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Birefringence measurements by means of light
deflection at domain walls in ferroelastic crystals

P. Kolata, L. Guilbert, M. D. Fontana, and J. P. Salvestrini

Laboratoire Matériaux Optiques Photonique et Systèmes, Université de Metz et Supelec, 2 rue Edouard Belin,
57070 Metz, France

Z. Czapla

Institute of Experimental Physics, University of Wroclaw, Plac Maksa Borna 9, 50 205 Wroclaw, Poland

The deflection of light in ferroelastic crystals results from refraction and reflection at domain wa lls. When the 
tilt angle of the principal axes in neighboring domains is small, simple relationships between the crystal 
birefringences and the angles of the deflected beams can be deduced from Snell’s law of r efraction. As a rule, 
this condition is satisfied a t W -domain w alls i n f erroelastic s pecies t hat h ave a  b iaxial p rototype p hase. In 
this case, measurement of the deflection a ngles p ermits o ne t o d etermine t he b irefringences e asily. This 
method has as its main advantages independence of the sample thickness and the need for only rough sample 
preparation. It is absolutely insensitive to temperature fluctuations. We have applied the method to crystals 
of rubidium hydrogen selenate and dihydrated barium chloride as illustrative examples. 

1. INTRODUCTION

In ferroelastic (FEL) crystals, the principal axes of per-

mittivity are usually disoriented with respect to the do-

main walls. As a first consequence of this disorientation,

the domain structure can be observed under a microscope

between crossed polarizers. As another consequence, the

optical discontinuity at the domain walls leads to the so-

called deflection phenomenon: An incident light beam

crossing the domain structure splits into several beams at

the output of the crystal, as depicted in Fig. 1. This prop-

erty of the crystal results from refraction and reflection at

the domain walls. It was described by Tsukamoto et al.

in for Rochelle salt, rubidium hydrogen selenate, gado-

linium molybdate, and bismuth titanium oxide.1–5 The

authors of those papers calculated deflection angles a and

b as functions of incidence angle i by computing the

Huygens–Fresnel principle at three interfaces (input face

of the crystal, domain wall, and output face), assuming

knowledge of all optical parameters of the crystal (values

of the principal indices, orientation of the principal axes).

By the way, the calculation dealing with Poynting vectors

is not straightforward but is nevertheless exact in any

case, regardless of the crystal symmetry.

Our aim in the present paper is to show that angles a
and b of the deflected beams can be directly related to

birefringences—more precisely, to the differences

D i(n
2)—through simple analytical relationships deduced

from Snell’s law of refraction, provided that the tilt angle

of the neutral lines with respect to the domain walls is

small. This condition is actually fulfilled by the so-called

W-domain walls (prominent reticular planes) in FEL crys-

tals that belong to low-symmetry species, i.e., FEL species

with a biaxial protophase. Thus the parameters D i(n
2)

of the FEL crystal can be deduced easily and accurately

from angular measurements. Then the linear birefrin-

gences Dn i can be determined if one refractive index is

known. The property of the method that differentiates it

from conventional ones is that no special care is required

in crystal preparation. Even knowledge of the sample

thickness is not necessary. As in any method based on

refractometry, temperature fluctuations during the ex-

periments have negligible effects on the results compared

with experimental errors. The method is applied here to

two crystals at room temperature: rubidium hydrogen

selenate (RbHSeO4 ; RHSe) and dihydrated barium chlo-

ride (BaCl2 :2H2O; BCD).

2. SYMMETRY CONSIDERATIONS:
DEFINITION OF AXES

Within our procedure we are interested in biaxial FEL

species only, i.e., FEL species for which the prototype

phase is either orthorhombic or monoclinic, and we con-

sider the deflection of light at prominent reticular domain

walls. With respect to these so-called W walls (according

to Sapriel’s denomination6) the optical indicatrices in

neighboring domains are inclined symmetrically. In bi-

axial FEL species the tilt angle is usually small, because

this optical parameter is directly related to the FEL order

parameter. It is thus possible to define a convenient sys-

tem of three orthogonal axes (x1 , x2 , x3) to describe the

optical properties of the multidomain crystal (Fig. 2):

• x3 , axis perpendicular to the domain walls;

• x1 , x2 , neutral lines in the plane of domain walls.

These so-called pseudoprincipal axes correspond to the

average directions of the principal axes throughout the
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domain structure, and they should actually become the

true principal axes in the prototype phase [i.e., above the

Curie point, if a ferroelastic–paraelastic (FEL–PEL)

phase transition actually exists]. Conventionally, x1 and

x2 can be labeled such that the corresponding pseudoprin-

cipal indices are ordered as n1 , n2 . In any domain of

the FEL crystal, the orientation of the true principal axes

relative to the pseudoprincipal axes can be fully described

by angles 6f1 and 6f2 that are made by the neutral

lines with respect to the W-domain walls in planes

(x2 , x3) and (x1 , x3), respectively (Fig. 3). In the lowest-

symmetry case (triclinic FEL species), both tilt angles f1

and f2 are small but not zero. In monoclinic species with

orthorhombic protophase, either f1 or f2 is strictly zero,

because one of the axes (either x2 or x1) is the monoclinic

axis and thus a true principal axis in both orientation

states of the monoclinic structure.

In what follows, we shall suppose that the crystal

sample is a plate cut perpendicularly to the W-walls—as

is usually done in any deflection experiment by Tsuka-

moto et al.1–5 and as we do here. The plate will be des-

ignated by the cutting axis perpendicular to the surfaces:

x1 cut, x2 cut, or any x cut [x axis lying in the plane

(x1 , x2) of the domain walls].

The fact that the tilt angles are small in biaxial FEL

species permits two important simplifications in the ana-

lytical treatment of the deflection phenomenon: (i) the

three pseudoprincipal indices n1 , n2 , and n3 are very

close to the corresponding principal indices nX , nY , and

nZ , so they can be merged into one another; (ii) in x1- and

x2-cut samples the polarization directions of all beams are

never far from a principal axis or from a principal plane,

except in the particular case when the beam propagates

close to an optical axis of the biaxial crystal. So one of

the beams, either the incident beam or the deflected

beam, is quasi ordinary (that is, the corresponding refrac-

tive index is practically independent of the propagation

direction). For the other beam the dependency of the ex-

traordinary index follows a quasi-elliptical law as a func-

Fig. 1. Deflection phenomenon at a ferroelastic W-domain wall.
A, B, refractive transmission (from low index to high index and
vice versa), A8 and B8, the corresponding refractive reflections.
D (direct beam) and R (reflected beam), quasi-nonrefractive pro-
cesses without change of the index magnitude.

Fig. 2. Definition of the so-called pseudoprincipal axes: x3 ,

perpendicular to the plane of the domain walls; x1 , x2 , neutral
lines in this plane. In the case of monoclinic crystals with ortho-

rhombic protophase (bottom) x1 and x2 coincide with crystallo-
graphic axes. One of them is the monoclinic axis; it is a true
principal axis that is common in both orientation states.

Fig. 3. Mutual tilt angle of the neutral lines with respect to a

W-domain wall, as seen from pseudoprincipal axes x1 and x2 de-
fined above (see Fig. 2). The figure shows the general case of a

triclinic crystal. For monoclinic crystals either f1 or f2 is
strictly zero.
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tion of the direction of the wave vector. The analytical

calculations of the deflection angles that we shall develop

below are based on these simplifications.

3. RELATIONSHIPS BETWEEN DEFLECTION
ANGLES AND BIREFRINGENCES

When we consider the wave vectors instead of the Poyn-

ting vectors, Snell’s law of refraction can be applied at the

three interfaces: the input face, the domain wall, and

the output face (Fig. 4). Inasmuch as the surfaces of the

crystal are cut perpendicularly to the plane of the domain

walls, the relations for the A deflection process (fast inci-

dent wave) and for the B deflection process (slow incident

wave) are

A beam:

sin i 5 n f ~i f!sin i f , n f ~i f!cos i f 5 ns~as!cos as ,

ns~as!sin as 5 sin a, (1)

B beam:

sin i 5 ns~is!sin is , ns~is!cos is 5 n f ~b f!cos b f ,

n f ~b f!sin b f 5 sin b, (2)

where i is the external angle of incidence, i f (is) is the in-

ternal angle of the incident fast (slow) wave incident upon

the domain wall, n f and ns are the corresponding low and

high normal indices,as and b f are the internal angles of

the deflected wave vectors after the domain wall (for the

A and the B beams, respectively), and a and b are the ex-

ternal deflection angles to be calculated. From Eqs. (1)

and (2) separately, we obtain immediately and without

approximation

sin2 a 2 sin2 i 5 ns
2~as! 2 n f

2~i f! ~.0 !, (3)

sin2 b 2 sin2 i 5 n f
2~b f! 2 ns

2~is! ~,0 !. (4)

Now, by introducing the simplifications that result from

the small tilt angle of the principal axes with respect

to the domain walls in biaxial FEL species (see Section 2),

we can obtain approximate, but nevertheless correct,

relations for deflection angles a and b in both x1-cut and

x2-cut samples. We shall first consider the case

n3 , n1 , n2 , then n1 , n2 , n3 , and finally n1 , n3

, n2 . (We have conventionally assumed that n1

, n2).

A. n3 Ë n1 Ë n2

When n3 , n1 , n2 , the A beam is quasi ordinary in

both x1- and x2-cut samples (as well as in any x cut).

Thus the corresponding high index ns (as) in Eq. (3) re-

mains nearly equal to either n2 (x1 cut) or n1 (x2 cut),

whatever the incidence is. The low-index n f (i f), how-

ever, is extraordinary, but its variation is quasi elliptical

to a good approximation:

1

n f
2~i f!

'
cos2 i f

n3
2

1

sin2 i f

n j
2

, (5)

where n j 5 n1 or n2 (for x1- or x2-cut samples, respec-

tively). By combination of Eqs. (1) and approximation (5)

we obtain, for x1- and x2-cut samples, respectively,

sin2 a1~i ! ' n2
2

2 n3
2

1

n3
2

n1
2

sin2 i,

sin2 a2~i ! ' n1
2

2 n3
2

1

n3
2

n2
2

sin2 i. (6)

At zero incidence, angle a (0) of the A beams in any

sample (x1 cut, x2 cut, or any x cut as well) is directly re-

lated to the birefringence of the crystal in the correspond-

ing cutting plane:

sin2 a1~0 ! ' n2
2

2 n3
2 [ D1~n2!,

sin2 a2~0 ! ' n1
2

2 n3
2 [ D2~n2!, (7)

sin2 ax~0 ! ' n2~x ! 2 n3
2. (8)

The quasi-ordinary index n(x) in approximation (8) can

be conveniently approximated by

1

n2~x !
'

cos2 x

n2
2

1

sin2 x

n1
2

(9)

(angle x designates the cutting axis with respect to the x1

axis in the plane of domain walls.)

In the B deflection process [Eq. (4)] the incident slow

wave is quasi ordinary (whatever the cutting axis x and

the incidence angle i), whereas the low index n f (b f) of the

deflected wave follows a quasi-elliptical law, similar to ap-

proximation (5). The B deflection process can be consid-

ered reciprocal to the A deflection process, by reversal of

the light path. So one can deduce approximations (10)

below from approximations (6) by changing i into b and a
into i. Hence the following approximations for deflection

angle b of the B beam, in x1 and x2 cuts, respectively:

Fig. 4. Deflection processes, shown separately for the fast inci-
dent wave (A deflection) and for the slow incident wave (B deflec-
tion). For small optical tilts the beams are either quasi ordinary
(filled circles) or extraordinary (hatch marks), depending on the
refractive index (see Table 1) below. Deflections A and B are re-
ciprocals of each other when the path of the light is reversed.
The reflected (R) and retrodeflected (A8 and B8) beams, sym-
metrical to D, A, and B, respectively, are not represented here.
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n3
2

n1
2

sin2 b1~i ! ' sin2 i 2 ~n2
2

2 n3
2!,

n3
2

n2
2

sin2 b2~i ! ' sin2 i 2 ~n1
2

2 n3
2!. (10)

B beams can appear only when angle of incidence i ex-

ceeds a critical value, equal to deflection angle a(0) at zero

incidence, given by approximations (7). This is of course

a direct consequence of the A–B reciprocity.

B. n1 Ë n2 Ë n3

For n1 , n2 , n3 , the incident fast wave is quasi ordi-

nary in x1-cut as well as in x2-cut plates (for small inci-

dences). The corresponding low index n f (i f) in Eq. (3) is

nearly constant and equals either n2 (x1 cut) or n1 (x2

cut). The extraordinary index ns(as) of the A beam fol-

lows a quasi-elliptical variation similar to that of approxi-

mation (5):

1

ns
2~as!

'
cos2 as

n3
2

1

sin2 as

n j
2

, (11)

where n j 5 n1 , n2 for x1 or x2 cut, respectively. By com-

bining Eqs. (1) and approximation (11) we obtain, for x1

and x2 cuts, respectively,

n3
2

n1
2

sin2 a1~i ! ' n3
2

2 n2
2

1 sin2 i,

n3
2

n2
2

sin2 a2~i ! ' n3
2

2 n1
2

1 sin2 i. (12)

At zero incidence, these expressions lead to

sin2 a1~0 ! '
n1

2

n3
2

~n3
2

2 n2
2! ~x1 cut!,

sin2 a2~0 ! '
n2

2

n3
2

~n3
2

2 n1
2! ~x2 cut!. (13)

Reciprocally, we can deduce the deflection angle b(i) of

the B beam (quasi ordinary) from relations (12) by revers-

ing the path of light (i → b, a → i). Hence, for x1 and

x2 cut, respectively,

sin2 b1~i ! '
n3

2

n1
2

sin2 i 2 ~n3
2

2 n2
2!,

sin2 b2~i ! '
n3

2

n2
2

sin2 i 2 ~n3
2

2 n1
2!. (14)

C. n1 Ë n3 Ë n2

When n1 , n3 , n2 , the A beam is quasi ordinary in

x1-cut plates, whereas the B beam is quasi ordinary in

x2-cut plates. Consequently, the deflection angle a(i) of

the A beam follows relations (7) for x1-cut and relations

(12) for x2-cut plates, whereas the deflection angle b(i) of

the B beam follows relation (10) for x1-cut and relation

(14) for x2-cut plates.

4. APPLICATION TO RUBIDIUM
HYDROGEN SELENATE AND DIHYDRATED
BARIUM CHLORIDE

The structural and optical characteristics of rubidium hy-

drogen selenate (RHSe) are well known.7–9 At room tem-

perature, RHSe belongs to the triclinic system. Its FEL

domain structure consists of (001) W walls that are re-

lated to 2F1 Aizu species. Another family of W walls,

parallel to (100) and related to 222F2, is sometimes ob-

served in this compound, but it was absent from our

samples. W8 walls are never observed. The tilt angles

of the neutral lines in x1 and x2-cut plates are small, f1

5 2.2° and f2 5 0.6°, respectively. RHSe is thus a typi-

cal example of a biaxial FEL crystal that matches the re-

quired conditions for our simplified analytical treatment.

Dihydrated barium chloride (BCD) has monoclinic sym-

metry, with FEL W walls parallel to (001) and related to

an orthorhombic protophase. Because the a axis is the

monoclinic axis, tilt angle fb is strictly zero. The tilt

angle measured in BCD a-cut plates between crossed po-

larizers ( f 5 7°) is not so small as in RHSe.

Crystal plates of various orientations, typically 1 mm

thick, are cut and polished from RHSe and BCD. Before

cutting triclinic RHSe it is first necessary to place the as-

grown crystal between crossed polarizers to find the neu-

tral lines x1 and x2 in plane (001) of the domain walls. In

BCD these two axes are easy to find because they coincide

with orthogonal axes a and b of the monoclinic structure.

However, according to our convention introduced in Sec-

tion 3 (n1 , n2), the proper assignment of x1 and x2 to

either a or b in monoclinic crystals can be made only after

deflection experiments. That is why we shall now refer

to BCD plates as either a cut or b cut.

Measurements of the deflection angles are performed

with a goniometer with a typical error of 60.1°. Both the

incident laser beam (633 nm) and the crystal plate are

carefully centered on the rotation axis of the setup. The

polarization of the incident beam is set linear by a polar-

izer to extinguish either B deflection or A deflection. An

analyzer is also used to check the polarization of the de-

flected beams. In this way it is easy to determine which

one of the deflected beams is quasi ordinary and thus to

sort the pseudoprincipal indices among the three possible

cases examined in Section 3 and listed in Table 1. For a

better accuracy, each angular measurement is repeated

after the sample is rotated by 180° to bring to light—and

eventually suppress by averaging—any possible error ow-

ing to an off-centering of the sample with respect to the

rotation axis. The systematic error that is due to finite

sample thickness is estimated in Appendix A.

It should be noted that FEL domain structure usually

yields not only deflection but also diffraction. However,

because domain walls in as-grown crystals are randomly

distributed, this diffraction consists of broad lines sur-

rounding the deflection spots, whatever the number of do-

main walls is. So, most often diffracted light is not
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troublesome: Deflection spots are easy to recognize and

to localize because they are much brighter.

Complete sets of measurements versus angle of inci-

dence have been recorded in both x1-cut and x2-cut RHSe

samples. Inasmuch as the A beam is quasi ordinary in

both plates (A polarization nearly perpendicular to the

plane of incidence) we can conclude that RHSe matches

the first case that we examined above (n3 , n1 , n2).

The experimental results a(i) and b(i) at 633 nm are

shown in Fig. 5, together with the theoretical fits calcu-

lated from approximations (6) and (10). Linear regres-

sions of sin2 a and sin2 b versus sin2 i yield the following

fitting parameters:

x1 cut:

D1~n2! [ n2
2

2 n3
2

5 0.1716~12!,

n3
2/n1

2
5 0.984~4 !, (15)

x2 cut:

D2~n2! [ n1
2

2 n3
2

5 0.0420~6 !,

n3
2/n2

2
5 0.930~2 !. (16)

The most pertinent parameters in these fittings are the

values of D i(n
2). For this purpose single measurements

at zero incidence are sufficient. Then the linear birefrin-

gences Dn i can be deduced if one index is known. If it is

not, one can, in principle, use the least-squares values of

the index ratios n3 /n j that fit the deflection data in the

full angular range to determine the three refractive indi-

ces. But this method is inaccurate unless the deflection

measurements are done with a very high angular accu-

racy (,0.01 error; see below, Appendix A). For prefer-

ance we used the value of n2 previously measured in

RHSe at 633 nm by interferometry9 (n2 5 1.5632) to

yield the linear birefringences from our deflection data at

zero incidence:

Dn1 ' n2 2 n3 5 0.0559~4 !,

Dn2 ' n3 2 n1 5 20.0139~2 !. (17)

For BCD crystal, complete measurements of deflection

angles a(i) and b(i) are made for the a-cut plate only

[Fig. 6(a)]. In principle, b-cut plates cause no deflection,

owing to the monoclinic symmetry. Nevertheless, it is

possible to tilt the b-cut plate slightly by a few degrees

about the axis perpendicular to the domain walls such

that a weak deflection reappears. In this way, deflection

angle a(0) at zero incidence can be measured in the vicin-

ity of the b axis and then interpolated by a parabolic fit-

ting [Fig. 6(b)]. From polarization considerations it can

be concluded that the index sequence in BCD is nb , na

, n3 (so x1 [ b axis). Using approximations (13), we

can deduce the birefringences of BCD at 633 nm from the

deflection angles at zero incidence:

Fig. 5. Deflection angles measured in x1-cut and x2-cut RHSe
plates. The solid curves are linear regressions. In the experi-

ment, x2-cut beam crossing occurs when the incident wave vector
comes close to an optical axis.

Table 1. Characteristics of the Deflected Beams at Small Incidence
a

Crystal

Cut

Indices

n1 , n2 , n3 n3 , n1 , n2 n1 , n3 , n2

x1 A beam extraordinary,

B beam quasi ordinary

A beam quasi ordinary,

B beam extraordinary

A beam quasi ordinary,

B beam extraordinary

x2 A beam extraordinary,

B beam quasi ordinary

A beam quasi ordinary,

B beam extraordinary

A beam extraordinary,

B beam quasi ordinary

a Depending on the sort of refractive index (by convention, x3 is the axis perpendicular to the plane of the W-domain walls).
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in a cut plates,

a2~0 ! 5 17.2~60.1!°

⇒ Da~n2!

[ n3
2

2 nb
2

' ~n3
2/na

2!sin2 a2~0 !

5 0.0888~10!, (18)

in b cut plates,

a1~0 ! 5 11.4~60.1!°

⇒ Db~n2!

[ n3
2

2 na
2

' ~n3
2/nb

2!sin2 a1~0 !

5 0.0404~8 !. (19)

If an exact computation method similar to that of

Tsukamoto et al., is used, the corresponding values of the

birefringences that match the experimental results

should differ from the values given above by less than

2 3 1024. So it can be concluded that our approximate

treatment is still fully valid for such crystals as BCD for

which the optical tilt angle is ;7°. Except for strongly

birefringent crystals, the relative error on D(n2) stays be-

low 0.5% when the optical tilt angle does not exceed 8°.

5. CONCLUSIONS

The phenomenon of light deflection that occurs at

W-domain walls in ferroelastic crystals can be used to de-

termine birefringence. For monochromatic experiments

the setup consists simply of a goniometer and a laser

source. For measurements at several wavelengths it is of

course possible to replace the laser source with a spectral

lamp or with a white source associated with a monochro-

mator. The method does not require big crystal samples

(they can be as small as 2 mm 3 2 mm 3 1 mm), pro-

vided that they are cut perpendicular to the domain walls.

Unlike for conventional methods, the quality of the

sample is not critical for accuracy, and knowledge of the

sample’s thickness is not necessary. Moreover, simple

considerations of the polarizations of the deflected beams

permit one to sort the refractive indices easily. As has

been shown here, the use of ferroelastic species related to

a biaxial protophase is especially favorable for this pur-

pose because the small optical tilt at domain walls leads

to simple analytical relationships between the deflection

angles and the birefringences. Except for strongly bire-

fringent crystals, these approximate relationships remain

valid for tilt angles as large as 8°, within a relative error

of ,0.5% on D(n2). For larger tilt angles (twinned crys-

tals or FEL crystals with uniaxial protophase) a refined

analytical treatment is required for determining more-

accurate relationships between the deflection angles and

the birefringences.10

APPENDIX A: SYSTEMATIC ERROR
OWING TO SAMPLE THICKNESS

For measurements of the deflection angles we prefer to

use a narrow beam (usually a laser beam) focused upon

the crystal or upon a diaphragm mounted upon the rotat-

ing arm of a goniometer. For large crystal plates (.1

cm2) it is possible to use a wide beam in a classical goni-

ometer with input and output collimators. But for small

samples the first method is the more convenient one. In

this case it is necessary to center the sample carefully

upon the rotation axis of the goniometer. We achieve

centering by ensuring that the same value of the deflec-

tion angle is measured when the sample has been rotated

by 180°. Nevertheless, a systematic error remains,

which is due to the sample thickness. This error always

occurs by default. It is of course proportional to the ratio

t/L (t is the sample thickness; L is the length of the arm of

the goniometer). From simple trigonometric consider-

ations (Fig. 7) we obtain immediately (for small inci-

dences)

Fig. 6. Deflection angles measured in BCD plates. The solid
curves in (a) are linear regressions. The b-cut plate (b) causes
no deflection, owing to its monoclinic symmetry; deflection angle

ab(0) 5 11.4° is determined by a parabolic interpolation of an-
gular measurements in the vicinity of the b axis.
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da [ a 2 am 5

t cos3 a

2L
~tan a 2 tan as!

'
t

2L
~1 2 1/n !sin a, (20)

where a is the deflection angle (exact), am is the mea-

sured value, as is the internal angle, and n is the refrac-

tive index.

In our experiments, sample thickness t was ;1 mm and

arm length was L 5 200 mm. These values yield small

systematic error of ;0.02° for the deflection angle. How-

ever, for large angles of incidence this systematic error

arises slowly, as do other errors that could result from

several factors (broadening of the deflected beams, bad

alignment of the sample surfaces). For this reason the

general accuracy of the method cannot usually be better

than 0.05° unless the surfaces are perfectly polished and

parallel and the systematic error is conveniently cor-

rected. That is why we do not recommend using the

measurements made at large angle to fit the index ratios,

as could be tentatively done, for instance, in Eqs. (15) and

(16). The present method is suitable, as a rule, for deter-

mining only the birefringences, not the refractive indices.

L. Guilbert’s e-mail address is guilbert@ese-metz.fr.
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