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QUASI-INVARIANT AND SUPER-COINVARIANT POLYNOMIALS FOR THE GENERALIZED SYMMETRIC GROUP

 in the case of S n . The polynomials invariant under this action are called quasi-invariant, and we define super-coinvariant polynomials as polynomials orthogonal, with respect to a given scalar product, to the quasi-invariant polynomials with no constant term. Our main result is the description of a Gröbner basis for the ideal generated by quasi-invariant polynomials, from which we dedece that the dimension of the space of super-coinvariant polynomials is equal to m n C n where C n is the n-th Catalan number.

Résumé. Le but de ce travail est d'étendre l'étude des polynômes super-coinvariants (définis dans [2]), au cas du groupe symétrique généralisé G n,m , défini comme le produit en couronne C m ≀ S n du groupe symétrique par le groupe cyclique. Nous définissons ici une action quasi-symétrisante de G n,m sur Q[x 1 , . . . , x n ], analogue à celle définie dans [12] dans le cas de S n . Les polynômes invariants sous cette action sont dits quasi-invariants, et les polynômes super-coinvariants sont les polynômes orthogonaux aux polynômes quasi-invariants sans terme constant (pour un certain produit scalaire). Notre résultat principal est l'obtention d'une base de Gröbner pour l'idéal engendré par les polynômes quasi-invariants. Nous en déduisons alors que la dimension de l'espace des polynômes super-coinvariants est m n C n où C n est le n-ième nombre de Catalan.

Introduction

Let X denote the alphabet in n variables (x 1 , . . . , x n ) and C[X] denote the space of polynomials with complex coefficients in the alphabet X. Let G n,m = C m ≀ S n denote the wreath product of the symmetric group S n by the cyclic group C m . This group is sometimes known as the generalized symmetric group (cf. [START_REF] Osima | On the representations of the generalized symmetric group[END_REF]). It may be seen as the group of n × n matrices in which each row and each column has exactly one non-zero entry (pseudo-permutation matrices), and such that the non-zero entries are m-th roots of unity. The order of G n,m is m n n!. When m = 1, G n,m reduces to the symmetric group S n , and when m = 2, G n,m is the hyperoctahedral group B n , i.e. the group of signed permutations, which is the Weyl group of type B (see [START_REF] Lusztig | Irreducible representationsof finite reflections groups[END_REF] for example for further details). The group G n,m acts classically on C[X] by the rule (1.1) ∀g ∈ G n,m , ∀P ∈ C[X], g.P (X) = P (X. t g),

where g is the transpose of the matrix g and X is considered as a row vector. Let

Inv n,m = {P ∈ C[X] / ∀g ∈ G n,m , g.P = P }
denote the set of G n,m -invariant polynomials. Let us denote by Inv + n,m the set of such polynomials with no constant term. We consider the following scalar product on C[X]:

(1.2) P, Q = P (∂X)Q(X) | X=0
where ∂X stands for (∂x 1 , . . . , ∂x n ) and X = 0 stands for

x 1 = • • • = x n = 0. The space of G n,m -coinvariant polynomials is then defined by Cov n,m = {P ∈ C[X] / ∀Q ∈ Inv n,m , Q(∂X)P = 0} = Inv + n,m ⊥ ≃ C[X]/ Inv + n,m
where S denotes the ideal generated by a subset S of C[X].

A classical result of Chevalley [START_REF] Chevalley | Invariants of finite groups generated by reflections[END_REF] states the following equality:

(1.3) dim Cov n,m = |G n,m | = m n n!
which reduces when m = 1 to the theorem of Artin [1] that the dimension of the harmonic space H n = Cov n,1 (cf. [START_REF] Garsia | Orbit Harmonics and Graded Representations[END_REF]) is n!.

Our aim is to give an analogous result in the case of quasi-symmetrizing action. The ring Qsym of quasi-symmetric functions was introduced by Gessel [START_REF] Gessel | Multipartite P -partitions and products of skew Schur functions[END_REF] as a source of generating functions for P -partitions [START_REF] Stanley | Enumerative Combinatorics[END_REF] and appears in more and more combinatorial contexts [START_REF] Bergeron | Pieri Operations on Posets[END_REF][START_REF] Stanley | Enumerative Combinatorics[END_REF][START_REF] Stanley | [END_REF]. Malvenuto and Reutenauer [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF] proved a graded Hopf duality between QSym and the Solomon descent algebras and Gelfand et. al. [START_REF] Gelfand | Noncommutative symmetric functions[END_REF] defined the graded Hopf algebra NC of non-commutative symmetric functions and identified it with the Solomon descent algebra.

In [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF], Aval et. al. investigated the space SH n of super-coinvariant polynomials for the symmetric group, defined as the orthogonal (with respect to (1.2)) of the ideal generated by quasi-symmetric polynomials with no constant term, and proved that its dimension as a vector space equals the n-th Catalan number:

(1.4) dim SH n = C n = 1 n + 1 2n n .
Our main result is a generalization of the previous equation in the case of supercoinvariant polynomials for the group G n,m .

In Section 2, we define and study a "quasi-symmetrizing" action of G n,m on C[X]. We also introduce invariant polynomials under this action, which are called quasiinvariant, and polynomials orthogonal to quasi-invariant polynomials, which are called super-coinvariant. The Section 3 is devoted to the proof of our main result (Theorem 2.4), which gives the dimension of the space SCov n,m of super-coinvariant polynomials for G n,m : we construct an explicit basis for SCov n,m from which we deduce its Hilbert series.

A quasi-symmetrizing action of G n,m

We use vector notation for monomials. More precisely, for ν = (ν 1 , . . . , ν n ) ∈ N n , we denote X ν the monomial (2.1)

x ν 1 1 x ν 2 2 • • • x νn n . For a polynomial P ∈ Q[X],
we further denote [X ν ] P (X) as the coefficient of the monomial X ν in P (X).

Our first task is to define a quasi-symmetrizing action of the group G n,m on C[X], which reduces to the quasi-symmetrizing action of Hivert (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF]) in the case n = 1. This is done as follows. Let A ⊂ X be a subalphabet of X with l variables and K = (k 1 , . . . , k l ) be a vector of positive (> 0) integers. If B is a vector whose entries are distinct variables x i multiplied by roots of unity, the vector (B) < is obtained by ordering the elements in B with respect to the variable order. Now the quasisymmetrizing action of g ∈ G n,m is given by

(2.2) g • A K = w(g) c(K) (A. t |g|) < K
where w(g) is the weight of g, i.e. the product of its non-zero entries, |g| is the matrix obtained by taking the modules of the entries of g, and the oefficient c(K) is defined as follows:

c(K) = 0 if ∀i, k i ≡ 0 [m] 1 if not.
Example 2.1. If m = 3 and n = 3, and we denote by j the complex number j = e 2iπ 3 , then for example

  0 0 j 1 0 0 0 j 0   • (x 2 1 x 2 ) = (j 2 ) 1     0 0 1 1 0 0 0 1 0   . (x 1 , x 2 )   (2,1) < = j 2 (x 3 , x 1 ) < (2,1) = j 2 (x 1 , x 3 ) (2,1) = j 2 x 2 1 x 3 .
It is clear that this defines an action of the generalized symmetric group G n,m on C[X], which reduces to Hivert's quasi-symmetrizing action (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF], Proposition 3.4) in the case m = 1.

Let us now study its invariant and coinvariant polynomials. We need to recall some definitions.

A composition α = (α 1 , α 2 , . . . , α k ) of a positive integer d is an ordered list of positive integers (> 0) whose sum is d. For a vector ν ∈ N n , let c(ν) represent the composition obtained by erasing zeros (if any) in ν. A polynomial P ∈ Q[X] is said to be quasi-symmetric if and only if, for any ν and µ in N n , we have

[X ν ]P (X) = [X µ ]P (X)
whenever c(ν) = c(µ). The space of quasi-symmetric polynomials in n variables is denoted by Qsym n .

The polynomials invariant under the action (2.2) of G n,m are said to be quasiinvariant and the space of quasi-invariant polynomials is denoted by QInv n,m , i.e.

P ∈ QInv n,m ⇔ ∀g ∈ G n,m , g • P = P.
Let us recall (cf. [START_REF] Hivert | Hecke algebras, difference operators, and quasi-symmetric functions[END_REF], Proposition 3.15) that QInv n,1 = QSym n . The following proposition gives a characterization of QInv n,m . Proposition 2.2. One has • P ) = P imply that every exponents appearing in P are multiples of m. Thus there exists a polynomial Q ∈ C[X] such that P (X) = Q(X m ). To conclude, we note that S n ⊂ G n,m implies that P is quasi-symmetric, whence Q is also quasi-symmetric. The reverse implication is obvious.

P ∈ QInv n,m ⇔ ∃Q ∈ QSym n / P (X) = Q(X m ) where Q(X m ) = Q(x m 1 , . . . , x m n ).
Let us now define super-coinvariant polynomials:

SCov n,m = {P ∈ C[X] / ∀Q ∈ QInv n,m , Q(∂X)P = 0} = QInv + n,m ⊥ ≃ C[X]/ QInv + n,m
with the scalar product defined in (1.2). This is the natural analogous to Cov n in the case of quasi-symmetrizing actions and SCov n,m reduces to the space of superharmonic polynomials SH n (cf. [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]) when m = 1.

Remark 2.3. It is clear that any polynomial invariant under (2.2) is also invariant under (1.1), i.e. Inv n,m ⊂ QInv n,m . By taking the orthogonal, this implies that SCov n,m ⊂ Cov n,m . These observations somewhat justify the terminology.

Our main result is the following theorem which is a generalization of equality (1.4).

Theorem 2.4. The dimension of the space Scov n,m is given by

(2.3) dim SCov n,m = m n C n = m n 1 n + 1 2n n .
Remark 2.5. In the case of the hyperoctahedral group B n = G n,2 , C.-O. Chow [START_REF] Chow | Noncommutative Symmetric Functions of Type B[END_REF] defined a class BQSym(x 0 , X) of quasi-symmetric functions of type B in the alphabet (x 0 , X). His approach is quite different from ours. In particular, one has the equality:

BQSY m(x 0 , X) = QSym(X) + QSym(x 0 , X).
In the study of the coinvariant polynomials, it is not difficult to prove that the quotient C[x 0 , X]/ BQSym + is isomorphic to the quotient C[X]/ QSym + studied in [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]. To see this, we observe that if G is the Gröbner basis of QSym + constructed in [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF] (see also the next section), then the set {x 0 , G} is a Gröbner basis (any syzygy is reducible thanks to Buchberger's first criterion, cf. [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF]).

The next section is devoted to give a proof of Theorem 2.4 by constructing an explicit basis for the quotient C[X]/ QInv + n,m .

Proof of the main theorem

Our task is here to construct an explicit monomial basis for the quotient space C[X]/ QInv + n,m . Let us first recall (cf. [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]) the following bijection which associates to any vector ν ∈ N n a path π(ν) in the N × N plane with steps going north or east as follows. If ν = (ν 1 , . . . , ν n ), the path π(ν) is

(0, 0) → (ν 1 , 0) → (ν 1 , 1) → (ν 1 + ν 2 , 1) → (ν 1 + ν 2 , 2) → • • • → (ν 1 + • • • + ν n , n -1) → (ν 1 + • • • + ν n , n).
For example the path associated to ν = (2, 1, 0, 3, 0, 1) is

π(ν) =
We distinguish two kinds of paths, thus two kinds of vectors, with respect to their "behavior" regarding the diagonal y = x. If the path remains above the diagonal, we call it a Dyck path, and say that the corresponding vector is Dyck. If not, we say that the path (or equivalently the associated vector) is transdiagonal. For example η = (0, 0, 1, 2, 0, 1) is Dyck and ε = (0, 3, 1, 1, 0, 2) is transdiagonal.

ε η
We then have the following result which generalizes Theorem 4.1 of [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF] and which clearly implies the Theorem 2.4.

Theorem 3.1. The set of monomials

B n,m = {(X n ) m η+α / π(η) is a Dyck path, 0 ≤ α i < m} is a basis for the quotient C[X n ]/ QInv + n,m .
To prove this result, the goal is here to construct a Gröbner basis for the ideal J n,m = QInv + n,m . We shall use results of [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF][START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF]. Recall that the lexicographic order on monomials is

(3.1) X ν > lex X µ iff ν > lex µ,
if and only if the first non-zero part of the vector ν -µ is positive.

For any subset S of Q[X] and for any positive integer m, let us introduce S m = {P (X m ) , P ∈ S}. If we denote by G(I) the unique reduced monic Gröbner basis (cf. [START_REF] Cox | Ideals, Varieties, and Algorithms[END_REF]) of an ideal I, then the simple but crucial fact in our context is the following. Proof. This is a direct consequence of Buchberger's criterion. Indeed, if for every pair g, g ′ in G( S ), the syzygy S(g, g ′ ) reduces to zero, then the syzygy S(g(X m ), g ′ (X m )) also reduces to zero in G( S m ) by exactly the same computation.

Let us recall that in [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF] is constructed a family G of polynomials G ε indexed by transdiagonal vectors ε. This family is constructed by using recursive relations of the fundamental quasi-symmetric functions and one of its property (cf. [START_REF] Aval | Catalan Paths and Quasi-Symmetric Functions[END_REF]) says that the leading monomial of G ε is: LM(G ε ) = X ε . Since G is a Gröbner basis of J n,1 , the following result is a consequence of Propositions 2.2 and 3.2.

Proposition 3.3. The set G m is a Gröbner basis of the ideal J n,m .

To conclude the proof of Theorem 3.1, it is sufficient to observe that the monomials not divisible by a leading monomial of an element of G m , i.e. by a X mε for ε transdiagonal, are precisely the monomials appearing in the set B n,m .

As a corollary of Theorem 3.1, one gets an explicit formula for the Hilbert series of SCov n,m . For k ∈ N, let SCov Let us recall that in [START_REF] Aval | Ideals of Quasi-Symmetric Functions and Super-Coinvariant Polynomials for S n[END_REF] is given an explicit formula for F n,1 :

(3.5)

F n,1 (t) = F n (t) = n-1 k=0 n -k n + k n + k k t k
using the number of Dyck paths with a given number of factors (cf. [START_REF] Kreweras | Sur les éventails de segments[END_REF]). The Theorem 3.1 then implies the 

  Proof. Let P be an element of QInv n,m . Let us denote by ζ the m-th root of unity ζ = e 2iπ m and by g j the element of G n,m whose matrix is the ζ in place j. Then we observe that the identities ∀j = 1, . . . , n, 1 m (P + g j • P + g 2 j • P + • • • + g m-1 j

Proposition 3 . 2 .

 32 With the previous notations,(3.2) G( S m ) = G( S ) m .

  SCov (k) n,m = SCov n,m ∩ Q (k) [X]where Q(k) [X] is the vector space of homogeneous polynomials of degree k together with zero.Let us denote by F n,m (t) the Hilbert series of SCov n,m , i.e.(3.4)F n,m (t) = k≥0 dim SCov (k) n,m t k .

Corollary 3 . 4 .

 34 With the notations of (3.5), the Hilbert series of SCov n,m is given by

F

  n,m (t) = 1 -t m 1 -t F n (t m )from which one deduces the close formulan F n,m (t) x n = (1-t) -(1-t)(1 -t -4t m x(1 -t m )) -2x(1-t m ) (1 -t)(2t m -1) -x(1 -t m ) .
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