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Un résultat classique d'Artin affirme que l'idéal engendré par les polynômes symétriques sans terme constant en n variables est de codimension n!. L'auteur, F. Bergeron et N. Bergeron ont récemment obtenu un analogue surprenant dans le cas des polynômes quasi-symétriques. Dans ce cas, l'idéal est de codimension C n , le n-ième nombre de Catalan. Les polynômes quasi-symétriques peuvent être vus comme invariants d'une action du groupe symétrique S n , définie par F. Hivert. Le but de ce travail est de généraliser ces travaux au produit en couronne S n ≀ Z m , connu sous le nom de groupe symétrique généralisé G n,m . Après avoir défini une action quasi-symétrisante de G n,m sur C[x 1 , . . . , x n ], nous obtenons une description des invariants, et la codimension de l'idéal associé, à savoir m n C n .

Introduction

Considérons l'alphabet X en n variables (x 1 , . . . , x n ). L'espace des polynômes prenant ses variables dans X et à coefficients complexes est noté C[X]. Soit G n,m = S n ≀ Z m le produit en couronne du groupe symétriques S n par le groupe cyclique Z m . Ce groupe est souvent applelé groupe symétrique généralisé (cf. [START_REF] Osima | On the representations of the generalized symmetric group[END_REF]). On peut se représenter un élément de G n,m comme une matrice carrée de taille n dans laquelle chaque ligne et chaque colonne comporte exactement une entrée non nulle (matrice de pseudo-permutation), et telle que ces entrées non nulles sont des racines m-ième de l'unité. L'ordre du groupe G n,m est par conséquent m n n!. Si m = 1, G n,m se réduit au groupe symétrique S n , et si m = 2, G n,m est le groupe hyperoctaèdral B n , i.e. le groupe des permutations signées ou groupe de Weil de type B (voir [START_REF] Lusztig | Irreducible representationsof finite reflections groups[END_REF] pour plus de détails). Le groupe G n,m agit sur les polynômes (action "classique") de la façon suivante :

(1. 1) ∀g ∈ G n,m , ∀P ∈ C[X], g.P (X) = P (X. t g), où t g est la transposée de la matrice g et X est vu comme vecteur ligne. Soit

Inv n,m = {P ∈ C[X] / ∀g ∈ G n,m , g.P = P } l'ensemble des invariants polynomiaux pour cette action G n,m . Notons de plus Inv + n,m l'ensemble des tels polynômes sans terme constant. Nous considérons le produit scalaire suivant sur C[X] :

(1.2) 

P, Q = P (∂X)Q(X) | X=0 où ∂X représente (∂x 1 , . . . , ∂x n ) et X = 0 représente x 1 = • • • = x n = 0.
Cov n,m = {P ∈ C[X] / ∀Q ∈ Inv + n,m , Q(∂X)P = 0} = Inv + n,m ⊥ ≃ C[X]/ Inv +
n,m . L'égalité et l'isomorphisme précédent ne sont pas triviaux, mais une référence à ce sujet est [START_REF] Garsia | Orbit Harmonics and Graded Representations[END_REF].

Assez de définitions. Un résultat classique d'Artin [1] affirme que pour m = 1 (cas du groupe symétrique), la dimension de l'espace coinvariant H n = Cov n,1 (qualifié dans ce contexte d'harmonique) est égale à n!. Chevalley [START_REF] Chevalley | Invariants of finite groups generated by reflections[END_REF] (voir aussi [START_REF] Shephard | Finite unitary reflection groups[END_REF]) a généralisé ce résultat en montrant que :

(1.3) dim Cov n,m = |G n,m | = m n n! .
Dans le cas du groupe symétrique (m = 1), d'intéressants résultats ont été obtenus récemment [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF] en étudiant les coinvariants correspondant, non plus aux polynômes symétriques, mais aux polynômes quasi-symétriques. Notre but principal est ici d'obtenir une description analogue dans le cas m quelconque.

L'anneau QSym des fonctions quasi-symétriques a été introduit par Gessel [START_REF] Gessel | Multipartite P -partitions and products of skew Schur functions[END_REF] dans le cadre du calcul des fonctions génératrices des P -partitions [START_REF] Stanley | Enumerative Combinatorics[END_REF]. Ces fonctions quasi-symétriques sont la source de nombreux travaux récents dans plusieurs domaines de la combinatoire [START_REF] Bergeron | Pieri Operations on Posets[END_REF][START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF][START_REF] Gelfand | Noncommutative symmetric functions[END_REF][START_REF] Stanley | [END_REF].

Dans [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF], Aval et. al. étudient l'espace SH n des polynômes super-coinvariants, defini comme l'orthogonal (par rapport à (1.2)) de l'idéal engendré par les polynômes quasi-symétriques sans terme constant, et ont prouvé que sa dimension en tant qu'espace vectoriel est donnée par le n-ième nombre de Catalan :

(1.4) dim SH n = C n = 1 n + 1 2n n .
Notre principal résultat est une généralisation de l'équation ci-dessus dans le cas du groupe symétrique généralisé G n,m . Cet article est organisé de la façon suivante. Dans la section 2, nous définissons et étudions une action quasi-symétrisante du groupe G n,m sur C[X]. Les invariants correspondant à cette action sont appelés quasi-invariants et correspondent aux fonctions quasi-symétriques pour m = 1. La Section 3 est consacrée à la preuve du théorème central (Théorème 2.4), qui donne la dimension de l'espace SCov n,m des polynômes super-coinvariants pour G n,m ; une utilisation (simple) des bases de Gröbner nous permet de calculer une base explicite de SCov n,m (et sa série de Hilbert).

Une action quasi-symétrisante du groupe G n,m

Nous utliserons la notation vectorielle pour les monômes. Plus précisément, pour ν = (ν 1 , . . . , ν n ) ∈ N n , nous noterons X ν le monôme (2.1)

x ν 1 1 x ν 2 2 • • • x νn n . Pour tout P ∈ Q[X], nous noterons [X ν ] P (X) le coefficient du monôme X ν dans P (X).
Notre première tâche est de définir une action quasi-symétrisante du groupe G n,m sur C[X]. Cette action doit répondre aux critères suivants : elle doit se réduire à l'action de Hivert (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF]) dans le cas m = 1 et fournir des polynômes invariants intéressants. Par intéressant, nous entendons que ces invariants jouissent d'une jolie caractérisation, de même que les polynômes coinvariants. Il s'avère que le choix d'une telle action n'est pas unique. Celle que nous allons étudier est définie de la façon suivante. Soit A ⊂ X un sous-alphabet de X comportant l variables et K = (k 1 , . . . , k l ) un vecteur d'entiers strictement positifs. Nous ordonnerons un vecteur B constitué de variables x i distinctes multipliées par des racines de l'unité selon l'ordre des variables et le résultat sera noté (B) < . Voici maintenant comment agit un élément g ∈ G n,m :

(2.2) g • A K = w(g) c(K) (A. t |g|) < K
où w(g) est le poids de g, i.e. le produit de ses entrées non nulles, |g| est la matrice obtenue en prenant le module des entrées de g, et le coefficient c(K) est défini ainsi :

c(K) = 0 si ∀i, k i ≡ 0 [m] 1 sinon. Exemple 2.1. Si m = 3 et n = 3, et nous notons ζ le nombre complexe ζ = e 2iπ 3 , alors par exemple   0 0 j 1 0 0 0 j 0   • (x 2 1 x 2 ) = (j 2 ) 1     0 0 1 1 0 0 0 1 0   . (x 1 , x 2 )   (2,1) < = j 2 (x 3 , x 1 ) < (2,1) = j 2 (x 1 , x 3 ) (2,1) = j 2 x 2 1 x 3 .
Un simple calcul permet de vérifier que ceci définit bien une action du groupe G n,m sur C[X], qui se réduit à l'action de Hivert (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF], Proposition 3.4) dans le cas m = 1.

Il va de soit que toute définition du coefficient c(K) donne une action du groupe G n,m . Parmi cette famille d'actions, celle définie ici respecte les critères énoncés plus haut. Dans le cas particulier du groupe B n , une action apparentée à celle définie ci-dessus (et fournissant les mêmes invariants) est étudiée dans [START_REF] Aval | Quasi-symmetric polynomials and Temperley-Lieb algebra of type B, en préparation[END_REF].

Étudions à présent les polynômes invariants et coinvariants de cette action. Nous devons rappeler quelques définitions.

Une composition α = (α 1 , α 2 , . . . , α k ) de l'entier positif d est une liste ordonnée d'entiers strictement positifs dont la somme vaut d. Pour un vecteur ν ∈ N n , notons c(ν) la composition obtenue en enlevant les éventuels zéros de ν. Un polynôme

P ∈ Q[X] est dit quasi-symétrique si et seulement si, pour tous ν et µ dans N n , nous avons l'égalité [X ν ]P (X) = [X µ ]P (X)
dès que c(ν) = c(µ). L'espace des polynômes quasi-symétriques en n variables est notée QSym n . Les polynômes invariants sous l'action (2.2) de G n,m sont qualifiés de quasi-invariant et l'espace des polynômes quasi-invariants est noté QInv n,m , i.e.

P ∈ QInv n,m ⇔ ∀g ∈ G n,m , g • P = P.
Rappelons (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF], Proposition 3.15) que QInv n,1 = QSym n . La proposition suivante donne une caractérisation élégante de QInv n,m . Proposition 2.2. Nous avons La réciproque est évidente.

P ∈ QInv n,m ⇔ ∃Q ∈ QSym n / P (X) = Q(X m ) où Q(X m ) = Q(x m 1 , . . . , x m n ).
Définissons maintenant les polynômes super-coinvariants :

SCov n,m = {P ∈ C[X] / ∀Q ∈ QInv + n,m , Q(∂X)P = 0} = QInv + n,m ⊥ ≃ C[X]/ QInv + n,m
où le produit scalaire est définie dans (1.2). C'est l'analogue naturel de Cov n dans le cadre des actions quasi-symétrisantes et SCov n,m se réduit à l'espace des polynômes super-harmoniques SH n (cf. [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]) quand m = 1.

Remarque 2.3. Il est clair que tout polynôme invariant sous l'action (2.2) est aussi invariant sous (1.1), i.e. Inv n,m ⊂ QInv n,m . En prenant l'orthogonal, on obtient SCov n,m ⊂ Cov n,m , ce qui justifie en un sens la terminologie.

Notre principal résultat est le suivant, qui est une généralisation de (1.4). On notera aussi une grande similarité avec (1.3). Théorème 2.4. La dimension de l'espace SCov n,m est donnée par

(2.3) dim SCov n,m = m n C n = m n 1 n + 1 2n n .
Remarque 2.5. Dans le cas du groupe hyperoctaèdral B n = G n,2 , C.-O. Chow [START_REF] Chow | Noncommutative Symmetric Functions of Type B[END_REF] a défini une classe BQSym(x 0 , X) de polynômes quasi-symétriques du type B en l'alphabet (x 0 , X). Il est intéressant de comparer son approche à la notre et de constater qu'elle est bien différente. On observe en particulier que :

BQSym(x 0 , X) = QSym(X) + QSym(x 0 , X).

Il est alors assez simple de voir que le quotient C[x 0 , X]/ BQSym + est isomorphe au quotient C[X]/ QSym + étudié dans [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]. Expliquons cela en quelques mots pour le lecteur intéressé : si G est la base de Gröbner de QSym + construite dans [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF] (on pourra aussi se reporter à la section suivante), alors l'ensemble {x 0 , G} est une base de Gröbner de BQSym + (toute syzygie est réductible en vertu du premier principe de Buchberger, cf. [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF]).

La section suivante est consacrée à la preuve du Théorème 2.4.

Preuve du théorème principal

Nous allons prouver le Théorème 2.4 en construisant une base explicite du quotient C[X]/ QInv + n,m . Ceci repose en grande partie sur les travaux [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]. Nous allons cependant rappeler ici brièvement les éléments nécessaires.

Commençons par rappeler (cf. [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]) la bijection suivante qui associe à tout vecteur ν ∈ N n un chemin π(ν) dans le plan N × N. Ce chemin fait des pas Nord ou Est et est défini ainsi : si ν = (ν 1 , . . . , ν n ), le chemin π(ν) est

(0, 0) → (ν 1 , 0) → (ν 1 , 1) → (ν 1 + ν 2 , 1) → (ν 1 + ν 2 , 2) → • • • → (ν 1 + • • • + ν n , n -1) → (ν 1 + • • • + ν n , n).
Par exemple le chemin associé à ν = (2, 1, 0, 3, 0, 1) est donnée à la Figure 1.

π(ν) = Figure 1.
Nous distinguons alors deux types de chemins, suivant leur comportement par rapport à la digonale y = x. Si le chemin reste au-dessus de la diagonale, nous l'appelons un chemin de Dyck, et qualifions le vecteur correspondant de Dyck. Sinon, nous disons que le chemin (et le vecteur associé) est transdiagonal. Par exemple η = (0, 0, 1, 2, 0, 1) est de Dyck et ε = (0, 3, 1, 1, 0, 2) est transdiagonal (cf. Figure 2). 

B n,m = {(X n ) m η+α / π(η) est un chemin de Dyck , 0 ≤ α i < m} est une base du quotient C[X n ]/ QInv + n,m .
Pour prouver ce résultat, le but est de construire une base de Gröbner pour l'idéal J n,m = QInv + n,m . Nous utiliserons les résultats de [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]. L'ordre lexicographique sur les monômes est défini par (3.1)

X ν > lex X µ ssi ν > lex µ,
si et seulement si la première composante non nulle du vecteur ν -µ est positive. Pour toute partie S de Q[X] et tout entier strictement positif m, introduisons S m = {P (X m ) , P ∈ S}. Nous noterons G(I) l'unique base de Gröbner réduite (cf. [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF]) d'un idéal I. Le lemme suivant, en dépit d'une preuve très simple, est non seulement crucial dans notre contexte mais peut également fournir une preuve instantanée de l'égalité (1.3). Proposition 3.2. Avec les notations précédentes,

(3.2) G( S m ) = G( S ) m .
Preuve. C'est une application directe du critère de Buchberger (cf. [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF] pour une présentation claire du sujet). En effet, si pour toute paire g, g ′ d'éléments de G( S ), la syzygie S(g, g ′ ) se réduit à zéro (par hypothèse G( S ) est une base de Gröbner), alors la syzygie

S(g(X m ), g ′ (X m ))
se réduit aussi à zéro dans G( S m ) par exactement le même calcul.

Rappelons que dans [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF] est construite une famille G de polynômes G ε , indexés par les vecteurs transdiagonaux ε, possédant les caractéristiques suivantes :

• le monôme dominant de G ε est LM(G ε ) = X ε ;

• G est une base de Gröbner de J n,1 .

Le résultat suivant est alors une conséquence des Propositions 2.2 et 3. ) [X] est l'espace des polynômes homogènes de degré k (incluant le polynôme nul).

SCov (k) n,m = SCov n,m ∩ Q (k) [X] où Q (k
Notons F n,m (t) la série de Hilbert de SCov n,m , i.e.

(3.4)

F n,m (t) = k≥0 dim SCov (k) n,m t k .
Rappelons que dans [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF] est calculée la série de Hilbert F n,1 :

(3.5) F n,1 (t) = F n (t) = n-1 k=0 n -k n + k n + k k t k
où apparaît le nombre de chemins de Dyck ayant un nombre fixé (à savoir n -k) de facteurs (cf. [START_REF] Kreweras | Sur les éventails de segments[END_REF]). Le Théorème 3.1 implique alors le Corollaire 3.4. Avec les notations de (3.5), la série de Hilbert de SCov n,m est donnée par

F n,m (t) = 1 -t m 1 -t F n (t m ) = 1 -t m 1 -t n-1 k=0 n -k n + k n + k k t mk .
De cette formule, on peut déduire la formule close suivante

n F n,m (t) x n = (1-t) -(1-t)(1 -t -4t m x(1 -t m )) -2x(1-t m ) (1 -t)(2t m -1) -x(1 -t m ) .

Extended abstract in English

In this extended abstract, the equations, propositions, . . . are numbered as in the French part.

Let X denote the alphabet in n variables (x 1 , . . . , x n ) and C[X] denote the space of polynomials with complex coefficients in the alphabet X. Let G n,m = S n ≀ Z m denote the wreath product of the symmetric group S n by the cyclic group Z m , sometimes known as the generalized symmetric group (cf. [START_REF] Osima | On the representations of the generalized symmetric group[END_REF]). It may be seen as the group of n × n matrices in which each row and each column has exactly one non-zero entry (pseudo-permutation matrices), and such that the non-zero entries are m-th roots of unity. The order of G n,m is m n n!. n,m . The previous equality and isomorphism are not obvious, and a reference on that topic is [START_REF] Garsia | Orbit Harmonics and Graded Representations[END_REF].

A classical result of Chevalley [START_REF] Chevalley | Invariants of finite groups generated by reflections[END_REF] (see also [START_REF] Shephard | Finite unitary reflection groups[END_REF]) states the following equality:

(1. 

  Preuve. Soit P un élément de QInv n,m . Notons ζ la racine m-ième de l'unité ζ = e 2iπ m et g l'élément de G n,m dont la matrice est g• P + g 2 • P + • • • + g m-1 • P ) = Pimplique que tous les exposants apparaissant dans P doivent être des multiples de m. Donc il existe un polynôme Q ∈ C[X] tel que P (X) = Q(X m ). Pour conclure, il suffit de noter que S n ⊂ G n,m implique que P est quasi-symétrique, donc Q est aussi quasi-symétrique.

Figure 2 .
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 2 Proposition 3.3. L'ensemble G m est une base de Gröbner de l'idéal J n,m . Pour conclure la preuve du Théorème 3.1, il est suffisant de remarquer que l'ensemble des monômes non divisibles par un monôme dominant d'un élément de G m , i.e. par un X mε pour ε transdiagonal, sont précisément les monômes apparaissant dans B n,m . Comme corollaire du Théorème 3.1, nous obtenons une formule explicite pour la série de Hilbert de SCov n,m . Pour k ∈ N, notons SCov

  When m = 1, G n,m reduces to the symmetric group S n , and when m = 2, G n,m is the hyperoctahedral group B n , i.e. the group of signed permutations, which is the Weyl group of type B. The group G n,m acts classically on C[X] by the rule (1.1)∀g ∈ G n,m , ∀P ∈ C[X], g.P (X) = P (X. t g),where t g is the transpose of the matrix g and X is considered as a row vector. LetInv n,m = {P ∈ C[X] / ∀g ∈ G n,m , g.P = P }denote the set of G n,m -invariant polynomials. Let us denote by Inv + n,m the set of such polynomials with no constant term. We consider the following scalar product on C[X]:(1.2) P, Q = P (∂X)Q(X) | X=0where ∂X stands for (∂x 1 , . . . , ∂x n ) and X = 0 stands forx 1 = • • • = x n = 0. Let S denotethe ideal generated by a subset S of C[X]. The space of G n,m -coinvariant polynomials is then defined by Cov n,m = {P ∈ C[X] / ∀Q ∈ Inv + n,m , Q(∂X)P = 0} = Inv + n,m ⊥ ≃ C[X]/ Inv +

  3) dim Cov n,m = |G n,m | = m n n!

  Utilisons la notation S pour l'idéal engendré par une partie S de C[X]. L'espace des polynômes G n,m -coinvariants est alors défini par
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which reduces when m = 1 to the theorem of Artin [1] that the dimension of the harmonic space H n = Cov n,1 (cf. [START_REF] Garsia | Orbit Harmonics and Graded Representations[END_REF]) is n!.

Our aim is to give an analogous result in the case of a quasi-symmetrizing action. The ring QSym of quasi-symmetric functions was introduced by Gessel [START_REF] Gessel | Multipartite P -partitions and products of skew Schur functions[END_REF] as a source of generating functions for P -partitions [START_REF] Stanley | Enumerative Combinatorics[END_REF] and appears in more and more combinatorial contexts [START_REF] Bergeron | Pieri Operations on Posets[END_REF][START_REF] Stanley | [END_REF].

In [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF], Aval et. al. investigated the space SH n of super-coinvariant polynomials for the symmetric group, defined as the orthogonal (with respect to (1.2)) of the ideal generated by quasi-symmetric polynomials with no constant term, and proved that its dimension as a vector space equals the n-th Catalan number:

Our main result is a generalization of the previous equation in the case of supercoinvariant polynomials for the group G n,m .

In Section 2, we define and study a quasi-symmetrizing action of G n,m on C[X]. We want this action to give Hivert's action (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF]) in the case m = 1 and to give interesting invariants and coinvariants. Such an action is not unique and we study the one defined as follows. Let A ⊂ X be a subset of X with l variables and K = (k 1 , . . . , k l ) a vector of positive (> 0) integers. We order a vector B consisting of distinct variables x i multiplied by roots of unity with respect to the variable order and the result is denoted by (B) < . Now the quasi-symmetrizing action of g ∈ G n,m is given by (see also Example 2.1):

(2.2)

where w(g) is the weight of g, i.e. the product of its non-zeero entries, |g| is the matrix obtained by taking the module of the entries of g, and the coefficient c(K) is defined as:

1 if not. We now study invariants and coinvariants relative to this action. A composition α = (α 1 , α 2 , . . . , α k ) of the positive integer d is an ordered list of nonnegative integers whose sum equals d. For ν ∈ N n , let c(ν) denote the composition obtained by erasing the zero parts of ν. A polynomial P ∈ Q[X] is quasi-symmetric if and only if, for any ν, µ ∈ N n , we have

as soon as c(ν) = c(µ). The space of quasi-symmetric polynomials in n variables is denoted by QSym n .

The invariant of the action (2.2) are said quasi-invariant and their space is denoted by QInv n,m . Recall (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF], Proposition 3.15) that QInv n,1 = QSym n . The following proposition gives a characterization of quasi-invariant polynomials. Proposition 2.2.

We now define super-coinvariant polynomials:

Our main result is the following, which is a generalization of (1.4), but also shows similarity to (1.3).

Theorem 2.4. The dimension of SCov n,m is given by

The Section 3 is devoted to the proof of this result. More precisely, we construct an explicit basis of the quotient C[X n ]/ QInv + n,m (cf. Theorem 3.1) from which we deduce its Hilbert series, given by Corollary 3.4.

To do this, we use the results of [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF] to construct a Gröbner basis of the ideal QInv + n,m . The important point of this proof is the Proposition 3.2, so we shall say a few words about it.

The lexicographic order on monomials is defined by

if and only if the first non-zero entry of ν -µ is positive.

For any S ⊆ Q[X] and m ∈ N * , we introduce S m = {P (X m ) , P ∈ S}. We denote by G(I) the unique reduced monic Gröbner basis (cf. [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF]) of an ideal I. The following lemma has a simple proof but is the crucial tool in our context. Furthermore, despite its simplicity, it can provide a proof of (1.3) in a few lines.