
ture. Let us begin with a conceptual discussion of the
situation.

The q-state Potts’ model in the absence of an external
field provides q + 1 phases: the disordered phase at high
temperature and q degenerate ordered low-temperature
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FIG. 1: Thermodynamic and geometric phase structure for a
first order transition

phases. Spontaneous symmetry breaking has the system
fall into one of these as the temperature is decreased.
Turning on a small external field H aligns the spins
in its direction and thus effectively removes the q − 1
“orthogonal” low-temperature phases. Hence now only
two phases remain: the ordered low-temperature state of
spins aligned in the direction of H , and the disordered
high-temperature phase. The two are for T < Tc(Hc)
separated by a mixed-phase coexistence regime. At the
endpoint T = Tc(Hc), there is a continuous transition
from a system in one (symmetry broken) ordered phase
to the corresponding (symmetric) disordered phase. The
behaviour at H = Hc in Fig. 1b is thus just that of the
Ising model, and hence the endpoint transition is in its
universality class.

In the geometric formulation for H = 0, with decreas-
ing temperature or energy density there is formation of
finite clusters of q different orientations; the clusters here
are defined using the temperature-dependent F-K bond
weights. At ǫ(0) = ǫ1, the Zq symmetry is spontaneously
broken: for one of the q directions, there now are per-
colating clusters, and the percolation strength P (ǫ) be-
comes finite for ǫ < ǫ1. However, the disordered phase
also still forms a percolating medium (for d ≥ 3). A fur-
ther decrease of the energy density reduces the fraction
of space in disordered state, and for ǫ(0) ≤ ǫ2, there is

no more disordered percolation. Embedded in the disor-
dered phase are at all times finite clusters of a spin ori-
entation “orthogonal” to the one chosen by spontaneous
symmetry breaking. In our treatment, we will therefore
divide the set of clusters into three classes: disordered,
ordered in the direction of symmetry breaking, and order

ed orthogonal to the latter. While for H = 0, any
of the q directions could be the given orientation, for
H 6= 0, the external field specifies the alignment direc-
tion, making the q−1 sets of “orthogonal” clusters essen-
tially irrelevant. It is for this reason that at the endpoint
of a line of first order transitions one generally encoun-
ters the universality class of the Ising model. Whatever
the original symmetry of the system was, at the endpoint
there remains only the aligned and the disordered ground
states.

The plan of the paper is as follows. In the next section,
we recall the cluster treatment of the Potts’ model and
specify our method to identify the different cluster types.
This will be followed by an analytic study valid for small
external fields and by numerical calculations for different
q up to asymptotic values of H . Formal details of the
analytic calculation are given in the appendix.

THE MODEL

We consider a finite–volume q–state Potts model on
the lattice Zd (d ≥ 2), at inverse temperature β = 1/T
and subject to an external ordering field h. It is defined
by the Boltzmann weight

ωPotts(σ) =
∏

〈i,j〉

eβ(δσi,σj
−1)

∏

i

ehδσi,1 , (1)

where the spins σi take on the values of the set {1, . . . , q},
and where the first product is over nearest neighbour
pairs (n,n). If we want to study the behaviour of clusters,
in the sense of F-K clusters, we turn to the corresponding
Edwards–Sokal formulation [8], given by the Boltzmann
weight

ωES(σ, η) =
∏

〈i,j〉

[e−βδηij ,0 + (1 − e−β)δηij ,1δσi,σj
]

×
∏

i

ehδσi,1 , (2)

where the edge variables ηij belong to {0, 1}. This “site-
bond” model can be thought of as follows. Given a cer-
tain spin configuration, one puts between two neighbour-
ing sites σi = σj an edge or bond with the probability
1−e−β, and no edge with the probability e−β; for σi 6= σj ,
no bond is present. Thus, one has here a random–bond
(or edge) percolation model superimposed on the Potts
correlated site lattice. It reduces for h = ∞ to the usual
(non–random) bond percolation model.
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In the presence of an external field, we find it con-
venient for the study of the Kertsz’s line to consider a
modified version of the Edwards–Sokal formulation. We
have three different types of spin combination: (0) two
adjacent spins i, j are not equal, (1) two adjacent spins
i, j are equal and parallel to h (we denote this direction
as 1), or (2) two adjacent spins i, j are equal but not par-
allel to h. Correspondingly, we “color” the edge between
i and j in three different colors ni,j , where the edge vari-
ables nij belong to {0, 1, 2}. The resulting Boltzmann
weight becomes

ωCES(σ, n) =
∏

〈i,j〉

[e−βδnij ,0+(1−e−β)δnij ,1χ(σi=σj=1)

+ (1 − e−β)δnij ,2χ(σi=σj 6=1)]
∏

i

ehδσi,1 , (3)

where the characteristic function χ(σi = σj = 1) is unity
for σi = σj = 1 (parallel spins in the direction of h)
and zero otherwise, while χ(σi = σj 6= 1) is unity for
parallel spins not in the direction of h and zero otherwise.
The summation over the spin variables then leads to the
following Tricolor–Edge–Representation

ωTER(n) =
∏

〈i,j〉

e−βδnij,0(1 − e−β)(δnij ,1+δnij,2)×

ehS1(n)(q − 1)C2(n)(q − 1 + eh)|Λ|−S1(n)−S2(n). (4)

Here, S1(n) and S2(n) denote the number of sites that
belong to edges of color 1 and color 2, respectively, while
C2(n) denotes the number of connected components of
the set of edges of color 2, and |Λ| is the number of sites
of the lattice under consideration.

Let pΛ(i ↔ j) be the probability that the site i is con-
nected to j by a path of edges of color 1. As order pa-
rameter we will consider the following mass–gap (inverse
correlation length)

m(β, h) = − lim
|i−j|→∞

1

|i − j| ln lim
Λ↑Zd

pΛ(i ↔ j) (5)

where i and j belong to some line parallel to an axis of
the lattice.

For the color a = 0, 1, 2, let ba be the value of the
Boltzmann weight (in the TER representation) of the
ground state configuration of color a per unit site: b0 =
e−βd(q− 1+ eh), b1 = (1− e−β)deh, b2 = (1− e−β)d. The
diagram of ground state configurations in the (h, β) plane
is shown in Fig. 2, where

β0(h) = ln[1 + (1 + (q − 1)e−h)1/d].

All the ground states coexist at (0, β0(0)). Below β0(h),
the 0–state dominates. Above β0(h), the 1–state domi-
nates; it coexists with the 0–state on the line β0(h), and
with the 2–state on the line h = 0, β ≥ β0(0).
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FIG. 2: Diagram of ground state configurations

ANALYTIC RESULTS

When q is large enough and h not too large, the TER
representation (4) can be analysed rigorously by a per-
turbative approach. Using the standard machinery of
Pirogov–Sinai theory, we will show that the model under-
goes a thermodynamic first order phase transition in the
sense that the derivative of its free energy with respect to
β (or h) is discontinuous at some βc(h) ∼ β0(h). We also
find for these values of the parameters, that the phase
diagram of this model reproduces the diagram of ground
state configurations (Fig. 2), see Appendix for more de-
tails. In addition, the model exhibits a geometric (first
order) transition, in the sense that, on the critical line,
the mass gap is discontinuous.

Theorem 1. Assume d ≥ 2, q and h such that

cd(1 + (q − 1)e−h)−1/2d < 1 (6)

holds, where cd is a given number (depending only on the
dimension), then there exists a unique βc(h) = β0(h) +
O(1 + (q − 1)e−h)−1/2d) such that m(β, h) > 0 for β ≤
βc(h) and m(β, h) = 0 for β > βc(h).

The proof is given in the appendix.

Let us recall that the Potts model (1) undergoes, for
q large and h small, a first order phase transition on a
critical line [6]. Since the free energies of models (1) and
(4) are the same, the two critical lines coincide. This fact
was already known for h = 0 [12].

Condition (6) restricts the range of values of parame-
ters to which our rigourous analysis applies. Moreover,
we do not expect thermodynamic first order transitions
when h is sufficiently enhanced. In the next section, we
turn to numerical study on a wider range of values.
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NUMERICAL SIMULATIONS

We have implemented a generalization of the
Swendsen–Wang algorithm for our colored Edwards–
Sokal model (3).

First, given a spin configuration, we put between any
two neighbouring spins of the same color, an edge colored
0 with probability (w.p.) e−β, and w.p. 1 − e−β, an
edge colored 1 if these spins are of color 1, and colored
2 otherwise. When two neighbouring spins disagree, the
corresponding edge is colored 0.

Then, starting from an edge configuration, a spin con-
figuration is constructed as follows. Isolated sites (end-
points of 0–bonds only) are colored 1 w.p. eh/(q−1+eh)
and colored c ∈ {2, ..., q} w.p. 1/(q − 1 + eh). Non–
isolated sites are colored 1 (w.p. 1) if they are endpoints
of 1–bonds and colored c ∈ {2, ..., q} w.p. 1/(q − 1).

The numerical results for d = 2 are presented in Fig.
3. For q ≤ 4, we found a whole geometric transition line
for which m(β, h) > 0 when β ≤ βc(h), and m(β, h) = 0
when β > βc(h). The mass gap is continuous at βc(h).
For β ≤ βc(h), the mean cluster sizes remain finite, while
for β > βc(h) the size of 1–edge clusters diverges. The
energy density as well as the magnetisation do not show
any singular behavior.

For q ≥ 5, some critical hc appears for which the transi-
tion becomes first order when h < hc, in accordance with
the previous analytic results: both the mass gap and the
mean energy exhibit discontinuities at βc(h > hc). How-
ever, when h ≥ hc, the scenario is the same as for q ≤ 4.

The numerics are in accordance with the theory for
vanishing and infinite fields: βc(0) = ln(1 +

√
q) and

βc(∞) = ln 2.
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FIG. 3: βc(h) for several values of q, with “first order” be-
havior in red, “second order” in blue.

The system size in these calculations was s L = 50,
d = 2. The “first order” part of the transition lines has
been determined via Binder cumulants [7]. The Hoshen-

Kopelman algorithm [9] was used to study cluster statis-
tics. For each value of q, more than 2 × 105 iterations
where performed. Data have been binned in order to
control errors in measurements.

CONCLUDING REMARKS

For the Potts model in the presence of an external
magnetic field, we have shown that when the Kertész line
is first order, it coincides with the usual thermodynamic
critical line. This property holds up to some critical point
(hc, βc(hc)). Such behavior may well appear also for a
broader class of models exhibiting first order transition
in the presence of an external field. We believe that the
behavior at the above critical point also belongs to the
universality class of the Ising model, as it is the case in
the 3–state Potts model in three dimensions [5].
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APPENDIX

We first introduce the partition function of the TER
representation with boundary conditions a ∈ {0, 1, 2} in
a box Λ [15]:

Za(Λ) =
∑

n

∏

i∈Λ

ωi(n)qC2(n)−δa,2

∏

i∈∂Λ

∏

j∼i

δnij ,a (7)

where the sum is over all configurations n = {nij}ij∩6=∅,
∂Λ is the boundary of Λ (set of sites of Λ with a n.n. inZd \ Λ), the notation i ∼ j means that i and j are n.n.,
and

ωi(n) = (1 − e−β)(δnij,1+δnij,2)/2e−βδnij,0/2ehχ(i∈“1′′)

× (q − 1 + eh)
∏

j∼i
δnij,0 (8)

where χ(i ∈ “1′′) means that the site i belongs to some
edge of color 1. Next, consider a configurationn on the
envelope of Λ: E(Λ) = {〈i, j〉 ∩ Λ 6= ∅}. A site i ∈ Λ
is called correct if for all j ∼ i, nij takes the same
value, and called incorrect otherwise. Denote I(n) the
set of incorrect sites of the configuration n. A couple
Γ = {Supp Γ, n(Γ)} where the support of Γ (Supp Γ) is a
maximal connected subset of I(n), and n(Γ) the restric-
tion of n to the envelope of Λ is called contour of the
configuration n (here, a set of sites is called connected if
the graph that joins all the sites of this set at distance
d(i, j) = maxk=1,...,d |ik−jk| ≤ 1 is connected). A couple
Γ = {Supp Γ, n(Γ)} where Supp Γ is a connected set of
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sites is called contour if there exists a configuration n

such that Γ is a contour of n. For a contour Γ, let nΓ de-
note the configuration having Γ as unique contour, ExtΓ
denotes the unique infinite component of Zd \ (Supp Γ),
Int Γ = Zd\(Ext Γ∪Supp Γ), and Intm Γ denote the set of
sites of Int Γ corresponding to the color m ∈ {0, 1, 2} for
the configuration nΓ. Two contours Γ1 and Γ2 are said
to be compatible if their union is not connected and are
called external contours if furthermore Int Γ1 ⊂ ExtΛ Γ2

and Int Γ2 ⊂ ExtΛ Γ1. For a family θ = {Γ1, . . . , Γn}ext

of external contours, let ExtΛ θ denote the intersection
Λ ∩n

k=1 ExtΛ Γk. With these definitions and notations,
one gets the following expansion of the partition func-
tions over families of external contours,

Za(Λ) =
∑

θ={Γ1,...,Γn}ext

b|ExtΛ θ|
a

×
n

∏

k=1

ρ(Γk)
∏

m = 0, 1, 2

Zm(Int
m

Γk), (9)

where ρ(Γ) =
∏

i∈supp Γ ωi(nΓ)qC(nΓ)−δa,2 . From (9), we
get

Za(Λ) = b|Λ|
a

∑

{Γ1,...,Γn}comp

n
∏

k=1

za(Γk), (10)

where the sum is now over families of compatible contours
and the activities za(Γ) of contours are given by za(Γ) =

ρ(Γ)b
−| supp Γ|
a

∏

m 6=a
Zm(Intm Γ)
Za(Intm Γ) .

It is easy to show that the following Peierls’ estimate,

ρ(Γ)( max
a=0,1,2

ba)−| SuppΓ| ≤ e−τ |SuppΓ|, (11)

where e−τ = (1 + (q − 1)e−h)−1/2d. Indeed, first notice
that an incorrect site i is either of color 1 or of color 2. In
the first case one has

∑

j∼i(δnij ,0 + δnij ,1) = 2d, so that

ωi(nΓ)/b1 = (eβ − 1)−(
∑

j∼i δnij,0)/2, implying

ωi(nΓ)/ max
a=0,1,2

ba ≤ (1 + (q − 1)e−h)−(
∑

j∼i
δnij,0)/2d.

Thus since 1 ≤ ∑

j∼i δnij ,0 ≤ 2d−1, each incorrect site of

color 1 gives at most a contribution e−τ to the L.H.S. of
(11). In the second case, one has

∑

j∼i(δnij ,0 + δnij ,2) =

2d, so that wi(nΓ)/b2 = (eβ −1)−(
∑

j∼i
δnij,0)/2, implying

ωi(nΓ)/ max
a=0,1,2

ba ≤ (q − 1 + eh)−(
∑

j∼i δnij,0)/2d.

We then use again that 1 ≤ ∑

j∼i δnij ,0 ≤ 2d − 1 and

that C2(nΓ) ≤ ∑

i∈SuppΓ χ(1 ≤ δnij ,2)/2
∑

j∼i
δnij,2 (see

[11]) to obtain that each incorrect site of color 2 gives at
most a contribution (eh + q − 1)−1/2+1/2d ≤ e−τ to the
L.H.S. of (11).

When the assumptions of the theorem are satisfied,
the Peierls’ estimate (11) provides a good control of the

system by using Pirogov–Sinai theory [14]. We introduce
the truncated activity

z′a(Γ) =

{

za(Γ) if za(Γ) ≤ (c0e
−τ )| SuppΓ|

(c0e
−τ )| SuppΓ| otherwise,

where c0 is a numerical constant, and we call a con-
tour stable if za(Γ) = z′a(Γ). Let Z ′

a(Λ) be the parti-
tion function obtained from (10) by leaving out unstable
contours, i.e., by taking the activities z′a(Γ) in (10), and
we introduce the metastable free energies fmet

a (β, h) =
− limΛ↑Zd(1/|Λ|) lnZ ′

a(Λ). The leading term of these
metastable free energies equals − ln ba. The corrections
can be expressed by free energies of contour models which
can be controlled by convergent cluster expansions. As
a standard result of Pirogov-Sinai theory, one gets that
the phase diagram of the system is a small perturbation
of the diagram of ground state configurations. Namely,
there exits a unique point βc(0) given by the solution
of fmet

0 (β, h) = fmet
1 (β, h) = fmet

2 (β, h) for which all
contours are stable and such that Za(Λ) = Z ′

a(Λ) for
a = 0, 1, 2. There exists a line βc(h) given by the solu-
tion of fmet

0 (β, h) = fmet
1 (β, h) when h > 0 and such

that, Za(Λ) = Z ′
a(Λ) for a = 0, 1. For β < βc(h)

one has Z0(Λ) = Z ′
0(Λ), and for β > βc(h) one has

Z1(Λ) = Z ′
1(Λ). For h = 0 and β ≥ βc(0), one has

in addition Z2(Λ) = Z ′
2(Λ).

To prove the theorem, we remark that if one imposes
that the site i is connected to j by a path made up
of edges of color 1, then under the boundary condition
0, there exists necessarily an external contour that en-
closes both the sites i and j. As a consequence of the
above analysis the probability of external contours Γ de-
cays like (c0e)

−τ |SuppΓ| when the 0–contours are stable,
i.e. when Z0(Λ) = Z ′

0(Λ). One thus gets pΛ(i ↔ j) ≤
(Cte e−τ )|i−j| when β ≤ βc(h) from which the first state-
ment of the theorem follows. On the other hand under
the boundary condition 1, the probability that the site
i is not connected to j can be bounded from above by
a small number O(e−τ ) when Z1(Λ) = Z ′

1(Λ). This fol-
lows also from a Peierls type arguments and implies that
the probability that the site i is connected to j under
the boundary condition 1 is greater than 1 − 0(e−τ ) for
β ≥ βc(h). It gives also that the probability pΛ(i ↔ j)
for the site i to be connected with j under the boundary
condition 0 is also greater than 1− 0(e−τ ) for β > βc(h),
implying the second statement.
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