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Introduction

One-dimensional random walks in random environment have been the subject of constant interest in physics and mathematics for the last thirty years since they naturally appear in a great variety of situations in physics and biology.

In 1975, Solomon gave, in a seminal work [START_REF] Solomon | Random walks in a random environment[END_REF], a criterion of transience-recurrence for such walks moving to the nearest neighbours, and shows that three different regimes can be distinguished: the random walk may be recurrent, or transient with a positive asymptotic speed, but it may also be transient with zero asymptotic speed. This last regime, which does not exist among usual random walks, is probably the one which is the less well understood and its study is the purpose of the present paper.

Let us first recall the main existing results concerning the other regimes. In his paper, Solomon computes the asymptotic speed of transient regimes. In 1982, Sinai states, in [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF], a limit theorem in the recurrent case. It turns out that the motion in this case is unusually slow. Namely, the position of the walk at time n has to be normalized by (log n) 2 in order to present a non trivial limit. In 1986, the limiting law is characterized independently by Kesten [START_REF] Kesten | The limit distribution of Sinai's random walk in random environment[END_REF] and Golosov [START_REF] Golosov | Limit distributions for random walks in random environments[END_REF]. Let us notice here that, beyond the interest of his result, Sinai introduces a very powerful and intuitive tool in the study of one-dimensional random walks in random environment. This tool is the potential, which is a function on Z canonically associated to the random environment. The potential itself is a usual random walk when the transition probabilities at each site are independent and identically distributed (i.i.d.).

The proof by Sinai of an annealed limit law in the recurrent case is based on a quenched localization result. Namely, a notion of valley of the potential is introduced, as well as an order on the set of valleys. It is then proved that the walk is localized at time t, with a probability converging to 1, around the bottom of the smallest valley of depth bigger than log t surrounding the origin. An annealed convergence in law of this site normalized by (log t) 2 implies the annealed limiting law for the walk.

In the case of transient random walks in random environment with zero asymptotic speed, the proof of the limiting law by Kesten, Kozlov and Spitzer [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] does not follow this scheme. Therefore an analogous result to Sinai's localization in the quenched setting was missing. As we will see, the answer to this question is more complicated than in the recurrent case but still very explicit.

In the setting of sub-ballistic transient random walks, the valleys we introduce are, like in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] and [START_REF] Peterson | Quenched limits for transient, zero speed one-dimensional random walk in random environment[END_REF], related to the excursions of the potential above its past minimum. Now, the key observation is that with a probability converging to 1, the particle at time t is located at the foot of a valley having depth and width of order log t. Therefore, since the walk spends a random time of order t inside a valley of depth log t, it is not surprising that this random walk exhibits an aging phenomenon.

What is usually called aging is a dynamical out-of-equilibrium physical phenomenon observed in disordered systems like spin-glasses at low temperature, defined by the existence of a limit of a given two-time correlation function of the system as both times diverge keeping a fixed ratio between them; the limit should be a non-trivial function of the ratio. It has been extensively studied in the physics literature, see [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF] and therein references.

More precisely, in our setting, Theorem 1 expresses that, for each given ratio h > 1, the probability that the particle remains confined within the same valley during the time interval [t, th]. This probability is expressed in terms of the generalized Arcsine law, which confirms the status of universality ascribed to this law by Ben Arous and Černý in their study of aging phenomena arising in trap models [START_REF] Ben Arous | Dynamics of trap models, Ecole d' Éte de Physique des Houches[END_REF].

Recall that the trap model is a model of random walk that was first proposed by Bouchaud and Dean [START_REF] Bouchaud | Weak ergodicity breaking and aging in disordered systems[END_REF][START_REF] Bouchaud | Aging on Parisi's tree[END_REF] as a toy model for studying this aging phenomenon. In the mathematics litterature, much attention has recently been given to the trap model, and many aging result were derived from it, on Z in [START_REF] Fontes | Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension[END_REF] and [START_REF] Ben Arous | Bouchaud's model exhibits two aging regimes in dimension one[END_REF], on Z 2 in [START_REF] Ben Arous | Aging for Bouchaud's model in dimension two[END_REF], on Z d (d ≥ 3) in [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF], or on the hypercube in [START_REF] Ben Arous | Glauber dynamics of the random energy model. I. Metastable motion on the extreme states[END_REF][START_REF] Ben Arous | Glauber dynamics of the random energy model. II. Aging below the critical temperature[END_REF]. A comprehensive approach to obtaining aging results for the trap model in various settings was later developed in [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF].

Let us finally mention that Theorem 1 generalizes the aging result obtained by heuristical methods of renormalization by Le Doussal, Fisher and Monthus in [START_REF] Doussal | Random walkers in one-dimensional random environments: Exact renormalization group analysis[END_REF] in the limit case when the bias of the random walk defining the potential tends to 0 (the case when this bias is 0 corresponding to the recurrent regime for the random walk in random environment). The recurrent case, which also leads to aging phenomenon, was treated in the same article and rigorous arguments were later presented by Dembo, Guionnet and Zeitouni in [START_REF] Dembo | Aging properties of Sinai's model of random walk in random environment[END_REF].

The second aspect of our work concerns localization properties of the walk and can be considered as the analog of Sinai's localization result in the transient setting. Unlike the recurrent case, the random walk is not localized near the bottom of a single valley. Nevertheless, if one introduces a confidence threshold α, one can say that, asymptotically, at time t, with a probability converging to 1 on the environment, the walk is localized with probability bigger than α around the bottoms of a finite number of valleys having depth of order log t. This number depends on t and on the environment, but is not converging to infinity with t. Moreover, in Theorem 2 and Corollary 1 we sharply estimate the probability for the walk of being at time t in each of these valleys.

Notation and main results

Let ω := (ω i , i ∈ Z) be a family of i.i.d. random variables taking values in (0, 1) defined on Ω, which stands for the random environment. Denote by P the distribution of ω and by E the corresponding expectation. Conditioning on ω (i.e. choosing an environment), we define the random walk in random environment X = (X n , n ≥ 0) on Z N as a nearest-neighbor random walk on Z with transition probabilities given by ω: (X n , n ≥ 0) is the Markov chain satisfying X 0 = 0 and for n ≥ 0,

P ω (X n+1 = x + 1 | X n = x) = ω x , P ω (X n+1 = x -1 | X n = x) = 1 -ω x .
We denote by P ω the law of (X n , n ≥ 0) and E ω the corresponding expectation. We denote by P the joint law of (ω, (X n ) n≥0 ). We refer to Zeitouni [START_REF] Zeitouni | Random Walks in Random Environment, XXXI summer school in probability[END_REF] for an overview of results on random walks in random environment. Let us introduce

ρ i := 1 -ω i ω i , i ∈ Z.
Our first main result is the following theorem which shows aging phenomenon in the transient sub-ballistic regime.

Theorem 1. Let ω := (ω i , i ∈ Z) be a family of independent and identically distributed random variables such that (a) there exists

0 < κ < 1 for which E [ρ κ 0 ] = 1 and E ρ κ 0 log + ρ 0 < ∞, (b) the distribution of log ρ 0 is non-lattice.
Then, for all h > 1 and all η > 0, we have Let us now recall some basic result about X n : under the same assumptions (a)-(b), Kesten, Kozlov and Spitzer [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] proved that X n /n κ converges in law to C κ ( 1 S ca κ ) κ where C κ is a positive parameter and S ca κ is the normalized positive stable law of index κ, i.e. with Laplace transform

lim t→∞ P(|X th -X t | ≤ η log t) = sin(κπ) π 1/h 0 y κ-1 (1 -y) -κ dy.
E[e -λS ca κ ] = e -λ κ , ∀λ > 0.
In [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF][START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] we gave a different proof of this result and we were able to give an explicit expression for the constant C κ .

The proof was based on a precise analysis of the potential associated with the environment, as it was defined by Sinai for its analysis of the recurrent case, see [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF].

In this paper, we use the techniques developed in [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF][START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] to prove Theorem 1. The potential, denoted by V = (V (x), x ∈ Z), is a function of the environment ω. It is defined as follows:

V (x) :=    x i=1 log ρ i if x ≥ 1, 0 if x = 0, -0 i=x+1 log ρ i if x ≤ -1.
Furthermore, we consider the weak descending ladder epochs for the potential defined by e 0 := 0 and

e i := inf{k > e i-1 : V (k) ≤ V (e i-1 )}, i ≥ 1,
which play a crucial role in our proof. Observe that the sequence (e i -e i-1 ) i≥1 is a family of i.i.d. random variables. Moreover, classical results of fluctuation theory (see [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], p. 396), tell us that, under assumptions (a)-(b) of Theorem 1,

E[e 1 ] < ∞. (2.1)
Now, observe that the sequence ((e i , e i+1 ]) i≥0 stands for the set of excursions of the potential above its past minimum. Let us introduce H i , the height of the excursion [e i , e i+1 ] defined by

H i := max e i ≤k≤e i+1 (V (k) -V (e i )) , i ≥ 0. (2.2)
Note that the (H i ) i≥0 's are i.i.d. random variables.

For t ∈ N, we introduce the critical height (2.3) h t := log tlog log t.

As in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] we define the deep valleys from the excursions which are higher than the critical height h t . Let (σ(j)) j≥1 be the successive indexes of excursions, whose heights are greater than h t . More precisely, σ(1) := inf{i ≥ 0 :

H i ≥ h t }, σ(j) := inf{i > σ(j -1) : H i ≥ h t }, j ≥ 2. 
We consider now some random variables depending only on the environment, which define the deep valleys.

Definition 1. For all j ≥ 1, let us introduce

b j := e σ(j) , a j := sup{k ≤ b j : V (k) -V (b j ) ≥ D t }, T ↑ j := inf{k ≥ b j : V (k) -V (b j ) ≥ h t }, d j := e σ(j)+1 , c j := inf{k ≥ b j : V (k) = max b j ≤x≤d j V (x)}, d j := inf{k ≥ d j : V (k) -V (d j ) ≤ -D t }.
where D t := (1 + κ) log t. We call (a j , b j , c j , d j ) a deep valley and denote by H (j) the height of the j-th deep valley.

Moreover, let us introduce the first hitting time of x, denoted by τ (x) := inf{n ≥ 1 :

X n = x}, x ∈ Z,
and the index of the last visited deep valley at time t, defined by

ℓ t := sup{n ≥ 0 : τ (b n ) ≤ t}.
Before stating the quenched localization result, recall that X is defined on the sample probability space Z N . Then, let us introduce e = (e i , i ≥ 1) a sequence of i.i.d. exponential random variables with parameter 1, independent of X. We define e on a probability space Ξ and denote its law by P (e) . In order to express the independence between X and e, we consider for each environment ω, the probability space (Z N × Ξ, P ω × P (e) ) on which we define (X, e).

Furthermore, let us define the weight of the k-th deep valley by

W k (ω) := 2 a k ≤m≤n b k ≤n≤d k e Vω(n)-Vω(m) .
Moreover, let us introduce the following integer, for any t ≥ 0, ℓ

t,ω := sup i ≥ 0 :

i k=1 W k (ω)e k ≤ t .
We are now able to state our second main result. (ii) for all δ > 0, lim

t→∞ P d T V (ℓ t , ℓ (e) 
t,ω + 1) > δ = 0, where d T V denotes the distance in total variation. Remark 2. The statement of Theorem 2 could be improved in the following way: the choice of the critical height h t is in some way arbitrary and we could take for h t any positive function such that lim t→∞ h t = ∞ and e ht = o(t). The meaning is that at time t the RWRE is localized at the bottom of a deep valley, deep meaning that its height H is such that e H is of order t. Furthermore, as in Theorem 1, the size of the localization window η log t could be replaced by any positive function a(t) such that lim t→∞ a(t) = ∞.

We remark that we can easily deduce the following quenched localization in probability result by assembling part (i) and part (ii) of Theorem 2. We precise that our quenched localization result is in probability because one should not expect an almost sure result here, since no almost sure quenched limit results are expected to hold, see [START_REF] Peterson | Quenched limits for transient, zero speed one-dimensional random walk in random environment[END_REF]. For y < x, we denote by E x ω the expectation associated with the law P x ω of the particle in the environment ω, started at x. Corollary 1. Under assumptions (a)-(b) of Theorem 1, we have, for all δ, η > 0, that

P i≥1 P 0,ω (|X t -b i | ≤ η log t) -P (e) i-1 k=1 W k (ω)e k ≤ t < i k=1 W k (ω)e k > δ
converges to 0, when t tends to ∞.

The content of this result is twofold. It first says that, with a probability converging to 1, the process at time t is concentrated near the bottom of a valley of depth of order log t. It also determines, for each of these valleys, the probability that, at time t, the particle lies at the bottom of it. This probability is driven by a renewal Poisson process which is skewed by the weights of each of these valleys. This result may be of interest when trying to get information on the environment on the basis of the observation of a sample of trajectories of the particle. See [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF] for a recent example of this in a paper on DNA reconstruction.

Notation

A result of Iglehart [START_REF] Iglehart | Extreme values in the GI/G/1 queue[END_REF] which will be of constant use, says that, under assumptions (a)-(b) of Theorem 1, the tail of the height H i of an excursion above its past minimum is given by

(3.1) P (H 1 > h) ∼ C I e -κh , h → ∞,
for a positive constant C I (we will not need its explicit value).

The analysis done in [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF][START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] shows that on the interval [0, t], t ∈ N, the walk X n spends asymptotically all its time trying to climb excursions of height of order log t + C for a real C. Let us now introduce the integer n t := ⌊t κ log log t⌋.

The integer n t will be use to bound the number of excursions the walk can cross before time t. The strategy will be to show that we can neglect the time spent between two excursions of size smaller than h t , and to show that at time t the walk X t is close to the foot of an excursion of height larger than h t .

The deep valleys. Let us define the number of deep valleys in the n t first excursions by

K t := sup{j ≥ 0 : σ(j) ≤ n t }, which is the number of excursions higher than the critical height h t in the n t first excursions. [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] with n = n t , but with a different critical height. In [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] the critical height was h n = 1-ε κ log n, for ε such that 0 < ε < 1. Here, we see that h nt would be equal to (1 -ε) log t + 1-ε κ log log log t which is smaller than our critical height h t = log tlog log t. This means that the deep valleys are higher and less numerous in the present paper than in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF]. We will see that this choice makes possible the control of the localization of the particle in any neighborhood of size η log t around the bottom of the last visited valley (recall Part (i) of Theorem 2).

Remark 3. This definition corresponds to the definition of deep valleys introduced in

3.2.

The * -valleys. Let us first define the maximal variations of the potential before site x by:

V ↑ (x) := max 0≤i≤j≤x (V (j) -V (i)), x ∈ N, V ↓ (x) := min 0≤i≤j≤x (V (j) -V (i)), x ∈ N.
By extension, we introduce

V ↑ (x, y) := max x≤i≤j≤y (V (j) -V (i)), x < y, V ↓ (x, y) := min x≤i≤j≤y (V (j) -V (i)), x < y.
The deep valleys defined above are not necessarily made of disjoint portions of the environment. To overcome this difficulty we defined another type of valleys, called * -valleys, which form a subsequence of the previous valleys. By construction, the * -valleys are made of disjoint portions of environment and will coincide with high probability with the previous valleys on the portion of the environment visited by the walk before time t.

γ * 1 := inf{k ≥ 0 : V (k) ≤ -D t }, T * 1 := inf{k ≥ γ * 1 : V ↑ (γ * 1 , k) ≥ h t }, b * 1 := sup{k ≤ T * 1 : V (k) = min 0≤x≤T * 1 V (x)}, a * 1 := sup{k ≤ b * 1 : V (k) -V (b * 1 ) ≥ D t }, d * 1 := inf{k ≥ T * 1 : V (k) ≤ V (b * 1 )}, c * 1 := inf{k ≥ b * 1 : V (k) = max b * 1 ≤x≤d * 1 V (x)}, d * 1 := inf{k ≥ d * 1 : V (k) -V (d * 1 ) ≤ -D t }.
Let us define the following sextuplets of points by iteration

(γ * j , a * j , b * j , T * j , c * j , d * j , d * j ) := (γ * 1 , a * 1 , b * 1 , T * 1 , c * 1 , d * 1 , d * 1 ) • θ d * j-1 , j ≥ 2,
where θ i denotes the i-shift operator.

Definition 2. We call a * -valley any quadruplet (a * j , b * j , c * j , d * j ) for j ≥ 1. Moreover, we shall denote by K * t the number of such * -valleys before e nt , i.e. K * t := sup{j ≥ 0 :

T * j ≤ e nt }.
The * -valleys will be made of independent and identically distributed portions of potential (up to some translation).

Preliminary estimates

4.1. Good environments. We define in this subsection the good environments in the same manner as we did in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] to give a complete characterization of the limit law. Since the critical height considered here is not the same (see Remark 3), the following results are not taken from [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] but proved with the same ideas, that we recall in this subsection. Let us introduce the following series of events, which will occur with high probability when t tends to infinity.

A 1 (t) := {e nt ≤ C ′ n t } , A 2 (t) := K t ≤ (log t) 1+κ 2 , A 3 (t) := ∩ Kt j=0 σ(j + 1) -σ(j) ≥ t κ/2 , A 4 (t) := ∩ Kt+1
j=1 {d j -a j ≤ C ′′ log t} , where σ(0) := 0 (for convenience of notation) and C ′ , C ′′ stand for positive constants (large enough) which will be specified below. In words, A 1 (t) bounds the total length of the first n t excursions. The event A 2 (t) gives a control on the number of deep valleys while A 3 (t) ensures that they are well separated and A 4 (t) bounds finely the length of each of them.

Lemma 1. Let A(t) := A 1 (t) ∩ A 2 (t) ∩ A 3 (t) ∩ A 4 (t), then lim t→∞ P (A(t)) = 1.
Proof. The fact that P (A 1 (t)) → 1 is a consequence of the law of large numbers. Concerning A 2 (t) and A 3 (t), we know that the number of excursions higher than h t in the first n t excursions is a binomial random variable with parameter (n t , q t ) where q t := P (H 1 ≥ h t ), from which we can easily deduce that P (A 2 (t) ∩ A 3 (t)) → 1. For example, since (3.1) implies q t ∼ C I e -κht , t → ∞, we have that E [K t ] = n t q t ∼ C I log log t(log t) κ . Using the Markov inequality we get that P (A 2 (t)) tends to 1, when t tends to infinity.

The proof for A 4 (t) requires a bit more explanations. Since K t ≤ (log t) with probability tending to one, we only have to prove, for j ≥ 1 that P (d j -a j ≥ C ′′ log t) = o((log t) -1+κ

2 ). Furthermore, observe that we can write d j -a j = (d j -

d j ) + (d j -T ↑ j ) + (T ↑ j -b j ) + (b j -a j )
. Therefore, the proof boils down to showing that, for each term in the previous sum, the probability that it is larger than C ′′ 4 log t is a o((log t) -1+κ

2 ). Here, we only prove that (4.1)

P (T ↑ j -b j ≥ C ′′ 4 log t) = o((log t) -1+κ 2 ), t → ∞,
the arguments for the other terms being similar and the results more intuitive.

Let us first introduce T h := inf{x ≥ 0 : V (x) ≥ h} for any h > 0. Then, recalling (3.1), we can write (4.2)

P (T ↑ j -b j ≥ C ′′ 4 log t) ≤ Ce κht P ( C ′′ 4 log t ≤ T ht < ∞).
Denoting by I(•) the convex rate function associated with the potential, we apply Chebychev's inequality in the same manner as is done in the proof of the upper bound in Cramer's theorem (see [START_REF] Hollander | Large Deviations[END_REF]) and obtain that the probability on the right-hand side in (4.2) is bounded above by

k≥ C ′′ 4 log t P (V (k) ≥ h t ) ≤ k≥ C ′′ 4 log t e -k I( h t k ) ≤ k≥ C ′′ 4 log t e -k I(0) ≤ Ct -C ′′ 4 I(0) . (4.3)
Now, let us recall that h t ≤ log t by definition. Morever, observe that the assumption (a) implies that E [ρ κ 0 ] = 1, which yields I(0) > 0. Then, assembling (4.2) and (4.3) yields (4.1) by choosing C ′′ larger than 4κ/I(0), which concludes the proof of Lemma 1.

The following lemma tells us that the * -valleys, which are i.i.d., coincide with the sequence of deep valleys with an overwhelming probability when t goes to infinity.

Lemma 2. If A * (t) := {K t = K * t ; (a j , b j , c j , d j ) = (a * j , b * j , c * j , d * j ), 1 ≤ j ≤ K * t }
, then we have that the probability P (A * (t)) converges to 1, when t goes to infinity.

Proof. By definition, the * -valleys constitute a subsequence of the deep valleys, and A * (t) occurs as soon as the valleys (a j , b j , c j , d j ) are disjoint for 1 ≤ j ≤ K t . Hence, we see that A 3 (t) ∩ A 4 (t) ⊂ A * (t). Then, Lemma 2 is a consequence of Lemma 1.

Directed traps.

Let us first recall that it is well-known (see for example [START_REF] Zeitouni | Random Walks in Random Environment, XXXI summer school in probability[END_REF], formula (2.1.4)) that for r < x < s, (4.4)

P x ω (τ (r) < τ (s)) = s-1 j=x e V (j) s-1 j=r e V (j) -1
.

Moreover, we introduce here the inter-arrival times, defined, for any x, y ∈ Z, by

τ (x, y) := inf{k ≥ 0 : X τ (x)+k = y}.
With the two following lemmas, we prove that the particle never backtracks before a j after reaching the bottom b j of the j-th valley, uniformly in 1 ≤ j ≤ K t , and that it visits each of them only once.

Lemma 3. Defining DT (t) := A(t) ∩ Kt j=1 τ (d j , b j+1 ) < τ (d j , d j ) , we have lim t→∞ P(DT (t)) = 1. Proof. Recalling that K t ≤ (log t) 1+κ 2
with probability tending to one, we have to prove, for j ≥ 1, that

E[1 A(t)∩{j≤Kt} P ω (τ (d j , b j+1 ) > τ (d j , d j ))] = o((log t) -1+κ
2 ), when t tends to infinity. Therefore, applying the strong Markov property at τ (d j ), we need to prove that

E[1 A(t)∩{j≤Kt} P d j ω (τ (b j+1 ) > τ (d j ))] = o((log t) -1+κ 2 ), t → ∞. (4.5)
By (4.4) we get that P

d j ω τ (b j+1 ) > τ (d j ) is bounded by (b j+1 -d j )e V (d j )-V (d j )+ht . Observe first that b j+1 -d j ≤ e nt ≤ C ′ n t on A(t) ∩ {j ≤ K t }. Then, recalling that V (d j ) -V (d j ) ≤ -D t
by definition (where D t = (1 + κ) log t) together with h t ≤ log t yields (4.5) and concludes the proof of Lemma 3.

Lemma 4. Defining DT * (t) := K * t j=1 τ (b * j , d * j ) < τ (b * j , a * j ) , we have lim t→∞ P(DT * (t)) = 1.
Proof. We omit the details here since the arguments are very similar to the proof of Lemma 3.

Finally, we need to know that the time spent between the deep valleys is small. Let us first recall the following technical result proved in Lemma 7 of [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF]. Lemma 5. Let T ↑ be defined by T ↑ (h) := inf{x ≥ 0 : V ↑ (x) ≥ h}, for any h ≥ 0. Then, there exists C > 0 such that, for all h,

E |0 τ (T ↑ (h) -1) ≤ Ce h ,
where E |0 denotes the expectation under the annealed law P |0 associated with the random walk in random environment reflected at 0. Now, we can prove that the time spent by the particle between the K t first deep valleys is negligible with respect to t with an overwhelming probability when t goes to infinity, which is the statement of the following lemma. Lemma 6. Let us introduce the following event

IA(t) := A(t) ∩ τ (b 1 ) + Kt j=1 τ (d j , b j+1 ) < t log log t .
Then, we have

lim t→∞ P(IA(t)) = 1.
Proof. Recalling Lemma 1, Lemma 3 and using the Markov inequality, we only need to prove that

E[1 A(t)∩DT (t) (τ (b 1 ) + Kt j=1 τ (d j , b j+1 ))] is o( t log log t
), when t goes to infinity. For y < x, let us denote by E x ω,|y the expectation associated with the law P x ω,|y of the particle in the environment ω, started at x and reflected at site y. Then, applying the strong Markov property at times τ (d Kt ), . . . , τ (d 1 ), we get that the above expectation is smaller than

E[1 A(t)∩DT (t) τ (b 1 )] + E 1 A(t)∩DT (t) Kt j=1 E d j ω,|d j [τ (b j+1 )] , (4.6)
since (X τ (d j )+n ) n≥0 under P ω has the same law as (X n ) n≥0 under P d j ω,|d j on A(t)∩DT (t). Concerning the second term of (4.6), we apply the strong Markov property for the potential at times d Kt , . . . , d 1 , such that we get

E 1 A(t)∩DT (t) Kt j=1 E d j ω,|d j [τ (b j+1 )] ≤ (log t) 1+κ 2 E |0 τ (T ↑ (h t ) -1) ≤ C(log t) 1+κ 2 e ht ≤ Ct(log t) -1-κ
2 , the second inequality being a consequence of Lemma 5. Now, let us mention that the bound Ce ht can be obtained in a similar way for the first term of (4.6), which yields that the expression in (4.6) is a o( t log log t ), when t tends to infinity and concludes the proof of Lemma 6.

4.3.

Localization in deep traps. In a first step, we state a technical result which ensures that the potential does not have excessive fluctuations in a typical box and which will be very useful to control the localization of the particle in a valley.

Lemma 7. If F γ (t) := ∩ Kt j=1 max{V ↑ (a j , b j ) ; -V ↓ (b j , c j ) ; V ↑ (c j , d j )} ≤ γ log t , then we have, for any γ > 0, lim t→∞ P(F γ (t)) = 1.
Proof. Observe first that Lemma 14 in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] implies that, for all ε > 0, the valleys with height larger that (1 -ε) log t + 1-ε κ log log log t have fluctuations bounded by γ log t, with a probability tending to one, for any γ > ε/κ. Now, since h t is larger than (1 -ε) log t + 1-ε κ log log log t for any ε > 0 (see Remark 3), the deep valleys considered here are included in the valleys treated by Lemma 14 in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] for any ε > 0, which concludes the proof of Lemma 7.

For each deep valley, let us introduce the position c i defined by

c i := inf{n ≥ c i : V (n) ≤ V (c i ) -h t /3}.
We first need to know that during its sojourn time inside a deep valley, the random walk spends almost all its time inside the interval (a i , c i ). This is a consequence of the following lemma.

Lemma 8. Let LT (t) be the event

LT (t) := Kt i=1 τ (c i , d i ) ≤ t log t .
Then,

lim t→∞ P(LT (t)) = 1.
This result just means that at the time scale t, if the walk reaches c i , then soon after it exits the deep valley (a i , d i ).

Proof. Recalling Lemma 1 and Lemma 7, we only have to prove that

P τ (c j , d j ) > t log t ; A 4 (t) ; F γ (t) ; j ≤ K t = o((log t) -1+κ 2 ), t → ∞,
for any j ≥ 1. Now, applying the strong Markov property at τ (c j ), we get that the previous probability is bounded by

E 1 A 4 (t)∩Fγ (t)∩{j≤Kt} P c j ω,|c j (τ (d j ) > t/ log t) + P c j ω (τ (c j ) < τ (d j )) .
Concerning the first term, we use the fact that E c j ω,|c j [τ (d j )] ≤ c j ≤u≤v≤d j e V (v)-V (u) (see (A1) in [START_REF] Golosov | Localization of random walks in one-dimensional random environments[END_REF]) and Chebychev inequality, such that we obtain (4.7)

P c j ω,|c j (τ (d j ) > t/ log t) ≤ log t t c j ≤u≤v≤d j e V (v)-V (u) ≤ C ′′ (log t) 2 t e γ log t , on A 4 (t)∩F γ (t)∩{j ≤ K t }.
For the second term, by (4.4) we obtain that the probability P 

c j ω (τ (c j ) < τ (d j )) is less than (4.8) d j -1 k=c j e V (k)   d j -1 k=c j e V (k)   -1 ≤ (d j -c j ) e V (c j )+γ log t-V (c j ) ≤ C ′′ (log t) e γ log t-h t 3 , on A 4 (t) ∩ F γ (t) ∩ {j ≤ K t }.
O i := [a i + 1, c i -1] \ (b i -η log t + 1, b i + η log t -1), i ∈ N,
and the event

A 5 (t, η) := Kt i=1 min k∈O i ∩Z (V (k) -V (b i )) ≥ C ′′′ η log t ,
for a constant C ′′′ (small enough and independent of η) to be defined later. Then, we have the following result.

Lemma 9. For all η > 0, lim t→∞

P (A 5 (t, η)) = 1.
Proof. Observe first that if η > C ′′ , then the sets (O i , 1 ≤ i ≤ K t ) are empty on A 4 (t). Therefore, Lemma 9 is a consequence of Lemma 1.

Now, let us assume η ≤ C ′′ . The definition of c i implies that min

c i ≤k<c i (V (k) - V (b i )) ≥ 2 3 h t .
Then, choosing C ′′′ such that C ′′′ C ′′ < 2/3 implies that C ′′′ η log t < 2 3 h t for all large t, which yields

P Kt i=1 min c i ≤k<c i (V (k) -V (b i )) ≥ C ′′′ η log t = 1, (4.9) 
for all large t. Then, let us introduce the sets

O ′ i := O i ∩ [b i , c i ], O ′′ i := O i ∩ [a i , b i ], i ∈ Z,
and the events

A ′ 5 (t, η) := Kt i=1 min k∈O ′ i ∩Z (V (k) -V (b i )) ≥ C ′′′ η log t , A ′′ 5 (t, η) := Kt i=1 min k∈O ′′ i ∩Z (V (k) -V (b i )) ≥ C ′′′ η log t .
Now, recalling (4.9), the proof of Lemma 9 boils down to showing that lim t→∞ P (A ′ 5 (t, η)) = 1, (4.10)

lim t→∞ P (A ′′ 5 (t, η)) = 1. (4.11)
Let us first prove (4.10). Recalling Lemma 1 and Lemma 7, we only need to prove that it is possible to choose C ′′′ small enough such that for some γ > 0

P min k∈O ′ 1 ∩Z (V (k) -V (b 1 )) < C ′′′ η log t ; F γ (t) = o((log t) - 1+κ 
2 ), (4.12) when t → ∞. Now recalling assumption (a) of Theorem 1 and denoting by µ the law of log ρ 0 , we can define the law μ = ρ κ 0 µ, and the law P = μ⊗Z which is the law of a sequence of i.i.d. random variables with law μ. The definition of κ implies that log ρ μ(dρ) > 0. Now, let us simplify the notation by writing

H := H 0
(where H 0 is the height of the first excursion defined by H 0 := max 0≤k≤e 1 V (k)) and define the hitting time of level h for the potential by

T h := min{x ≥ 0 : V (x) ≥ h}, h > 0.
Then, introducing Fγ (t) := -V ↓ (0, T H ) ≤ γ log t , we can write that the probability term in (4.12) is smaller than

P min ⌊η log t⌋≤k≤T H V (k) < C ′′′ η log t ; Fγ (t) | H ≥ h t ≤ Ce κht P min ⌊η log t⌋≤k≤T H V (k) < C ′′′ η log t ; Fγ (t) ; H ≥ h t = C Ẽ e -κ(V (T H )-ht) 1 {min ⌊η log t⌋≤k≤T H V (k)<C ′′′ η log t ; Fγ (t) ; H≥ht} ≤ C P min ⌊η log t⌋≤k≤T H V (k) < C ′′′ η log t ; Fγ (t) ; H ≥ h t , (4.13)
the first inequality being a consequence of (3.1) and the equality deduced from Girsanov property. Now, let us introduce α = α(η) := cη with c satisfying 0 < c < min{ Ẽ [V (1)] ; 1/C ′′ } and γ = γ(η) := cη/2. Observe that α log t < h t for all large t, so that T α log t ≤ T ht ≤ T H < ∞ on {H ≥ h t }. Now since c < Ẽ [V (1)] , we use Chebychev's inequality in the same manner as is done in the proof of the upper bound in Cramer's theorem, see [START_REF] Hollander | Large Deviations[END_REF], and obtain that P (V (⌊η log t⌋) < α log t) ≤ C exp{-η Ĩ(c) log t} = o((log t) -1+κ

2 ), where Ĩ(•) denotes the convex rate function associated with V under P . This yields P (T α log t ≤ ⌊η log t⌋) = 1 -o((log t) -1+κ

2 ), when t tends to infinity. Therefore, we get P min Furthermore, observe that on Fγ (t), we have min T α log t ≤k≤T H V (k) ≥ (α-γ) log t, which yields min T α log t ≤k≤T H V (k) ≥ C ′′′ η log t, if we choose C ′′′ smaller than c/2. Therefore, for C ′′′ small enough (independently of η ≤ C ′′ ), we get that the probability term in (4.14) is null for all large t. Now, assembling (4.13) and (4.14) concludes the proof of (4.10).

⌊η log t⌋≤k≤T H V (k) < C ′′′ η
The proof of (4.11) is similar but easier. Indeed, we do not have to use Girsanov property to study the potential on [a i , b i ].

Two versions of a Dynkin type renewal result

We define the sequence of random times (τ * i ) i≥1 as follows: conditioning on the environment ω, (τ * i ) i≥1 is defined as an independent sequence of random variables with the law of τ (d 

:= sup{n ≥ 0 : τ * 1 + • • • + τ * n ≤ t}. For all 0 ≤ x 1 < x 2 ≤ 1, we have lim t→∞ P(t(1 -x 2 ) ≤ τ * 1 + • • • + τ * ℓ * t ≤ t(1 -x 1 )) = sin(κπ) π x 2 x 1 (1 -x) κ-1 x -κ dx.
For all 0 ≤ x 1 < x 2 , we have

lim t→∞ P(t(1 + x 1 ) ≤ τ * 1 + • • • + τ * ℓ * t +1 ≤ t(1 + x 2 )) = sin(κπ) π x 2 x 1 dx x κ (1 + x)
.

Observe that the result would exactly be Dynkin's theorem (cf e.g. Feller, vol II, [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], p. 472) if the sequence (τ * i ) i≥1 was an independent sequence of random variables in the domain of attraction of a stable law with index κ. Here, the sequence (τ * i ) i≥1 implicitly depends on the time t, since the * -valleys are defined from the critical height h t . We will use the main intermediate result of [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] which gives an estimate of the Laplace transform of τ * 1 at 0. We deduce from Corollary 2 and Remark 7 of [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] the following lemma.

Lemma 10. We have

E 1 -e -λ τ * 1 t ∼ 2 κ πκ sin(πκ) C U t κ P (H ≥ h t ) λ κ , t → ∞,
for all λ > 0.

Proof. We apply Corollary 2 of [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] to n = ⌊t κ ⌋ and h n = h t = log tlog log t which satisfies the condition of Remark 7 of [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF]. The constant C U was made explicit in [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF] but we will not need this value here.

For the convenience of the reader, we give a brief idea of the arguments of the proof of this formula. Let us simply write (a, b, c, d)

for (a * 1 , b * 1 , c * 1 , d * 1
). The time it takes to cross the valley can be decomposed in a geometric number of unsuccessful attempts and a successful attempt, hence we can write

τ * 1 = τ (b, d) = F 1 + • • • + F N + S,
where N is a geometric random variable with parameter

1 -p(ω) := P b ω (τ (d) < τ + (b)) = ω b e V (b) d-1 x=b e V (x)
, where τ + (b) := inf{n > 0 : X n = b}. The random variables (F i ) i≥1 are i.i.d. and distributed as τ + (b) under

P b ω ( • |τ + (b) < τ (d)) and S is distributed as τ (d) under P b ω ( • |τ (d) < τ + (b))
. The first step is to prove that the successful attempt S can be neglected (this is done in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] using some estimates on h-processes). Thus, we can write

E e -λ τ * 1 t ∼ E 1 -p(ω) 1 -p(ω)E ω e -λ t F 1 , t → ∞.
The second step is to linearize E ω [e -λ t F 1 ], i.e. to show that it can be replaced by (1

-λ t E ω [F 1 ]
) ( using again estimates on h-processes). This leads to

E e -λ τ * 1 t ∼ E 1 1 + λ t p(ω) 1-p(ω) E ω [F 1 ] , t → ∞.
Then we prove that p(ω)

1-p(ω) E ω [F 1 ] is of order Z = 2e H M 1 M 2 ,
where M 1 and M 2 are defined by M 1 := c k=a e -(V (k)-V (b)) and M 2 := d k=b e V (k)-V (c) . Then, we use the main result of [START_REF] Enriquez | A probabilistic representation of constants in Kesten's renewal theorem[END_REF], where the tail estimate of Z is obtained (see Theorem 2.2).

Proof of Proposition 1. The arguments are essentially the same as in [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]. Let us introduce S * 0 = 0 and S * n := n i=1 τ * i , for n ≥ 1. Then, the inequality t(1

-x 2 ) ≤ τ * 1 + • • • + τ ℓ * t ≤ t(1 -x 1
) occurs iff S * n = ty and τ * n+1 > t(1 -y) for some combination n, y such that 1 -x 2 < y < 1 -x 1 . Summing over all n and possible y we get

P(t(1 -x 2 ) ≤ S * ℓ * t ≤ t(1 -x 1 )) = 1-x 1 1-x 2 G t (1 -y) P (H ≥ h t ) U t {dy}, (5.1) 
where G t (x) := P (H ≥ h t )P(t -1 τ * 1 ≥ x), and U t {dx} denotes the measure associated with U t (x) := n≥0 P(t -1 S * n ≤ x). We introduce the measure dH t (u) such that

∞ x dH t (u) = G t (x)
, for all x ≥ 0. Lemma 11. For any x > 0, we have

lim t→∞ x κ t κ G t (x) = 2 κ Γ(1 + κ)C U . (5.2)
Moreover, the convergence is uniform on any compact set.

Proof. In a first step, observe that

E[1 -e -λ τ * 1 t ] = P (H ≥ h t ) -1 ∞ 0 (1 -e -λu ) dH t (u). Recalling Lemma 10, we obtain lim t→∞ t κ ∞ 0 (1 -e -λu ) dH t (u) = 2 κ Γ(1 + κ)C U Γ(1 -κ)λ κ . Since Γ(1 -κ)λ κ = λ ∞ 0 e -λu u -κ du, this implies lim t→∞ t κ ∞ 0 (1 -e -λu ) dH t (u) = 2 κ Γ(1 + κ)C U λ ∞ 0 e -λu u -κ du. (5.3)
On the other hand, integrating by parts, we get, for any t ≥ 0,

∞ 0 (1 -e -λu ) dH t (u) = λ ∞ 0 e -λu G t (u) du.
(5.4) Combining (5.3) and (5.4) implies that the measure t κ G t (u) du tends to the measure with density 2 κ Γ(1 + κ)C U u -κ . Therefore, we have for all x ≥ 0,

lim t→∞ t κ x 0 G t (u) du = 2 κ Γ(1 + κ)C U x 1-κ 1 -κ , (5.5) which yields lim ε→0 lim t→∞ (1+ε)x x G t (u) du ε x 0 G t (u) du = 1 -κ. (5.6)
Moreover, observe that the monotonicity of G t (•) implies

xG t ((1 + ε)x) x 0 G t (u) du ≤ (1+ε)x x G t (u) du ε x 0 G t (u) du ≤ xG t (x) x 0 G t (u) du . (5.7)
Now, combining (5.6) and (5.7), we obtain lim inf

t→∞ xG t (x) x 0 G t (u) du ≥ 1 -κ. Recalling (5.5), this yields lim inf t→∞ x κ t κ G t (x) ≥ 2 κ Γ(1 + κ)C U . (5.8)
Similarly, we obtain, for any ε > 0, lim sup

t→∞ x κ t κ G t ((1 + ε)x) ≤ 2 κ Γ(1 + κ)C U .
(5.9) Assembling (5.8) and (5.9) and letting ε → 0 conclude the proof of (5.2). Furthermore, observe that the uniform convergence on any compact set is a consequence of the monotonicity of x → G t (x), the continuity of the limit and Dini's theorem.

Lemma 12. The measure P (H≥ht) -1 t κ U t {dx} converges vaguely to the measure

1 Γ(κ)Γ(1 + κ)Γ(1 -κ)2 κ C U x κ-1 dx.
Proof. Observe first that the Laplace transform

U t (λ) := ∞ 0 e -λu U t {du} satisfies U t (λ) = n≥0 E[e -λ S * n t ] = (1 -E[e -λ τ * 1 t ]) -1 . Therefore, Lemma 10 yields lim t→∞ P (H ≥ h t ) -1 t κ U t (λ) = λ -κ Γ(1 + κ)Γ(1 -κ)2 κ C U .
Furthermore, since Γ(κ)λ -κ = ∞ 0 e -λu u κ-1 du, we deduce the vague convergence of the measure from the pointwise convergence of the Laplace transforms. Now, recalling (5.1), we observe that Lemma 11 together with Lemma 12 imply lim t→∞

P(t(1 -x 2 ) ≤ S * ℓ * t ≤ t(1 -x 1 )) = 1 Γ(κ)Γ(1 -κ) 1-x 1 1-x 2
(1 -y) -κ y κ-1 dy, = sin(κπ) π

x 2

x 1

(1 -y) κ-1 y -κ dy.

This concludes the proof of the first part of Proposition 1. The second part of Proposition 1 is obtained using similar arguments.

Recall Lemma 6 which tells that the inter-arrival times are negligible. Now, we will prove that the results of Proposition 1 are still true if we consider, in addition, these inter-arrival times. Let δ 1 := τ (b 1 ), τ 1 := τ (b 1 , d 1 ) and

δ k := τ (d k-1 , b k ), τ k := τ (b k , d k ), k ≥ 2.
Moreover, we set

T k := δ 1 + τ 1 + • • • + τ k-1 + δ k , k ≥ 1, the entering time in the k-th deep valley. Proposition 2. Recall ℓ t = sup{n ≥ 0 : τ (b n ) ≤ t}. Then, we have P(T ℓt ≤ t < T ℓt + τ ℓt ) → 1, t → ∞.
For all 0 ≤ x 1 < x 2 ≤ 1, we have

lim t→∞ P(t(1 -x 2 ) ≤ T ℓt ≤ t(1 -x 1 )) = sin(κπ) π x 2 x 1 (1 -x) κ-1 x -κ dx.
For all 0 ≤ x 1 < x 2 , we have

lim t→∞ P(t(1 + x 1 ) ≤ T ℓt+1 ≤ t(1 + x 2 )) = sin(κπ) π x 2 x 1 dx x κ (1 + x) .
Proof. On the event A(t) ∩ DT * (t), we know that the random times (τ i ) 1≤i≤K * t have the same law as the random times (τ * i ) 1≤i≤K * t defined in Section 5. If we define lt := sup{n ≥ 0 : τ 1 + • • • + τ n ≤ t}, then, using Proposition 1 and Lemma 3, we get that the result of Proposition 1 is true with τ and lt in place of τ * and ℓ * t . Now, using Lemma 6 we see that

lim inf t→∞ P( lt = ℓ t -1 ; T ℓt ≤ t < T ℓt + τ ℓt ) ≥ lim inf t→∞ P(IA(t) ; |t -(τ 1 + • • • + τ lt )| ≥ ξt),
for all ξ > 0. Thus, using Proposition 1 (for lt and τ i ) and letting ξ tends to 0, we get that lim

t→∞ P( lt = ℓ t -1 ; T ℓt ≤ t < T ℓt + τ ℓt ) = 1.
We conclude the proof by the same type of arguments.

Proof of part (i) of Theorem 2: a localization result

We follow the strategy developed by Sinai for the recurrent case. For each valley we denote by π i the invariant measure of the random walk on [a i , c i ] in environment ω, reflected at a i and c i and normalized so that π i (b i ) = 1. Clearly, π i is the reversible measure given, for k ∈

[b i + 1, c i -1], by π i (k) = ω b i 1 -ω b i +1 • • • ω k-1 1 -ω k = ω b i ρ -1 b i +1 • • • ρ -1 k-1 (ρ -1 k + 1) ≤ e -(V (k)-V (b i )) + e -(V (k-1)-V (b i )) . Similarly, π i (k) ≤ e -(V (k)-V (b i )) + e -(V (k+1)-V (b i )) for k ∈ [a i + 1, b i -1]
. Since the walk is reflected at a i and c i , we have π i (a i ) = e -(V (a i +1)-V (b i )) and π i (c i ) = e -(V (c i -1)-V (b i )) . Hence on the event A 5 (t, η) we have

sup{π i (k) ; k ∈ [a i , c i ] \ (b i -η log t, b i + η log t)} ≤ Ce -C ′′′ η log t = Ct -C ′′′ η .
Moreover, since π i is an invariant measure and since π i (b i ) = 1, we have, for all k ≥ 0,

P b i ω,|a i ,c i | (X k = x) ≤ π i (x)
. Hence, on the event A(t) ∩ A 5 (t, η) we have, for all k ≥ 0,

P b i ω,|a i ,c i | (|X k -b i | > η log t) ≤ C(log t)t -C ′′′ η . (6.1)
Let ξ be a positive real, 0 < ξ < 1. Then, let us write

lim inf t→∞ P(|X t -b ℓt | ≤ η log t) ≥ lim inf t→∞ P(|X t -b ℓt | ≤ η log t ; ℓ t = ℓ t(1+ξ) ) ≥ lim inf t→∞ P(ℓ t = ℓ t(1+ξ) ) -lim sup t→∞ P(|X t -b ℓt | > η log t ; ℓ t = ℓ t(1+ξ) ).
Considering the first term, we get by using Proposition 2, lim inf t→∞

P(ℓ t = ℓ t(1+ξ) ) = lim inf t→∞ P(T ℓt+1 > t(1 + ξ)) = sin(κπ) π ∞ ξ dx x κ (1 + x) . (6.2)
In order to estimate the second term, let us introduce the event

T T (t) := A(t) ∩ A 5 (t, η) ∩ DT (t) ∩ DT * (t) ∩ A * (t) ∩ IA(t) ∩ LT (t) ∩ IT (t),
where IT (t) := {T ℓt ≤ t < T ℓt + τ ℓt }. Observe that the preliminary results obtained in Section 4 together with Proposition 2 imply that P(T T (t)) → 1, when t → ∞. Then, we have lim sup

t→∞ P(|X t -b ℓt | > η log t ; ℓ t = ℓ t(1+ξ) ) ≤ lim sup t→∞ P(T T (t) ; |X t -b ℓt | > η log t ; ℓ t = ℓ t(1+ξ) ) ≤ lim sup t→∞ E 1 T T (t) Kt i=1 1 {|Xt-b i |>η log t ; ℓt=ℓ t(1+ξ) =i} .
But on the event T T (t) ∩ {ℓ t = ℓ t(1+ξ) = i} we know that for all k ∈ [T i , t] the walk X k is in the interval [a i , c i -1]. Indeed, on the event LT (t) ∩ DT (t) ∩ IA(t) we know that once the position c i is reached then within a time t/ log t the position b i+1 is reached which would contradict the fact that ℓ t(1+ξ) = i. Hence, we obtain, for all i ∈ N,

P T T (t) ; i ≤ K t ; |X t -b i | > η log t ; ℓ t = ℓ t(1+ξ) = i ≤ E 1 {i≤Kt} 1 A(t)∩A 5 (t,η) sup k∈[0,t] P b i ω,|a i ,c i | (|X k -b i | > η log t) ≤ C(log t)t -C ′′′ η ,
where we used the estimate (6.1) on the event A(t) ∩ A 5 (t, η). Considering now that, on the event A(t), the number K(t) of deep valleys is smaller than (log t) 

i := - 1 log(p i (ω)) e i ,
where 1 -p i (ω) denotes the probability for the random walk starting at b i to go to d i before returning to b i , which is equal to ω b e V (b i ) P d i -1

x=b i e V (x) . The parameter of this geometric law is now clearly equal to 1 -p i (ω). Now one can introduce like in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] two random variables F (i) (resp. S (i) ) whose law are given by the time it takes for the random walk reflected at a i , starting at b i , to return to b i (resp. to hit d i ) conditional on the event that d i (resp. b i ) is not reached in between.

We introduce now a sequence of independent copies of F (i) we denote by (F i) which is going now to be compared with E ω [τ * i ]e i . Let us now estimate, for a given ξ > 0 (small enough),

(i) n ) n≥0 . The law of τ * i is clearly the same as F (i) 1 + • • • + F (i) N i + S (
P ∀i ≤ K t , (1 -ξ)(F (i) 1 + • • • + F (i) N i + S (i) ) ≤ E ω [τ * i ]e i < (1 + ξ)(F (i) 1 + • • • + F (i) N i + S (i) ) ≥ P ∀i ≤ K t , (1 -ξ 2 )(F (i) 1 + • • • + F (i) N i ) ≤ E ω [τ * i ]e i < (1 + ξ 2 )(F (i) 1 + • • • + F (i) N i ) -P ∃i ≤ K t , S (i) > ξ 3 (F (i) 1 + • • • + F (i) N i ) . (7.1)
Let us first treat the second quantity of the rhs of (7.1). For this purpose, we need an upper bound for E ω [S (i) ] which is obtained exactly like in Lemma 13 of [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] and can be estimated by controlling the size of the falls (resp. rises) of the potential during its rises from V (b i ) to V (c i ) (resp. falls from V (c i ) to V (d i )), see Lemma 7. Indeed, the random variable S (i) concerns actually the random walk which is conditioned to hit d i before b i . Therefore, this involves an h-process which can be viewed as a random walk in a modified potential between b i and d i . This modified potential has a decreasing trend (which encourages the particle to go to the right), and the main contribution to S (i) comes from the small risings of this modified potential along its global fall. More precisely, the particle starting at b i which is conditioned to hit d i before returning to b i moves like a particle in the modified random potential V (i) defined as follows: for all b i ≤ x < y ≤ d i ,

V (i) (y) -V (i) (x) = (V (y) -V (x)) + log g (i) (x) g (i) (x + 1) g (i) (y)g (i) (y + 1) , (7.2)
where g (i) (x) := P x ω (τ (d i ) < τ (b i )). The expectation of S (i) is given by the usual formula (see [START_REF] Zeitouni | Random Walks in Random Environment, XXXI summer school in probability[END_REF]), so that

E ω [S (i) ] ≤ 1 + d i k=b i +1 d i l=k e V (i) (l)-V (i) (k) .
We are therefore concerned by the largest rise of V (i) inside the interval [b i , d i ]. We first notice that, by standard arguments, for any b

i ≤ x < y ≤ d i , g (i) (x) g (i) (x + 1) g (i) (y) g (i) (y + 1) = x-1 j=b i e V (j) x j=b i e V (j)
y-1

j=b i e V (j) y j=b i e V (j) ≤ 1. (7.3) Therefore, we obtain for any b

i ≤ x < y ≤ d i V (i) (y) -V (i) (x) ≤ V (y) -V (x). (7.4)
This allows to bound the largest rise of V (i) on the interval [c i , d i ] by the largest rise of V on this interval.

Concerning the largest rise of V (i) on the interval [b i , c i ], we notice, taking into account the small size of the fluctuations of V described in Lemma 7, (7.3) and (7.4), that for all η > 0, for all ω ∈ A 4 (t) ∩ F η (t), and for all i ≤ K t , the difference

V (i) (y) -V (i) (x) is less than or equal to [V (y) -max b i ≤j≤y V (j)] -[V (x) -max b i ≤j≤x V (j)] + O(log log t) ≤ η log t + O(log log t).
This reasoning yields for all η > 0 that, for all ω

∈ A 4 (t) ∩ F η (t), ∀i ≤ K t , E ω [S (i) ] ≤ t η .
This implies, by the Markov inequality, that, for all η > 0 and all ω ∈ A 4 (t) ∩ F η (t), ∀i ≤ K t , P ω (S (i) > t 2η ) < 1 t η . On the other hand, we have

P ω (F (i) 1 + • • • + F (i) N i < t 2η ) ≤ P ω (N i < t 2η ) = 1 -p i (ω) ⌊t 2η ⌋ = O t 2η log t t ,
the last equality coming from the definition of h t := log tlog(log t), which implies that 1 -p i (ω) is smaller than log t t . Hence, since A 2 (t) = {K t ≤ (log t) 1+κ 2 } satisfies P (A 2 (t)) → 1 (see Lemma 1), we obtain

lim t→+∞ P ∀i ≤ K t , P ω (F (i) 1 + • • • + F (i) N i < t 2η ) ≤ 1 t 1 2 -2η = 1.
Gathering these two informations on S (i) and F

(i) 1 + • • • + F (i) N i , we obtain lim t→+∞ P ∀i ≤ K t , S (i) < ξ 3 (F (i) 1 + • • • + F (i) N i ) = 1,
for all ξ > 0, which treats the second quantity of the rhs of (7.1).

The first quantity of the rhs of (7.1) is treated by going through

P (1 - ξ 4 )N i E ω [F (i) ] ≤ F (i) 1 + • • • + F (i) N i ≤ (1 + ξ 4 )N i E ω [F (i) ] ,
which, for all η > 0, is larger than

1-P F (i) 1 + • • • + F (i) N i N i -E ω [F (i) ] > ξ 4 E ω [F (i) ] ∩ {N i = 0} ∩ {E ω [(F (i) ) 2 ] ≤ t η } -P (E ω [(F (i) ) 2 ] ≥ t η ),
which is in turn, using the Bienaimé-Chebychev's inequality, larger than

1 -E E( t η N i 1 {N i =0} | N i ) 16 ξ 2 E ω [F ] 2 -P (E ω [(F (i) ) 2 ] ≥ t η ) ≥ 1 - 16t η ξ 2 E 1 N i 1 {N i =0} -P (E ω [(F (i) ) 2 ] ≥ t η ).
Now, we use again the reasoning based on h-processes to get an upper bound for E ω [(F (i) ) 2 ]. Like in the success case, the particle starting at b i which is conditioned to hit b i before returning to d i moves like a particle in the modified random potential V (i) defined as follows: for all a i ≤ x < y ≤ d i , V (i) (y) -V (i) (x) = (V (y) -V (x)) + log h (i) (x) h (i) (x + 1) h (i) (y)h (i) (y + 1) , (7.5) where h (i) (x) := P x ω (τ (b i ) < τ (d i )) (notice that V and V (i) coincide on the interval [a i , b i ]).

It happens now that E ω [(F (i) ) 2 ] can be computed explicitly in terms of V (i) (see Lemma 12 in [15]), and is bounded by a constant times (d (i) -a (i) ) 2 times the exponential of the maximum of the largest rise of V on [a i , b i ] and the largest fall of V (i) on [b i , d i ], which are treated in a similar way as the fluctuations of V (i) , above. So, we get ∀η > 0, P (E ω [(F (i) ) 2 ] ≥ t η ) = o 1 (log t) 2 . Moreover, we have

E 1 N i 1 {N i =0} = E - 1 -p i (ω) p i (ω) log(1 -p i (ω)) = O (log t) 2 t .
As a result, we obtain

P (1 - ξ 4 )N i E ω [F (i) ] ≤ F (i) 1 + • • • + F (i) N i ≤ (1 + ξ 4 )N i E ω [F (i) ] = 1 -o 1 (log t) 2 .
Now, the second step in the estimation of the first quantity of the rhs of (7.1) is the examination, for ξ > 0, of

P (1 - ξ 4 )N i E ω [F (i) ] ≤ E ω [τ i ]e i ≤ (1 + ξ 4 )N i E ω [F (i) ] ,
i.e.

P (1 - ξ 4 )N i E ω [F (i) ] ≤ (E ω [N i ]E ω [F (i) ] + E ω [S (i) ])e i ≤ (1 + ξ 4 )N i E ω [F (i) ] .
Neglecting again, like above, the contribution of S (i) we are back to prove that 2 ) → 1, when t → ∞, this concludes the proof that the rhs (and therefore the lhs) of (7.1) tends to 1 when t tends to infinity. Indeed, we obtain

P ∀i ≤ K t , (1-ξ)(F (i) 1 +• • •+F (i) N i +S (i) ) ≤ E ω [τ * i ]e i < (1+ξ)(F (i) 1 +• • •+F (i)
N i +S (i) ) → 1, from which we deduce

P ∀i ≤ K t , (1 -ξ)(τ * 1 + • • • + τ * i ) ≤ i k=1 E ω [τ * k ]e k < (1 + ξ)(τ * 1 + • • • + τ * i ) → 1.
Moreover, we use the fact that

E ω [τ * k ] = W * k -(d * k -b * k )
, where (cf for example [START_REF] Zeitouni | Random Walks in Random Environment, XXXI summer school in probability[END_REF] 

P ∀i ≤ K t , (1 -ξ)(τ * 1 + • • • + τ * i ) ≤ i k=1 W * k e k < (1 + ξ)(τ * 1 + • • • + τ * i ) → 1.
Applying this, for i = ℓ * t and i = ℓ We conclude now the proof by reminding that lim ξ→0 P(ℓ * t = ℓ * t(1+ξ) ) = 1 as well as lim ξ→0 P(ℓ 

Proof of Theorem 1

We fix h > 1 and η > 0 (η was used to define the event A 5 (t, η) before Lemma 9). Let us introduce the event 

Theorem 2 .

 2 Under assumptions (a)-(b) of Theorem 1, we have, (i) for all η > 0, lim t→∞ P(|X t -b ℓt | ≤ η log t) = 1,

  1+κ

  we get respectively that, for all ξ > 0, ,ω → 1 and P(ℓ(e) t,ω ≤ ℓ * t(1+ξ) ) → 1.

  ),ω ) = 1.Proof of Part (ii) of Theorem 2. The passage from Proposition 3 to Part (ii) of Theorem 2 is of the same kind as the passage from Proposition 1 to Proposition 2.

1 ( 1 -

 11 y) -κ dy, which concludes the proof of Theorem 1.

  Now, we need to be sure that the bottom of the deep valleys are sharp. For η > 0, we introduce the following subsets of the deep valleys

	Then, assembling (4.7) and (4.8) yields

P τ (c j , d j ) > t log t ; A 4 (t) ; F γ (t) ≤ C(log t) e γ log t-h t 3 ,

which concludes the proof of Lemma 8 by choosing γ < 1/3.

  The first step in our proof is to derive the following result.

	Proposition 1. Let ℓ * t be the random integer defined by
		ℓ * t
	P at a * b * i ω,|a * i	b * i ω,|a * i is the law of the Markov chain in environment ω, starting from b * , where τ (d * i ) denotes the first hitting time of d * i and i and reflected

* i ) under P i . Hence, under the annealed law P, (τ * i ) i≥1 is an i.i.d. sequence since the * -valleys are independent and identically distributed.

  Part (ii) of Theorem 2: the quenched law of the last visited valleyIn order to prove the proximity of the distributions of ℓ t and ℓ Let us first associate to the exponential variable e i the following geometric random variable N

	Proof. The strategy is to build a coupling between ℓ * t and ℓ	(e) t,ω such that
	lim t→∞	P (P 0,ω (ℓ * t = ℓ	(e) t,ω ) > δ) = 0.
				κ+1 2	we get
	lim sup			C(log t)	3+κ 2 t -C ′′′ η
				t→∞
				= 0.
	Then, letting ξ tends to 0 in (6.2) concludes the proof of part (i) of Theorem 2.
	7. (e) t,ω , we go through ℓ * t = sup{n ≥ 0, τ * 1 +• • •+τ * n ≤ t} whose advantage is to involve independent random
	variables whose laws are clearly identified.
	Proposition 3. Under assumptions (a)-(b) of Theorem 1, we have, for all δ > 0,
	lim t→∞	P d T V (ℓ * t , ℓ	(e) t,ω ) > δ = 0,
	where d T V denotes the distance in total variation.

t→∞ P(|X t -b ℓt | > η log t ; ℓ t = ℓ t(1+ξ) ) ≤ lim sup

  Now, since P (K t ≤ (log t)

	P (1-	ξ 4	) (-	1 log(p i (ω))	)e i ≤	p i (ω) 1 -p i (ω)	e i ≤ (1+	ξ 4	) (-	1 log(p i (ω))	)e i = 1-o	1 (log t) 2 ,
	which is a direct consequence of 1 -p i (ω) ≤ log t t allied with	
					P (e) e i >	log t t	= 1 -o	1 (log t) 2 .	

  , formula (2.1.14)) Since on the event A 4 (t) we have for allk ≤ K t , d * k -b * k ≤ C ′′ log t, we see that on A 4 (t) we have (1 -C ′′ (log t) 2 * k ≤ E ω [τ * k ] ≤ W * k , since W *k ≥ e ht by definition. Hence, it implies that

	W * k = 2	e Vω(n)-Vω (m) .
	a * k b * k ≤n≤d * ≤m≤n k	

t

)W

  T T (t, h):= T T (t) ∩ {X t -b ℓt ≤ η 2 log t} ∩ {X th -b ℓ th ≤ η 2 log t},whose probability tends to 1, when t tends to infinity (it is a consequence of Section 4 together with part (i) of Theorem 2). Then, we easily have({ℓ th = ℓ t } ∩ T T (t, h)) ⊂ ({|X th -X t | ≤ η log t} ∩ T T (t, h)) .Moreover, observe that on T T (t),ℓ th > ℓ t implies that |b ℓ th -b ℓt | ≥ t κ/2 (by definition of A 3 (t)). Therefore, we get for all large t. Thus, since Proposition 2 implies that lim t→∞ P(ℓ th = ℓ t ) exists, we obtain lim t→∞ P(|X th -X t | ≤ η log t) = lim

		t→∞	P(ℓ th = ℓ t )
	= lim t→∞	P(T ℓt+1 ≥ th)
	=	sin(κπ) π

({|X th -X t | ≤ η log t} ∩ T T (t, h)) ⊂ ({ℓ th = ℓ t } ∩ T T (t, h)) ,