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MULTIVARIATE FUSS-CATALAN NUMBERS

J.-C. AVAL
ABSTRACT. Catalan numbers C'(n) = n%rl(?:) enumerate binary trees and Dyck
paths. The distribution of paths with respect to their number k of factors is given
by ballot numbers B(n, k) = Z—_T_ﬁ("j{k) These integers are known to satisfy sim-
ple recurrence, which may be visualised in a “Catalan triangle”, a lower-triangular
two-dimensional array. It is surprising that the extension of this construction to
3 dimensions generates integers Bs(n, k,[) that give a 2-parameter distribution of
Cs(n) = 2n1+1 (37?), which may be called order-3 Fuss-Catalan numbers, and enu-
merate ternary trees. The aim of this paper is a study of these integers Bs(n, k,1).
We obtain an explicit formula and a description in terms of trees and paths. Finally,
we extend our construction to p-dimensional arrays, and in this case we obtain a

(p — 1)-parameter distribution of C),(n) = m (ps), the number of p-ary trees.

1. CATALAN TRIANGLE, BINARY TREES, AND DYCK PATHS

We recall in this section well-known results about Catalan numbers and ballot

numbers.
1 2n
Cn) = n+1 < n )

The Catalan numbers
are integers that appear in many combinatorial problems. These numbers first ap-
peared in Euler’'s work as the number of triangulations of a polygon by mean of
non-intersecting diagonals. Stanley [[[6, [7] maintains a dynamic list of exercises re-
lated to Catalan numbers, including (at this date) 127 combinatorial interpretations.

Closely related to Catalan numbers are ballot numbers. Their name is due to
the fact that they are the solution of the so-called ballot problem: we consider an
election between two candidates A and B, which respectively receive a > b votes.
The question is: what is the probability that during the counting of votes, A stays
ahead of B? The answer will be given below, and we refer to [[J] for Bertrand’s first
solution, and to [[] for André’s beautiful solution using the “reflection principle”.

Since our goal here is different, we shall neither define ballot numbers by the previ-
ous statement, nor by their explicit formula, but we introduce integers B(n, k) defined
for a positive integer n and a nonnegative integer k£ by the following conditions:

o B(1,0) = 1;
e Vn>1and 0<k<n, B(n,k) :EfZOB(n—l,i);
e Vk >n, B(n,k)=0.
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2 J.-C. AVAL
Observe that the recursive formula in the second condition is equivalent to:
(1.1) B(n,k)=B(n—1,k)+ B(n,k —1).

We shall present the B(n,k)’s by the following triangular representation (zero
entries are omitted) where moving down increases n and moving right increases k.

1

11

1 2 2

13 5 5

14 9 14 14

1 5 14 28 42 42

The crucial observation is that computing the horizontal sums of these integers give
: 1, 2, 5, 14, 42, 132. We recognize the first terms of the Catalan series, and this
intuition will be settled in Proposition [[], after introducing combinatorial objects.

A binary tree is a tree in which every internal node has exactly 2 sons. The
number of binary trees with n internal nodes is given by the n-th Catalan number.
The nodes of the following tree are labelled to explain a bijection described in the
next paragraph: internal nodes are labelled by letters and external nodes by numbers.

A Dyck path is a path consisting of steps (1,1) and (1, —1), starting from (0, 0),
ending at (2n,0), and remaining in the half-plane y > 0 (we shall sometimes say
“remaining above the horizontal axis” in the same sense). The number of Dyck
paths of length 2n is also given by the n-th catalan number. More precisely, the
depth-first search of the tree gives a bijection between binary trees and Dyck paths:
we associate to each external node (except the left-most one) a (1, 1) step and to each
internal node a (1, —1) step by searching recursively the left son, then the right son,
then the root. As an example, we show below the Dyck path corresponding to the
binary tree given above. The labels on steps correspond to those on the nodes of the
tree.

An important parameter in our study will be the length of the right-most sequence
of (1, —1) of the path. This parameter equals 2 in our example. Observe that under
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the correspondence between paths and trees, this parameter corresponds to the length
of the right-most string of right sons in the tree. We shall use the expressions last
down sequence and last right string, for these parts of the path and of the tree.

Now we come to the announced result. It is well-known and simple, but is the
starting point of our work.

Proposition 1.1. For n a positive integer, we have the following equality:

:z_:;B(n, k)= C(n) = - i : (2:)

Proof. Let us denote by C, j the set of Dyck paths of length 2n with a last down
sequence of length equal to n — k.

We shall prove that B(n, k) is the cardinality of C,, .

The proof is done recursively on n. If n = 1, this is trivial. If n > 1, let us suppose
that B(n — 1, k) is the cardinality of C,_; for 0 < k < n — 1. Let us consider an
element of C, ;. If we erase the last step (1,1) and the following step (1,—1), we
obtain a Dyck path of length 2(n — 1), with a last decreasing sequence of length
n—1—1with [ < k. If we keep track of the integer k, we obtain a bijection between
Cnr and Uj<xC,,—1;. We mention that this process is very similar to the ECO method
A

This is a combinatorial proof of Proposition [[]]. O

Remark 1.2. The integers B(n, k) are known as ballot numbers and are given by
the explicit formula:

(1.2) Bla,b) — Z;Z(“Zb)

This expression can be obtained shortly by checking the recurrence ([.). We can
alternatively use the reflection principle (see [LI]] for a clear presentation), or the
cycle lemma (cf. [[]), which will be used in the next sections to obtain a formula in
the general case.

The expression (L) constitutes a solution to the ballot problem. For this, we
use a classical interpretation in terms of paths: we represent a vote for A by an up
step, and a vote for B by a down step. The total number of countings of votes, or of
paths from (0,0) to (a+b,a —b), is given by the binomial (“:b). The countings such
that A stays ahead of B correspond to paths remaining above the horizontal axis.
Their number is given by B(a,b). This implies that the probability asked for at the
beginning of this section is Z‘Z

Of course , we could have used expression ([.3) to prove Proposition [[.1 by a simple
computation, but our proof explains more about the combinatorial objects and can
be adapted to ternary trees in the next section.

It should be mentionned here that our study of multivariate Fuss-Catalan has
nothing to do with the many-candidate ballot problem, as considered for example
in [[§ or [[3]. In particular, the multivariate ballot numbers considered in these

papers do not sum to the Fuss-Catalan numbers C,(n) = m(”:). Conversely,
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the numbers studied in the present article do not give any answer to the generalized
ballot problem.

Remark 1.3. Our Catalan array presents similarities with Riordan arrays, but it is
not a Riordan array. It may be useful to explicate this point. We recall (¢f. [I4]) that
a Riordan array M = (m; ;) € C"" is defined with respect to 2 generating functions

g(x) =Y gna" and f(z) = fua"
and is such that A
My(w) = Y m o = g(a) f(a)
n>0

We easily observe that a Riordan array with the first two columns My(z) and M, (z)
of our Catalan array is relative to g(z) = = and f(z) = t%=, which gives the Pascal
triangle.

In fact, the Riordan array relative to g(x) = C(z) = > C(n)2" and f(x) = x C(x)
gives the ballot numbers, but requires knowledge of the Catalan numbers.

2. Fuss-CATALAN TETRAHEDRON AND TERNARY TREES

2.1. Definitions. This section, which is the heart of this work, is the study of a
3-dimensional analogue of the Catalan triangle of the previous section. That is we
consider exactly the same recurrence, and let the array grow, not in 2, but in 3 di-
mensions. More precisely, we introduce the sequence Bs(n, k,[) indexed by a positive
integer n and nonnegative integers k£ and [, and defined recursively by:

e B3(1,0,0) =1,

o Vn > 1, kE+1< n, Bg(n, k’, l) = ZOSiSk,OSjSl B3(n - l,i,j);

o Vk+1>n, Bs(n,k, 1) =0.

Observe that the recursive formula in the second condition is equivalent to:

(2.1) Bs(n,k.l) = Bs(n—1,k, 1)+ Bs(n,k—1,1)+ Bs(n, k,1—1) — By(n, k—1,1—1)

and this expression can be used to make some computations lighter, but the presen-
tation above explains more about the generalization of the definition of the ballot
numbers B(n, k).

Because of the planar structure of the sheet of paper, we are forced to present the
tetrahedron of Bs(n, k,[)’s by its sections with a given n.

LUt W~ NN~ -
—_ W DN
S 00 W

[\
[a—y
R (e —
ot
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1 4 9 14 14

4 15 30 35
n=»5— 9 30 45

14 35

14

It is clear that Bs(n,k,0) = Bs(n,0,k) = B(n, k). The reader may easily check
that when we compute Zw Bs(n, k1), we obtain: 1, 3, 12, 55, 273. These integers
are the first terms of the following sequence (c¢f. [L]):

Csln) = 2n1+1 (3:)

This fact will be proven in Proposition ..

2.2. Combinatorial interpretation. Fuss'-Catalan numbers (cf. [, [[I]) are given
by the formula

(22) Cyn) = — (p”)

(p—1)n+1\n

and C3(n) appear as order-3 Fuss-Catalan numbers. The integers C3(n) are known
3] to count ternary trees, ie. trees in which every internal node has exactly 3 sons.

Ternary trees are in bijection with 2-Dyck paths, which are defined as paths from
(0,0) to (3m,0) with steps (1,1) and (1, —2), and remaining above the line y = 0.
The bijection between these objects is the same as in the case of binary trees, ie. a
depth-first search, with the difference that here an internal node is translated into
a (1,—2) step. To illustrate this bijection, we give the path corresponding to the
previous example of ternary tree:

We shall consider these paths with respect to the position of their down steps.
The height of a down step is defined as the height of its end-point. Let D,, ;; denote
the set of 2-Dyck paths of length 3n, with & down steps at even height and [ down

INikolai Fuss (Basel, 1755 — St Petersburg, 1826) helped Euler prepare over 250 articles for
publication over a period on about seven years in which he acted as Euler’s assistant, and was from
1800 to 1826 permanent secretary to the St Petersburg Academy.
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steps at odd height, excluding the last seqence of down steps. By definition, the last
sequence of down steps is of length n — k — [.

Proposition 2.1. We have

1 3n
Vn>0, ZB3<n7k7l):C3<n):2n+1<n)
k.l

Moreover, Bs(n, k,l) is the cardinality of D, k-

Proof. Let k and [ be fixed. Let us consider an element of D,, ;;. If we cut this path
after its (2n — 2)-th up step, and complete with down steps, we obtain a 2-Dyck path
of length 3(n — 1) (see figure below). It is clear that this path is an element of D,, ; ;
for some ¢ < k and j < [. We can furthermore reconstruct the original path from the
truncated one, if we know k£ and [. We only have to delete the last sequence of down
steps (here the dashed line), to draw k — i down steps, one up step, [ — j down steps,
one up step, and to complete with down steps. This gives a bijection from D,, ;; to
Uo<i<k,0<j<iDn—1.ij, which implies Proposition P.1.

4

Remark 2.2. It is interesting to translate the bi-statistic introduced on 2-Dyck
paths to the case of ternary trees. As previously, we consider the depth-first search
of the tree, and shall not consider the last right string. We define 7, ;; as the set of
ternary trees with n internal nodes, k of them being encountered in the search after
an even number of leaves and [ after and odd number of leaves. By the bijection
between trees and paths, and Proposition P, we have that the cardinality of T, x,
is Bs(n, k,1).

Remark 2.3. It is clear from the definition that:

Bs(n, k,1) = Bs(n, 1, k).

But this fact is not obvious when considering trees or paths, since the statistics
defined are not clearly symmetric. To explain this, we can introduce an involution on
the set of ternary trees which sends an element of 7, 1 ; to 7, ;5. To do this, we can
exchange for each node of the last right string its left and its middle son, as in the
following picture. Since the number of leaves of a ternary tree is odd, every “even”
node becomes an odd one, and conversely.



MULTIVARIATE FUSS-CATALAN NUMBERS 7

2.3. Explicit formula. Now a natural question is to obtain explicit formulas for the
Bs(n, k,l). The answer is given by the following proposition.

Proposition 2.2. The integers Bs(n, k,l) are given by

n+k\/n+l—1\n—%k—1
(2.3) Bs(n,k?,l)—( k: )< ) )ﬁ

Proof. We use a combinatorial method to enumerate D,, ;. The method is a variation
of the cycle lemma [[] (called “penetrating analysis” in [1Z]).

If we forget the condition of “positivity” (ie. the path remains above the line
y = 0), and cut the last down sequence, a path consists in:

e at even height: n up steps, and k down steps;
e at odd height: n up steps and [ down steps.

An important remark is to remember that an element of D, ;; has an up step just
before the last sequence of down steps! If we suppose that all these steps are distin-

guished, we obtain:

| .
("Tk)' choices for even places;
nlk! )

((7; ilf;!ll)!! choices for odd places (we cannot put any odd down step after the

last odd step).

Now we group the paths which are “even permutations” of a given path P. By even
permutations, we mean cycle permutations which preserve the parity of the height
of the steps.

We want to prove that the proportion of elements of D, ;; in any even orbit (i.e.
in any orbit under even permutations) is given by ”;f,;l.

We suppose first that the path P is acyclic (as a word): P cannot be written as
P = U? with U a word in the two letters (1,1) and (1,—2). It is clear that such a
path gives n + k different even permutations. Now we have to keep only those which
give elements of D,, ;.;. To do this we consider the concatenation of P and P’, which

is a duplicate of P.




8 J.-C. AVAL

The cyclic permutations of P (not necessarily even) are the subpaths of P + P’
of horizontal length 2n + k + [. The number of such paths that remain above the
horizontal axis, and end with an up step, is the number of (up) steps of P in the
light of an horizontal light source coming from the right. The only transformation is
to put the illuminated up step at the end of the path. The number of illuminated up
steps is 2n — 2k — 2l, since every down step puts two up steps in the shadow. Among
these 2n — 2k — 21 permutations, only half are even (observe that the set of heights of
the illuminated steps is an interval). Thus n — k — [ paths among the n + k elements
of the orbit are in D,, 1.

Now we observe that if P is p-cyclic, then its orbit has p times less elements, and we
obtain p times fewer different paths, whence the proportion of elements of elements
of D,, k1 in this orbit is:

(n—k-=0/p n—-k-I
(n+k)/p n+k
Finally, we obtain that the cardinality of D,, 4, is

m+k)ln—1+0)n—Fk—1
nlk!  (n—1N' n+k

which was to be proved.

Remark 2.5. The equation (£]) is of course symmetric in £ and [

n+k\/n+1-1 n—k—l_ n+k—1\/n+l—-—1\n—Fk—1
k l n+k k l n

Remark 2.6. I made the choice to present a combinatorial proof of Proposition R.2.
The interest is to show how these formulas are obtained, and to allow easy gener-
alizations (cf. the next section). It is also possible to check directly the recurrence

EB.1).

2.4. Generating function. Let F' denote the following generating series:
(2.4) F(t,z,y) =1+ Z Bs(n, k, Dt"z*y".
0<k+l<n

In this expression, the term “1” corresponds to the empty 2-Dyck path. Thus F' is
the generating series of 2-Dyck paths with respect to their length (variable t), their
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number of down steps at even height —excluding the last down sequence— (variable
x), and their number of down steps at odd height (variable y).
We also introduce

(2.5) G(t,z,y) =1+ Z Bs(n, k,Dt"z" "yt

0<k+l<n

te. GG is the generating function of 2-Dyck paths with respect to their length, to the
number of down steps at even height -including the last down sequence- and to the
number of down steps at odd height.

To obtain equations for F' and G, we decompose a non-empty 2-Dyck path by
looking at two points: «, defined as the last return to the axis (except the final point
(3n,0)), and [ defined as the last point at height 1 after ov. This gives the following
decomposition of a 2-Dyck path

P = Py (up) Py (up) Ps (down),
with P, P,, Py any 2-Dyck path (maybe empty).

a

By observing that the up steps after a and 3 change the parity of the height, this
gives the two following equations :

(2.6) F(t,z,y) =14+ G(t,z,y) x G(t,y,z) X t.F(t,x,y)
and in the same way
(2.7) G(t,x,y) =14+ G(t,z,y) X G(t,y,x) X t.G(t,z,y).x.
By permuting the variables 2 and y in (B.7), we obtain
(2.8) G(t,y,x) =1+ G(t,y,z) x G(t,x,y) X t.G(t,y,x).y
and we can eliminate G(¢,y,z) from (.4) and (R.§) to obtain the following result.

Proposition 2.3. The generating function F of the Bs’s is given by:

1
F(t,ay) = 1— tG(t,z,y)G(t,y, x)

where G(t,z,y) is a solution of the algebraic equation

tr?G3 + (y — 2)G* + (2 — 2y)G +y = 0.

An alternate approach to the generating function is to use formula to obtain
what MacMahon called a “redundant generating function “ (¢f. [I{]), since it contains
terms other than those which are combinatorially significant.
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To do this we extend the recursive definition of Bs(n,k,[) as follows: we define
Bi(n, k,1) for integers n > 0, and k,I > 0 by:

(2.9) Bi(n, k,1) = <”+Z_1) (”*f‘l)”_ik_l.

n

Of course when k + [ > n, the integer Bj(n, k,[) is negative.
As an example, here is the “section” of the array of Bj(n, k,[) with n = 3.

[ 1 2 2 0 )
2 3 0 —-10 =30
2 0 —-12 —-40 —-90
0 —-10 —40 —-100 -200
-5 =30 —-90 —-200 —-375

The equation (R.9) is equivalent to the following recursive definition: Vn < 0 or
k,l <0, Bi(n,k,l) =0 and

Bi(n, k,1) = Bi(n—1,k, )+ Bs(n, k—1,0)+ Bj(n, k,1—1)— B (n, k—1,1—1)+c(n, k, 1)

+1 if(n,k,1) = (1,0

—1 if(n,k,1) = (0,1

where c¢(n,k,l) =< =1 if(n, k1) = (0,0,

+2 if(n,k,1) = (0,1

0 otherwise.

The interest of this presentation is to give a simple (rational!) generating series.
Indeed, it is quite simple to deduce from the recursive definition of Bj(n, k,[) that:

(2.10) ZBg(n, k, Dt a*yt =
n,k,l

This formula then encodes the Bs(n, k, 1) since Vk+1 < n, Bs(n, k,1) = B(n, k,1).

t—x—y+ 2y
l—t—ao—y+azy

3. Fuss-CATALAN p-SIMPLEX AND p-ARY TREES

The aim of this final section is to present an extension of the results of Section
2 to p-dimensional recursive sequences. In the same spirit, we define the sequence
B,(n,ky, ko, ..., ky,—1) by the recurrence:
e B,(1,0,0,...,0) =1;
e Vn>1land 0 <k +ko+---+ky1 <n,

Bp<n,]€1,]€2,...,]€p,1)z Z B(n—l,il,iQ,...,ip,l);
0§i1§k17---,0§ip71§/€p71
o Vi —|—]{Z2+"'+kp,1 >n, Bp<n,]€1,]€2,...,kp,1) = 0.
Every result of Section 2 extends to general p. We shall only give the main results,

since the proofs are straightforward generalizations of the proofs in the previous
section.
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Proposition 3.1.

S By(nki, o k) = Cyln) = ————— <pn)

k1,....kp—1 (p - 1)77' +1\n

The integers Cp(n) are order-p Fuss-Catalan numbers and enumerate p-ary trees,
or alternatively p-Dyck paths (the down steps are (1, —p)). In this general case, the
recursive definition of By(n, ki, ko, ..., k,—1) gives rise to p — 1 statistics on trees and
paths analogous to those defined in section 3.

Remark 3.2. By the same method as in the previous section, it is possible to obtain
an explicit formula for these multivariate Fuss-Catalan numbers:
pd n k’z—l n — p__lkl
By(n ki ko, kper) = | ] ( +ki ) %

i=1

Comment. The numbers Bs(n, k, 1) first arose in a question of algebraic combi-
natorics (¢f. [H]). Let Z, be the ideal generated by B-quasisymmetric polynomials in

the 2n variables 1, ..., 2, and y1,...,y, (¢f. [l]) without constant term. We denote
by Q,, the quotient Q[z1, ..., 2, Y1, .., Y]/, and by QF! the bihomogeneous com-
ponent of Q, of degree k in z1,...,x, and degree [ in y;,...,y,. It is proven in [
that:
k—1 Il—1\n—Fk—1
dim Q5! = By(n, k, 1) = <”+lC ) ("*l )”7
n

Acknowledgement. The author is very grateful to referees (and in particular
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