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We study the nonlinear eigenvalue problem -div(a(|∇u|)∇u) = λ|u| q(x)-2 u in Ω, u = 0 on ∂Ω, where Ω is a bounded open set in R N with smooth boundary, q is a continuous function, and a is a nonhomogeneous potential. We establish sufficient conditions on a and q such that the above nonhomogeneous quasilinear problem has continuous families of eigenvalues. The proofs rely on elementary variational arguments.

Introduction and preliminary results

Let Ω be a bounded domain in R N (N ≥ 3) with smooth boundary ∂Ω. In this paper we are concerned with the following eigenvalue problem:

    
-div(a(|∇u|)∇u) = λ|u| q(x)-2 u, for x ∈ Ω u = 0, for x ∈ ∂Ω .

(

) 1 
We assume that the function a : (0, ∞) → R is such that the mapping ϕ : R → R defined by

ϕ(t) =     
a(|t|)t, for t = 0 0, for t = 0 , 1 is an odd, increasing homeomorphism from R onto R. We also suppose throughout this paper that λ > 0 and q : Ω → (0, ∞) is a continuous function.

Since the operator in the divergence form is nonhomogeneous we introduce an Orlicz-Sobolev space setting for problems of this type. On the other hand, the term arising in the right hand side of equation ( 1) is also nonhomogeneous and its particular form appeals to a suitable variable exponent Lebesgue space setting.

We point out that eigenvalue problems involving quasilinear nonhomogeneous problems in Orlicz-Sobolev spaces were studied in [START_REF] Garciá-Huidobro | On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting[END_REF] but in a different framework. In what concerns the case when a(|∇u|) = |∇u| q(x)-2 , problem (1) was studied by Fan et al. in [START_REF] Fan | A class of De Giorgi type and Hölder continuity[END_REF][START_REF] Fan | Eigenvalues of p(x)-Laplacian Dirichlet problem[END_REF] who established the existence of a sequence of eigenvalues, by means of the Ljusternik-Schnirelmann critical point theory. Denoting by Λ the set of all nonnegative eigenvalues, Fan, Zhang and Zhao showed that sup Λ = +∞ and they pointed out that only under additional assumptions we have inf Λ > 0. We remark that in the homogeneous case corresponding the p-Laplace operator ( p(x) ≡ p) we always have inf Λ > 0. A different approach of the eigenvalue problem (1) corresponding to a(|∇u|) = |∇u| p(x)-2 and p(x) = q(x) is given in Mihȃilescu and Rȃdulescu [START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF].

We first recall some basic facts about Orlicz spaces. Define

Φ(t) = t 0 ϕ(s) ds, Φ ⋆ (t) = t 0 ϕ -1 (s) ds, for all t ∈ R.
We observe that Φ is a Young function, that is, Φ(0) = 0, Φ is convex, and lim x→∞ Φ(x) = +∞. Furthermore, since Φ(x) = 0 if and only if x = 0, lim x→0 Φ(x)/x = 0, and lim x→∞ Φ(x)/x = +∞, then Φ is called an N -function. The function Φ ⋆ is called the complementary function of Φ and it satisfies Φ ⋆ (t) = sup{st -Φ(s); s ≥ 0}, for all t ≥ 0 .

We observe that Φ ⋆ is also an N -function and the following Young's inequality holds true:

st ≤ Φ(s) + Φ ⋆ (t), for all s, t ≥ 0 .

The Orlicz space L Φ (Ω) defined by the N -function Φ (see [START_REF] Adams | Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Adams | Sobolev Spaces[END_REF][START_REF] Ph | Mountain pass type solutions for quasilinear elliptic equations[END_REF]) is the space of measurable functions u : Ω → R such that

u L Φ := sup Ω uv dx; Ω Φ ⋆ (|v|) dx ≤ 1 < ∞ . Then (L Φ (Ω), • L Φ ) is a Banach space whose norm is equivalent to the Luxemburg norm u Φ := inf k > 0; Ω Φ u(x) k dx ≤ 1 .
For Orlicz spaces the Hölder's inequality reads as follows (see [21, Inequality 4, p. 79]):

Ω uvdx ≤ 2 u L Φ v L Φ ⋆ for all u ∈ L Φ (Ω) and v ∈ L Φ ⋆ (Ω) .
We denote by W 1 0 L Φ (Ω) the corresponding Orlicz-Sobolev space for problem (1), equipped with the norm u = |∇u| Φ (see [START_REF] Adams | Sobolev Spaces[END_REF][START_REF] Ph | Mountain pass type solutions for quasilinear elliptic equations[END_REF][START_REF] Gossez | Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients[END_REF]). The space W 1 0 L Φ (Ω) is also a Banach space. In this paper we assume that Φ and Φ ⋆ satisfy the ∆ 2 -condition (at infinity), namely

1 < lim inf t→∞ tϕ(t) Φ(t) ≤ lim sup t>0 tϕ(t) Φ(t) < ∞.
Then L Φ (Ω) and W 1 0 L Φ (Ω) are reflexive Banach spaces. Now we introduce the Orlicz-Sobolev conjugate Φ ⋆ of Φ, defined as

Φ -1 ⋆ (t) = t 0 Φ -1 (s) s (N +1)/N ds.
We assume that lim

t→0 1 t Φ -1 (s) s (N +1)/N ds < ∞, and lim t→∞ t 1 Φ -1 (s) s (N +1)/N ds = ∞. (2) 
Finally, we define

p 0 := inf t>0 tϕ(t) Φ(t) and p 0 := sup t>0 tϕ(t) Φ(t) .
Next, we recall some background facts concerning the variable exponent Lebesgue spaces. For more details we refer to the book by Musielak [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF] and the papers by Acerbi at al., Edmunds et al. [START_REF] Edmunds | On L p(x) norms[END_REF][START_REF] Edmunds | Density of smooth functions in W k,p(x) (Ω)[END_REF][START_REF] Edmunds | Sobolev embedding with variable exponent[END_REF], Kovacik and Rákosník [START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF], Mihȃilescu and Rȃdulescu [START_REF] Mihȃilescu | A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[END_REF], Samko and Vakulov [START_REF] Samko | Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators[END_REF], Zhikov [START_REF] Zhikov | On some variational problems[END_REF].

Set C + (Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C + (Ω) we define

h + = sup x∈Ω h(x) and h -= inf x∈Ω h(x).
For any q(x) ∈ C + (Ω) we define the variable exponent Lebesgue space L q(x) (Ω) (see [START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF]). On L q(x) (Ω) we define the Luxemburg norm by the formula

|u| q(x) = inf µ > 0; Ω u(x) µ q(x) dx ≤ 1 .
We remember that the variable exponent Lebesgue spaces are separable and reflexive Banach spaces. If 0 < |Ω| < ∞ and q 1 , q 2 are variable exponents so that q 1 (x) ≤ q 2 (x) almost everywhere in Ω then there exists the continuous embedding L q 2 (x) (Ω) ֒→ L q 1 (x) (Ω). If (u n ), u ∈ L q(x) (Ω) then the following relations hold true

|u| q(x) > 1 ⇒ |u| q - q(x) ≤ Ω |u| q(x) dx ≤ |u| q + q(x) (3) 
|u| q(x) < 1 ⇒ |u| q + q(x) ≤ Ω |u| q(x) dx ≤ |u| q - q(x) (4) 
|u n -u| q(x) → 0 ⇔ Ω |u n -u| q(x) dx → 0. (5)

The main results

We say that λ ∈ R is an eigenvalue of problem (1) if there exists

u ∈ W 1 0 L Φ (Ω) \ {0} such that Ω a(|∇u|)∇u∇v dx -λ Ω |u| q(x)-2 uv dx = 0, for all v ∈ W 1 0 L Φ (Ω). We point out that if λ is an eigenvalue of problem (1) then the corresponding u ∈ W 1 0 L Φ (Ω) \ {0} is a weak solution of (1)
, called an eigenvector of equation ( 1) corresponding to the eigenvalue λ.

Our first main result shows that, in certain circumstances, any positive and sufficiently small λ is an eigenvalue of (1).

Theorem 1. Assume that relation ( 2) is fulfilled and furthermore

1 < inf x∈Ω q(x) < p 0 , (6) 
and

lim t→∞ |t| q + Φ ⋆ (kt) = 0, for all k > 0. (7) 
Then there exists λ ⋆ > 0 such that any λ ∈ (0, λ ⋆ ) is an eigenvalue for problem [START_REF] Acerbi | Regularity results for a class of functionals with non-standard growth[END_REF].

The above result implies inf

u∈W 1 0 L Φ (Ω)\{0} Ω Φ(|∇u|) dx Ω |u| q(x) dx = 0.
The second main result of this paper asserts that in certain cases the set of eigenvalues may coincide with the whole positive semiaxis.

Theorem 2. Assume that relations (2) and ( 7) are fulfilled and furthermore

sup x∈Ω q(x) < p 0 . ( 8 
)
Then every λ > 0 is an eigenvalue for problem [START_REF] Acerbi | Regularity results for a class of functionals with non-standard growth[END_REF]. Moreover, for any λ > 0 there exists a sequence of eigenvectors

{u n } ⊂ E such that lim n→∞ u n = 0 in W 1 0 L Φ (Ω).
Remark 1. Relations ( 2) and ( 7) enable us to apply Theorem 2.2 in [START_REF] Garciá-Huidobro | On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting[END_REF] (see also Theorem 8.33 in [START_REF] Adams | Sobolev Spaces[END_REF]) in order to obtain that W 1 0 L Φ (Ω) is compactly embedded in L q + (Ω). This fact combined with the continuous embedding of

L q + (Ω) in L q(x) (Ω) ensures that W 1 0 L Φ (Ω) is compactly embedded in L q(x) (Ω).
Remark 2. The conclusion of Theorems 1 and 2 still remains valid if we replace the hypothesis [START_REF] Edmunds | Density of smooth functions in W k,p(x) (Ω)[END_REF] in Theorems 1 and 2 by the following relation

N < p 0 < lim inf t→∞ log(Φ(t)) log(t) . (9) 
Indeed, using Lemma D.2 in [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF], it follows that

W 1 0 L Φ (Ω) is continuously embedded in W 1,p 0 0
(Ω). On the other hand, since we assume p 0 > N , we deduce that W 1,p 0 0 (Ω) is compactly embedded in C(Ω). Thus, we obtain that

W 1 0 L Φ (Ω) is compactly embedded in C(Ω). Since Ω is bounded it follows that W 1 0 L Φ (Ω) is continuously embedded in L q(x) (Ω).
3 Proof of Theorem 1

Let E denote the Orlicz-Sobolev space W 1 0 L Φ (Ω). For any λ > 0 the energy functional J λ : E → R corresponding to problem (1) is defined by

J λ (u) = Ω Φ(|∇u|) dx -λ Ω 1 q(x) |u| q(x) dx.
Standard arguments imply that J λ ∈ C 1 (E, R) and

J ′ λ (u), v = Ω a(|∇u|)∇u∇v dx -λ Ω |u| q(x)-2 uv dx,
for all u, v ∈ E. Thus the weak solutions of (1) coincide with the critical points of J λ . If such a weak solution exists and is nontrivial then the corresponding λ is an eigenvalue of problem (1).

Lemma 1. There is some λ ⋆ > 0 such that for any λ ∈ (0, λ ⋆ ) there exist ρ, α > 0 such that J λ (u) ≥ α > 0 for any u ∈ E with u = ρ.

Proof. By the definition of p 0 and since d dτ (τ p 0 Φ(t/τ )) ≥ 0 we obtain Φ(t) ≥ τ p 0 Φ(t/τ ), ∀ t > 0 and τ ∈ (0, 1] ,

(see page 44 in [START_REF] Ph | Mountain pass type solutions for quasilinear elliptic equations[END_REF]). Combining this fact with Proposition 6 in [21, page 77] we find that

Ω Φ(|∇u(x)|) dx ≥ u p 0 , ∀ u ∈ E with u < 1. ( 10 
)
On the other hand, since E is continuously embedded in L q(x) (Ω), there exists a positive constant c 1 such that

|u| q(x) ≤ c 1 u , ∀ u ∈ E. (11) 
We fix ρ ∈ (0, 1) such that ρ < 1/c 1 . Then relation [START_REF] Fan | Eigenvalues of p(x)-Laplacian Dirichlet problem[END_REF] implies

|u| q(x) < 1, ∀ u ∈ E, with u = ρ. (12) 
Furthermore, relation (4) yields

Ω |u| q(x) dx ≤ |u| q - q(x) , ∀ u ∈ E, with u = ρ. (13) 
Relations [START_REF] Fan | Eigenvalues of p(x)-Laplacian Dirichlet problem[END_REF] and [START_REF] Gossez | Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients[END_REF] imply

Ω |u| q(x) dx ≤ c q - 1 u q -, ∀ u ∈ E, with u = ρ. (14) 
Taking into account relations [START_REF] Fan | A class of De Giorgi type and Hölder continuity[END_REF], ( 4) and ( 14) we deduce that for any u ∈ E with u = ρ the following inequalities hold true

J λ (u) ≥ u p 0 - λ q -Ω |u| q(x) dx = ρ q -ρ p 0 -q -- λ q -c q - 1 .
We point out that by relation ( 6) and the definition of p 0 we have q -< l ≤ p 0 . By the above inequality we remark that if we define

λ ⋆ = ρ p 0 -q - 2 • q - c q - 1 (15) 
then for any λ ∈ (0, λ ⋆ ) and any u ∈ E with u = ρ there exists α = ρ p 0 2 > 0 such that

J λ (u) ≥ α > 0.
The proof of Lemma 1 is complete.

Lemma 2. There exists ϕ ∈ E such that ϕ ≥ 0, ϕ = 0 and J λ (tϕ) < 0, for t > 0 small enough.

Proof. Assumption (6) implies that q -< p 0 . Let ǫ 0 > 0 be such that q -+ ǫ 0 < p 0 . On the other hand, since q ∈ C(Ω) it follows that there exists an open set Ω 0 ⊂ Ω such that |q(x)q -| < ǫ 0 for all x ∈ Ω 0 . Thus, we conclude that q(x) ≤ q -+ ǫ 0 < p 0 for all x ∈ Ω 0 .

Let ϕ ∈ C ∞ 0 (Ω) be such that supp(ϕ) ⊃ Ω 0 , ϕ(x) = 1 for all x ∈ Ω 0 and 0 ≤ ϕ ≤ 1 in Ω. We also point out that there exists t 0 ∈ (0, 1) such that for any t ∈ (0, t 0 ) we have

t|∇ϕ| Φ = t ϕ < 1.
Taking into account all the above information and using Lemma C.9 in [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF] we have

J λ (tϕ) = Ω Φ(t|∇ϕ(x)|) dx -λ Ω t q(x) q(x) |ϕ| q(x) dx ≤ Ω Φ(t|∇ϕ(x)|) dx - λ q + Ω t q(x) |ϕ| q(x) dx ≤ Ω Φ(t|∇ϕ(x)|) dx - λ q + Ω 0 t q(x) |ϕ| q(x) dx ≤ t p 0 ϕ p 0 - λ • t q -+ǫ 0 q + |Ω 0 |,
for any t ∈ (0, 1), where |Ω 0 | denotes the Lebesgue measure of Ω 0 . Therefore J λ (tϕ) < 0 for t < δ 1/(p 0 -q --ǫ 0 ) , where 0 < δ < min t 0 ,

λ q + |Ω 0 | ϕ p 0 .
The proof of Lemma 2 is complete.

Proof of Theorem 1. Let λ ⋆ > 0 be defined as in [START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF] and λ ∈ (0, λ ⋆ ). By Lemma 1 it follows that on the boundary of the ball centered at the origin and of radius ρ in E, denoted by B ρ (0), we have inf ∂Bρ(0)

J λ > 0. ( 16 
)
On the other hand, by Lemma 2, there exists ϕ ∈ E such that J λ (tϕ) < 0 for all t > 0 small enough. Moreover, relations ( 10), ( 14) and ( 4) imply that for any u ∈ B ρ (0) we have

J λ (u) ≥ u p 0 - λ q -c q - 1 u q -. It follows that -∞ < c := inf Bρ(0) J λ < 0.
We let now 0 < ǫ < inf ∂Bρ(0) J λinf Bρ(0) J λ . Applying Ekeland's variational principle [START_REF] Ekeland | On the variational principle[END_REF] to the functional J λ : B ρ (0) → R, we find u ǫ ∈ B ρ (0) such that

J λ (u ǫ ) < inf Bρ(0) J λ + ǫ J λ (u ǫ ) < J λ (u) + ǫ • u -u ǫ , u = u ǫ . Since J λ (u ǫ ) ≤ inf Bρ(0) J λ + ǫ ≤ inf Bρ(0) J λ + ǫ < inf ∂Bρ(0) J λ ,
we deduce that u ǫ ∈ B ρ (0). Now, we define

I λ : B ρ (0) → R by I λ (u) = J λ (u) + ǫ • u -u ǫ .
It is clear that u ǫ is a minimum point of I λ and thus

I λ (u ǫ + t • v) -I λ (u ǫ ) t ≥ 0
for small t > 0 and any v ∈ B 1 (0). The above relation yields

J λ (u ǫ + t • v) -J λ (u ǫ ) t + ǫ • v ≥ 0. Letting t → 0 it follows that J ′ λ (u ǫ ), v + ǫ • v > 0 and we infer that J ′ λ (u ǫ ) ≤ ǫ.
We deduce that there exists a sequence {w n } ⊂ B ρ (0) such that

J λ (w n ) → c and J ′ λ (w n ) → 0. ( 17 
)
It is clear that {w n } is bounded in E. Thus, there exists w ∈ E such that, up to a subsequence, {w n } converges weakly to w in E. By Remark 2 we deduce that E is compactly embeddded in L q(x) (Ω), hence {w n } converges strongly to w in L q(x) (Ω). So, by relations ( 5) and Hölder's inequality for variable exponent spaces (see e.g. [START_REF] Kováčik | On spaces L p(x) and W 1,p(x)[END_REF]),

lim n→∞ Ω |w n | q(x) dx = Ω |w| q(x) dx and lim n→∞ Ω |w n | q(x)-2 w n v dx = Ω |w| q(x)-2 wv dx for any v ∈ E.
We conclude that w is a nontrivial weak solution for problem [START_REF] Acerbi | Regularity results for a class of functionals with non-standard growth[END_REF] and thus any λ ∈ (0, λ ⋆ ) is an eigenvalue of problem [START_REF] Acerbi | Regularity results for a class of functionals with non-standard growth[END_REF]. Similar arguments as those used on page 50 in [START_REF] Ph | Mountain pass type solutions for quasilinear elliptic equations[END_REF] imply that {w n } converges strongly to w in E. So, by [START_REF] Mihȃilescu | Nonhomogeneous boundary value problems in Orlicz-Sobolev spaces[END_REF],

J λ (w) = c < 0 and J ′ λ (w) = 0. ( 18 
)
The proof of Theorem 1 is complete.

Proof of Theorem 2

We still denote by E the Orlicz-Sobolev space W 1 0 L Φ (Ω). For any λ > 0 let J λ be defined as in the above section of the paper.

In order to prove Theorem 2 we apply to the functional J λ a symmetric version of the mountain pass lemma, recently developed by Kajikia in [START_REF] Kajikia | A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations[END_REF]. Before presenting the result in [START_REF] Kajikia | A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations[END_REF] we remember the following definition. Definition 1. Let X be a real Banach space. We say that a subset A of X is symmetric if u ∈ A implies -u ∈ A. For a closed symmetric set A which does not contain the origin, we define the genus γ(A) of A as the smallest integer k such that there exists an odd continuous mapping from A to R k \ {0}. If there does not exist such an integer k, we define γ(A) = +∞. Moreover, we set γ(∅) = 0. Finally, we denote by Γ k the family Γ k = {A ⊂ X; 0 ∈ A and γ(A) ≥ k}.

We state now the symmetric mountain pass lemma of Kajikia (see Theorem 1 in [START_REF] Kajikia | A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations[END_REF]).

Theorem 3. Assume X is an infinite dimensional Banach space and Λ ∈ C 1 (X, R) satisfies conditions (A1) and (A2) below.

(A1) Λ(u) is even, bounded from below, Λ(0) = 0 and Λ(u) satisfies the Palais-Smale condition (i.e., any sequence {u n } in X such that {Λ(u n )} is bounded and Λ

′ (u n ) → 0 in X ⋆ as n → ∞ has a convergent subsequence); (A2) For each k ∈ N, there exists an A k ∈ Γ k such that sup u∈A k Λ(u) < 0.
Under the above assumptions, either (i) or (ii) below holds true.

(i) There exists a sequence {u n } such that Λ ′ (u n ) = 0, Λ(u n ) < 0 and {u n } converges to zero;

(ii) There exist two sequences {u n } and {v n } such that Λ ′ (u n ) = 0, Λ(u n ) = 0, u n = 0, lim n→∞ u n = 0, Λ ′ (v n ) = 0, Λ(v n ) = 0, and v n converges to a non-zero limit.

In order to apply Theorem 3 to the functional J λ we prove two auxiliary results.

Lemma 3. The functional J λ satisfies condition (A1) from Theorem 3.

Proof. Clearly, J λ (u) = J λ (-u) for any u ∈ E, i.e. J λ is even, and J λ (0) = 0. On the other hand, since by relation [START_REF] Fan | A class of De Giorgi type and Hölder continuity[END_REF] we have

Ω Φ(|∇u(x)|) dx ≥ u p 0 , ∀ u ∈ E with u < 1,
while by Lemma C.9 in [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF] we have

Ω Φ(|∇u(x)|) dx ≥ u p 0 , ∀ u ∈ E with u > 1, we deduce that Ω Φ(|∇u(x)|) dx ≥ α( u ), ∀ u ∈ E, (19) 
where

α : [0, ∞) → R, α(t) = t p 0 if t < 0 and α(t) = t p 0 if t > 1.
By Remark 1, the space E is continuously embedded in L q ± (Ω). Thus, there exist two positive constants d 1 and d 2 such that

Ω |u| q + dx ≤ d 1 u q + , Ω |u| q -dx ≤ d 2 u q -, ∀ u ∈ E. ( 20 
)
Combining relations [START_REF] Mihȃilescu | On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent[END_REF] and [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF] we get

J λ (u) ≥ α( u ) - d 1 λ q -u q + - d 2 λ q -u q -, ∀ u%inE.
Since by relation [START_REF] Edmunds | Sobolev embedding with variable exponent[END_REF] we have q + < p 0 the above relation shows that J λ is bounded from below. Next, we show that J λ satisfies the Palais-Smale condition. Let {u n } be a sequence in E such that {J λ (u n )} is bounded and J ′ (u n ) → 0 in E ′ , as n → ∞. We show that {u n } is bounded in E. Assume by contradiction the contrary. Then, passing eventually to a subsequence, still denoted by {u n }, we may assume that u n → ∞ as n → ∞. Thus we may consider that u n > 1 for any integer n.

For any t ∈ (0, 1) we have sup

u∈A k (t) J λ (u) ≤ sup θ∈S 1 ∩F J λ (tθ) = sup θ∈S 1 ∩F Ω Φ(t|∇θ|) dx -λ Ω 1 q(x) t q(x) |θ| q(x) dx ≤ sup θ∈S 1 ∩F t p 0 Ω Φ(|∇θ|) dx - λt q + q + Ω |θ| q(x) dx = sup θ∈S 1 ∩F t p 0 1 - λ q + • 1 t p 0 -q + • Ω |θ| q(x) dx Since S 1 ∩ F is compact we have m = min θ∈S 1 ∩F Ω |θ| q(x) dx > 0.
Combining that fact with the information given by relation [START_REF] Edmunds | Sobolev embedding with variable exponent[END_REF], that is p 0 > q + , we deduce that we can choose t k ∈ (0, 1) small enough such that

1 - λ q + • 1 t p 0 -q + • m < 0. The above relations yield sup u∈A k (t k ) J λ (u) < 0.
The proof of Lemma 4 is complete.

Proof of Theorem 2. Using Lemmas 3 and 4 we deduce that we can apply Theorem 3 to the functional J λ . So, there exists a sequence {u n } ⊂ E such that J ′ (u n ) = 0, for each n, J λ (u n ) ≤ 0 and

{u n } converges to zero in E.
The proof of Theorem 2 is complete.

Examples

In this section we point out two concrete examples of problems to which we can apply the main results of this paper. Example 1. We consider the problem

     -div(log(1 + |∇u| r )|∇u| p-2 ∇u) = λ|u| q(x)-2 u, for x ∈ Ω u = 0, for x ∈ ∂Ω, (21) 
where p and r are real numbers such that 1 < p, r, N > p + r and q(x) is a continuous function on Ω such that 1 < q(x) for all x ∈ Ω and furthermore inf Ω q(x) < p and sup Ω q(x) < N p Np .

In this case we have ϕ(t) = log(1 + |t| r ) • |t| p-2 t, for all t ∈ R and Φ(t) = t 0 ϕ(s), for all t ∈ R.

Clearly, ϕ is an odd, increasing homeomorphism of R into R, while Φ is convex and even on R and increasing from R + to R + . By Example 2 on p. 243 in [START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF] we know that p 0 = p and p 0 = p + r and thus relation [START_REF] Edmunds | On L p(x) norms[END_REF] in Theorem 1 is satisfied. On the other hand, by Proposition 1 in [START_REF] Mihȃilescu | Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting[END_REF] (see also [START_REF] Mihȃilescu | Nonhomogeneous boundary value problems in Orlicz-Sobolev spaces[END_REF]) we deduce that relations (2) and ( 7) are fulfilled. Thus, we verified that we can apply Theorem 1 in order to find out that there exists λ ⋆ > 0 such that any λ ∈ (0, λ ⋆ ) is an eigenvalue for problem [START_REF] Rao | Theory of Orlicz Spaces[END_REF].

Example 2. We consider the problem

    
-div |∇u| p-2 ∇u log(1 + |∇u|) = λ|u| q(x)-2 u, for x ∈ Ω u = 0, for x ∈ ∂Ω ,

where p is a real number such that p > N + 1 and q ∈ C(Ω) satisfies 1 < q(x) < p -1 for any x ∈ Ω.

In this case we have Thus, conditions (2), ( 8) and ( 9) from Theorem 2 and Remark 2 are verified. We deduce that every λ > 0 is an eigenvalue for problem [START_REF] Samko | Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators[END_REF]. Moreover, for each λ > 0 there exists a sequence of eigenvectors {u n } such that lim n→∞ u n = 0 in W 1 0 L Φ (Ω).

  continuous function from R + to R + , with Φ(0) = 0 and such that the function Φ( √ t) is convex. By Example 3 on p. 243 in[START_REF] Ph | Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces[END_REF] we havep 0 = p -1 < p 0 = p = lim inf t→∞ log(Φ(t))log(t) .
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By our assumptions, there is a positive constant M such that for all n large enough we have

Since p 0 > 1, letting n → ∞ we obtain a contradiction. It follows that {u n } is bounded in E. Similar arguments as those used in the end of the proof of Theorem 1 imply that, up to a subsequence, {u n } converges strongly in E.

The proof of Lemma 3 is complete.

Lemma 4. The functional J λ satisfies condition (A2) from Theorem 3.

Proof. We construct a sequence of subsets

Define Ω 1 = Ω \ B r 1 (x 1 ). Next, let x 2 ∈ Ω and r 2 > 0 be such that B r 2 (x 2 ) ⊂ Ω 1 and |B r 2 (x 2 )| < |Ω 1 |/2. Consider θ 2 ∈ C ∞ 0 (Ω) be a function with supp(θ 2 ) = B r 2 (x 2 ). Continuing the process described above we can construct by recurrence a sequence of functions θ 1 , θ 2 ,..., θ k ∈ C ∞ 0 (Ω) such that supp(θ i ) = supp(θ j ) if i = j and |supp(θ i )| > 0 for any i, j ∈ {1, ..., k}. We define the finite dimensional subspace of E, F = span{θ 1 , θ 2 , ..., θ k }.

Clearly, dimF = k and Ω |θ| q(x) dx > 0, for any θ ∈ F \ {0}. We denote by S 1 the unit sphere in E, i.e. S 1 = {u ∈ E; u = 1}. For any number t ∈ (0, 1) we define the set

Since for any bounded symmetric neighborhood ω of the origin in R k there holds γ(∂ω) = k (see Proposition 5.2 in [START_REF] Struwe | Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems[END_REF]) we deduce that γ(A k (t)) = k for any t ∈ (0, 1).

Finally, we show that for each integer k there exists t k ∈ (0, 1) such that sup u∈A k (t k )

J λ (u) < 0.