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Abstract

The aim of this work is to study some lattice diagram determinants
∆L(X, Y ) as defined in [5] and to extend results of [3]. We recall that
ML denotes the space of all partial derivatives of ∆L. In this paper, we
want to study the space Mk

i,j(X, Y ) which is defined as the sum of ML

spaces where the lattice diagrams L are obtained by removing k cells from
a given partition, these cells being in the “shadow” of a given cell (i, j)
in a fixed Ferrers diagram. We obtain an upper bound for the dimension
of the resulting space Mk

i,j(X, Y ), that we conjecture to be optimal. This
dimension is a multiple of n! and thus we obtain a generalization of the n!
conjecture. Moreover, these upper bounds associated to nice properties
of some special symmetric differential operators (the “shift” operators)
allow us to construct explicit bases in the case of one set of variables, i.e.
for the subspace Mk

i,j(X) consisting of elements of 0 Y -degree.

1 Introduction

Definition 1.1 A lattice diagram is a finite subset of N × N. For µ1 ≥ µ2 ≥
· · · ≥ µk > 0, we say that µ = (µ1, µ2, . . . , µk) is a partition of n if |µ| =
µ1 + · · ·+µk equals n. We associate to a partition µ its Ferrers diagram {(i, j) :
0 ≤ i ≤ k − 1, 0 ≤ j ≤ µi+1 − 1} and we shall use the symbol µ for both the
partition and its Ferrers diagram.

Most definitions and conventions we use are similar to [5]. For example, given
the partition (4, 2, 1), its partition diagram is

2,0

1,0 1,1

0,0 0,1 0,2 0,3
.
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It consists of the lattice cells {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2), (0, 3)}.
Let now X = Xm = {x1, x2, . . . , xm} and Y = Ym = {y1, y2, . . . , ym} be two

sets of m variables and Q[X ]=Q[x1, x2, . . . , xm] and Q[X, Y ]=Q[x1, x2, . . . , xm,
y1, y2, . . . , ym] denote respectively the rings of polynomials in m and 2m vari-
ables with rational coefficients. Since we have to deal with polynomials in Q[X ]
or Q[X, Y ], we shall denote by Z a subalphabet of (X, Y ) and by Q[Z] the
corresponding ring of polynomials.

Definition 1.2 Given a lattice diagram L = {(p1, q1), (p2, q2), . . . , (pn, qn)} with
n cells we define the lattice determinant

∆L(X, Y ) = det
(

x
pj

i y
qj

i

)

1≤i,j≤n
. (1.1)

The polynomial ∆L(X, Y ) ∈ Q[Xn, Yn] = Q[X, Y ] (with m = n, the number of
cells in the diagram L) is different from zero only if the diagram L consists of
n distinct cells in the positive quadrant. In this case ∆L is bihomogeneous of
degree |p| = p1 + · · ·+ pn in X and of degree |q| = q1 + · · ·+ qn in Y . To insure
that this definition associates a unique determinant to L we require that the list
of lattice cells is given with respect to the lexicographic order with priority to
the second entry that is to say:

(p1, q1) < (p2, q2) ⇐⇒ q1 < q2 or [q1 = q2 and p1 < p2]. (1.2)

Definition 1.3 For a polynomial P (Z) ∈ Q[Z], the vector space spanned by all
the partial derivatives of P of all orders is denoted L∂ [P ], i.e.:

L∂ [P ] = Q[∂Z], (1.3)

where for a polynomial Q in Q[Z], Q(∂) = Q(∂Z) denotes the differential op-
erator obtained by substituting xi and yi respectively by ∂xi and ∂yi in the
expression of Q. Next we define

ML = L∂ [∆L(X, Y )] (1.4)

the vector space associated to the lattice diagram L.

A permutation σ ∈ Sn acts diagonally on a polynomial P (X, Y ) ∈ Q[Xn, Yn] as
follows: σP (X, Y ) = P (xσ1 , xσ2 , . . . , xσn

, yσ1 , yσ2 , . . . , yσn
). Under this action,

∆L(X, Y ) is clearly an alternant. It follows that for any lattice diagram L with n
cells, the vector space ML is an Sn-module. Since ∆L(X, Y ) is bihomogeneous,
this module affords a natural bigrading.

The most general problem considered in [5] and [6] concerns the space ML.
The main question is to decide whether this space is Sn-isomorphic to a sum of
left regular representations or not. In [6], the case where all the lattice cells of
L lies on a single axis is solved. In the particular case where L corresponds to
a partition µ the question leads to the “n! conjecture” which asserts that the
space Mµ is a single copy of the left regular representation. Many efforts to
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prove this conjecture were only sufficient to obtain it in some special cases (see
[1], [2], [8], [9] for example).

The next class of lattice diagrams that is of interest is obtained by removing a
single cell from a partition diagram. Its interest comes in part from the fact that
it gives a possible recursive approach for the n! conjecture, with the statement
of a conjectural “four term recurrence.” If µ is a partition of n + 1, we denote
by µ/ij the lattice diagram obtained by removing the cell (i, j) from the Ferrers
diagram of µ. We refer to the cell (i, j) as the hole of µ/ij. It is conjectured in
[5] that the number of copies of the left regular representations in Mµ/ij is equal
to the cardinality (which we denote by sµ(i, j) or by s if there is no ambiguity)
of the (i, j)-shadow, where the shadow of a cell (i, j), as shown on the figure
below is: Sµ((i, j)) = {(i′, j′) ∈ µ : i′ ≥ i, j′ ≥ j}.

i,j

A study of the subspace Mµ/ij(X) of Mµ/ij consisting of elements of 0 Y -
degree can be found in [3], in which the corresponding “four term recursion” is
proven by using the construction of explicit bases.

The aim of this article is to propose a generalization for the n! conjecture.
The space that we consider is defined as follows. Let µ be a partition of n + k.
This partition is fixed and does not appear in the following notations.

Definition 1.4 Let Mk
i,j denote the following sum of vector spaces

Mk
i,j = Mk

i,j(X, Y ) =
∑

(a1,b1),...,(ak,bk)

Mµ/{(a1,b1),...,(ak,bk)}, (1.5)

where the sum is over all the k-tuples of cells in the shadow of (i, j).

We first observe that because of the “shift” operators (see [5], Proposition I.3
or Section 2 in this paper) we have Mµ/ij = M1

i,j (equation 2.20). Hence this

space Mk
i,j is a possible generalization of Mµ/ij if we want to make k holes in the

Ferrers diagram. The object of this paper is to show the interest of the space
Mk

i,j and to give support to the Conjecture 3.8 that dim Mk
i,j =

(

s
k

)

n!.
The organization of the article is the following. In the second section we

introduce some “shift” operators which are useful to move the holes and the
cells in the diagrams. The third section is devoted to the proof of an upper
bound (

(

s
k

)

n!) for the dimension of Mk
i,j, that is conjectured to be optimal. In
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the fourth section we study Mk
i,j(X), the subspace of Mk

i,j(X, Y ) consisting of
elements of 0 Y -degree, for which we obtain explicit bases.

2 The “shift” operators

In this paragraph, we want to describe the action of some special symmetric dif-
ferential operators on the determinants ∆L. We recall the following definitions
as stated in [10]:

Definition 2.1 For each integer r ≥ 1, the r-th power sum Pr(X) (we do not
use the classical notation pr to avoid a possible confusion with the biexponents)
is defined by

Pr(X) =
∑

xr
i . (2.1)

For each integer r ≥ 0, the r-th elementary symmetric function er(X) is the
sum of all products of r distinct variables xi, so that e0 = 1 and for r ≥ 1:

er(X) =
∑

i1<···<ir

xi1 · · ·xir
. (2.2)

For each integer r ≥ 0, the r-th complete symmetric function hr(X) is the sum
of all monomials of total degree r in the variables xi, so that:

hr(X) =
∑

i1≤···≤ir

xi1 · · ·xir
. (2.3)

For the sake of simplicity, we only state the following propositions for X-shifts.
Of course similar results also hold for Y -shifts. The only difference concerns the
signs. The choice of the lexicographic order 1.2 is made to simplify the results
and the proofs for X-shifts.

Proposition 2.2 Let L be a lattice diagram. Then for any integer k ≥ 1 we
have

Pk(∂X)∆L(X, Y ) =

n
∑

i=1

±ǫ(L, Pk(i; L))∆Pk(i;L)(X, Y ), (2.4)

where Pk(i; L) is the diagram obtained by replacing the i-th biexponent (pi, qi)
by (pi − k, qi) and the coefficient ǫ(L, Pk(i; L)) is a positive integer. The sign
in 2.4 is the sign of the permutation that reorders the obtained biexponents with
respect to the lexicographic order 1.2.

Proof. This is a particular case of Proposition I.1 in [5], but we shall give here
a simple proof because some ingredients will be useful later.

If the diagram L consists of the cells L = {(p1, q1), . . . , (pn, qn)}, we can
develop the determinant ∆L with respect to the j-th column and write:

∆L(X, Y ) =
n

∑

i=1

xpi

j yqi

j .Ai,j (2.5)
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where Ai,j denotes the cofactor (i, j). Let us remark that this cofactor is a
polynomial where the variable xj does not appear. Thus when we derive 2.5,
we obtain:

∂xk
j ∆L(X, Y ) =

n
∑

i=1

ck
i xpi−k

j yqi

j .Ai,j (2.6)

where ck
i = pi(pi − 1) · · · (pi − k + 1). Next we sum 2.6 over j to get:

Pk(∂X)∆L(X, Y ) =

n
∑

i=1

ck
i

n
∑

j=1

xpi−k
j yqi

j .Ai,j . (2.7)

Thus we obtain 2.4 by recognizing in 2.7 the development (up to sign) of
∆Pk(i;L). As a biproduct we observe that ǫ(L, Pk(i; L)) = ck

i = pi(pi−1) · · · (pi−
k + 1) and that this coefficient does not depend on the operator Pk.

Remark 2.3 The diagram Pk(i; L) is the diagram obtained by pushing down
the i-th cell of L: its biexponent (pi, qi) is replaced by (pi − k, qi) which corre-
sponds to k steps down. The other biexponents are unchanged. This duality
between the substractions on the set of biexponents and the movements of cells
in the diagram will be extensively employed throughout this article, explicitly
or implicitly.

Observe also that since ∆L′ 6= 0 only if L′ consists of n distinct cells in the
positive quadrant, we can forget all the terms in the sum 2.4 but those relative
to such diagrams.

Proposition 2.4 Let L be a lattice diagram. Then for any integer k ≥ 1 we
have

ek(∂X)∆L(X, Y ) =
∑

1≤i1<i2<···<ik≤n

ǫ(L, ek(i1, . . . , ik; L))∆ek(i1,...,ik;L)(X, Y )

(2.8)
where ek(i1, . . . , ik; L) is the lattice diagram obtained by replacing the biexpo-
nents (pi1 , qi1), . . . , (pik

, qik
) by (pi1 − 1, qi1), . . . , (pik

− 1, qik
) and where the

coefficient ǫ(L, ek(i1, . . . , ik; L)) is a positive integer.

Proof. The proof is almost the same as for the previous proposition. We write

ek(X) =
∑

1≤j1<···<jk≤n

xj1 . . . xjk
. (2.9)

We develop the determinantal form of ∆L with respect to the columns j1, . . . , jk

to obtain the following expression where ∆i1,...,ik

L denotes the lattice diagram
determinant relative to the biexponents i1, . . . , ik of L and Ai1,...,ik;j1,...,jk

the
cofactor:

∆L =
∑

1≤i1<···<ik≤n

∆i1,...,ik

L (xj1 , . . . , xjk
)Ai1,...,ik;j1,...,jk

. (2.10)
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Next we derive 2.10 to obtain

∂(xj1 . . . xjk
)∆L =

∑

1≤i1<···<ik≤n

(

ci1,...,ik;j1,...,jk
∆i1,...,ik

ek(i1,...,ik;L)(xj1 , . . . , xjk
)

×Ai1,...,ik;j1,...,jk

)

, (2.11)

where ci1,...,ik;j1,...,jk
is a positive integer. We see that ci1,...,ik;j1,...,jk

is equal to
pi1 · · · pik

and thus does not depend on j1, . . . , jk . Therefore we can omit the
subscript j1, . . . , jk. Thus we get

ek(∂X)∆L =
∑

(1≤i1<···<ik≤n)

∑

(1≤j1<···<jk≤n)

(

ci1,...,ik
∆i1,...,ik

ek(i1,...,ik;L)(xj1 , . . . , xjk
)

×Ai1,...,ik;j1,...,jk

)

. (2.12)

By recognizing in 2.12 the development of ∆ek(i1,...,ik;L), we finally obtain the
expected formula. The sign in front of the coefficient ǫ(ek; i1, . . . , ik; L) should be
the sign of the permutation that reorders the obtained biexponents in increasing
lexicographic order. In fact the choice of the lexicographic order 1.2 is such that
this permutation is always the identity: each cell stays in its original column
and no one of them “jumps” over another one, so that the order is unchanged.

Remark 2.5 A useful observation is the fact that in the Propositions 2.2 and
2.4, the coefficient ǫ(L, L′) only depends on the original diagram L and on the
final diagram L′, but not on the differential operator. Let us clearly define this
coefficient: if L = {(p1, q1), . . . , (pn, qn)} and L′ = {(p′1, q

′
1), . . . , (p

′
n, q′n)}, ǫ is

given by the following formula:

ǫ(L, L′) =

∏n
i=1 pi!qi!

∏n
i=1 p′i!q

′
i!

. (2.13)

This coefficient is a positive integer that appears (up to sign) as the coefficient
of ∆L′ in the expression of P (∂X)∆L, where P is a power sum or an elementary
symmetric function ; we shall see in the next proposition that it is also the case
for homogeneous symmetric functions.

Another important remark is that we have to be careful when we apply
products of differential operators. Indeed in this case multiplicities may appear
in the formulas. Let P (∂) and Q(∂) be two differential operators such that
formulas like 2.4 or 2.8 hold for P (∂) and Q(∂) with ǫ given by 2.13. We first
observe that ǫ is multiplicative, i.e.

ǫ(L, L′) = ǫ(L, L′′)ǫ(L′′, L′), (2.14)

for L, L′′ and L′ three diagrams. Thus the coefficient of ∆L′ in P (∂)Q(∂)∆L is
a multiple (up to sign for power sums) of ǫ(L, L′). This multiplicity corresponds
to the number of choices in the order of the different shifts, that is to say the
number of diagrams L′′ such that L′′ appears in Q(∂)∆L and L′ appears in
P (∂)∆L′′ . This multiplicity is denoted by cP,Q(L′L′)
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Let us take an example: if we apply e1(∂X)e1(∂X) to the determinant of
the diagram L = {(1, 0), (1, 1)}, we obtain a single diagram L′ = {(0, 0), (0, 1)},
with ǫ(L, L′) = 1, but

e1(∂X)e1(∂X)∆L = 2∆L′ . (2.15)

The multiplicity 2 correponds to the fact that we can either first move down
the cell (1, 0) and next the cell (1, 1) or do it in the reverse order.

All these observations are crucial to well understand the proof of the follow-
ing proposition.

Now, to state the next proposition, we need to introduce some notation. For
a lattice diagram L, we denote by L its complement in the positive quadrant
(it is an infinite subset). Again we order L = {(p1, q1), (p2, q2), . . . } using the
lexicographic order 1.2.

Proposition 2.6 Let L be a lattice diagram. Then for any integer k ≥ 1 we
have

hk(∂X)∆L(X, Y ) =
∑

1≤i1<i2<···<ik

ǫ(L, hk(i1, . . . , ik; L))∆hk(i1,...,ik;L)(X, Y )

(2.16)
where hk(i1, . . . , ik; L) is the lattice diagram with the following complement dia-
gram. Replace the biexponents (pi1 , qi1), . . . , (pik

, qik
) of the complement L with

(pi1 + 1, qi1), . . . , (pik
+ 1, qik

) and keep the other unchanged. The coefficient
ǫ(L, hk(i1, . . . , ik; L)) is a positive integer, given by formula 2.13.

Proof. We shall prove this proposition by induction on k. If k = 1, then
h1 = e1 and the result is true since moving down a cell is equivalent to moving
up a hole. Assume the result is true up to k − 1. Then we use the fact that
hk = e1hk−1 − e2hk−2 + · · · + (−1)kek−1h1 + (−1)k+1ek.

Each term elhk−l for 1 ≤ l ≤ k gives a linear combination of ∆L′ , whose
coefficients are multiple of ǫ(L, L′) according to Remark 2.5. The problem is
to compute the alternating sum of all these coefficients to get the result of
hk(∂X)∆L.

Let L′ be one of the diagrams created by the terms elhk−l. The coefficient
of ∆L′ in el(∂X)hk−l(∂X) is equal to cel,hk−l

(L, L′)ǫ(L, L′). In this proof let us
denote cel,hk−l

(L, L′) simply by cl(L, L′). The question is to compute

∑

1≤l≤k

(−1)l+1cl(L, L′). (2.17)

Let k′ ≤ k be the number of distinct holes moving between L and L′ and d ≤ k′

the number of those which have a moving hole below them. Each of these d
holes has to move with hk−l(∂X) because the hole below it is able to move up
with el(∂X) only if it has a cell above itself. The choice therefore comes from
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the k′−d other holes which can either move up with hk−l(∂X) or not: we choose
k − l − d among them to move with hk−l(∂X). Thus we get

cl(L, L′) =

(

k′ − d

k − l − d

)

=

(

k′ − d

l − (k − k′)

)

. (2.18)

And the sum in 2.17 becomes

k
∑

l=1

(−1)l+1

(

k′ − d

l − (k − k′)

)

=

{

1 if k′ = k,
0 if k′ < k.

(2.19)

Thus we get the desired formula 2.16.

Remark 2.7 One efficient application of the previous proposition is to give a
necessary condition that tests if a partial symmetric operator belongs to the
vanishing ideal of a lattice diagram determinant (see [4]). An example of the
strength of this principle is to give immediate proofs of Propositions 1-2-3-4 of
[2] (these propositions provide a Groebner basis of the vanishing ideal of ∆µ

when µ is a hook). The previous proofs in [2] were recursive and intricate but
the results now become simple applications of Proposition 2.6.

Remark 2.8 The shift operators are also useful to reduce the sum 1.5 defining
Mk

i,j. In the special case of one hole, it is now easy to see that

M1
i,j = Mµ/i,j . (2.20)

Indeed we have that for any integer k and l

ek(∂X)el(∂Y )∆µ/i,j = c.∆µ/i+k,j+l , (2.21)

with c an integer different from zero. This implies M1
i,j ⊆ Mµ/i,j , and the

reverse inclusion is obvious.
In the particular case of two holes, let k and l be positive integers and let

us use the following notations: for two cells h1 and h2, ǫi
h1,h2

= ǫ
(

µ/{(i, j), (i +

1, j)}, µ/{h1, h2}
)

and ǫj
h1,h2

= ǫ
(

µ/{(i, j), (i, j + 1)}, µ/{h1, h2}
)

. If we are
careful of the different signs by applying Propositions 2.2 and 2.4, then we get
the following identities

Pl(∂Y )ek−1(∂X)∆µ/{(i,j),(i+1,j)} = Pl(∂Y )
(

ǫi
(i,j),(i+k,j)∆µ/{(i,j),(i+k,j)}

)

= (−1)b+hǫi
(i+k,j),(i,j+l)∆µ/{(i+k,j),(i,j+l)}

+(−1)b+v+1ǫi
(i,j),(i+k,j+l)∆µ/{(i,j),(i+k,j+l)} (2.22)

and

Pk(∂X)el−1(∂Y )∆µ/{(i,j),(i,j+1)}=Pk(∂X)
(

(−1)b+h+1ǫj
(i,j),(i,j+l)∆µ/{(i,j),(i,j+l)}

)

8
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 i,j

i+k,
  j

i+k,
              j+l   

 i,
j+l

= (−1)b+h+1
(

(−1)hǫj
(i+k,j),(i,j+l)∆µ/{(i+k,j),(i,j+l)}

+(−1)vǫj
(i,j),(i+k,j+l)∆µ/{(i,j),(i+k,j+l)}

)

, (2.23)

where h, v and b are respectively the numbers of cells with horizontal, vertical
and both horizontal and vertical stripes in the figure above (we have to compute
the sign of the permutation which reorders the cells in the lexicographic order
1.2).

By observing that the product of the signs of the four coefficients in 2.22 and
2.23 is (−1)2(2b+2h+v+1)+1 = (−1) we have that exactly three coefficients in 2.22
and 2.23 are of the same sign, whence ∆µ/{(i,j),(i+k,j+l)} and ∆µ/{(i+k,j),(i,j+l)}

are in Mµ/{(i,j),(i,j+1)} + Mµ/{(i,j),(i+1,j)}.
Next, by Proposition 2.6 we can move simultaneously the two holes. This im-

plies that for any couple of holes (h1, h2) in the shadow of (i, j) then ∆µ/{h1,h2} ∈
Mµ/{(i,j),(i,j+1)} + Mµ/{(i,j),(i+1,j)} thus

M2
i,j = Mµ/{(i,j),(i,j+1)} + Mµ/{(i,j),(i+1,j)}. (2.24)

The question of whether the obvious generalization of the previous result
2.24 is true when k ≥ 3 appears naturally. Is it sufficient to take only the
diagrams such that the holes form a partition of origin (i, j)? The answer is
negative. For example it is easy to check (by computer) that when µ = (3, 2),

∆µ/{(0,0),(1,0),(0,2)} 6∈ Mµ/{(0,0),(1,0),(0,1)} + Mµ/{(0,0),(0,1),(0,2)}. (2.25)

3 The upper bound

Definition 3.1 Let M be a vector subspace of Q[Z] where Z is a subalphabet
of (Xn+k, Yn+k). We define its vanishing ideal as the following ideal:

IM = {P ∈ Q[Z] : ∀Q ∈ M, P (∂)Q = 0}. (3.1)

If P (∂)Q = 0, we shall say that P “kills” Q.
If M = L∂ [P ] then we denote its vanishing ideal simply by IP . In the case

of Mk
i,j we denote IMk

i,j
by Ik

i,j .
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We recall the following important result ([8], Proposition 1.1):

Proposition 3.2 For M a subspace of Q[Z], we have

M = I⊥M = {P ∈ Q[Xn, Yn] : ∀Q ∈ IM , 〈P, Q〉 = 0}, (3.2)

where the scalar product is defined by 〈P, Q〉 = L0(P (∂)Q) and where L0 is the
linear form that associates to a polynomial its term of degree 0.

3.1 About ideals

We want here to prove the following

Proposition 3.3

Ik
i,j =

⋂

(a1,b1),...,(ak,bk)

I
∂x

a1
n+1∂y

b1
n+1···∂x

ak
n+k

∂y
bk
n+k

∆µ
∩ Q[Xn, Yn]

def
= I, (3.3)

where the intersection is over the k-tuples of different cells in the shadow of
(i, j) that we assume to be ordered in lexicographic order.

Proof. Let (a1, b1), . . . (ak, bk) be k cells in Sµ((i, j)), the shadow of (i, j) in µ.
By expanding ∆µ with respect to the last k columns, we obtain:

∆µ(Xn+k, Yn+k) =
∑

(a′

1,b′1),...,(a′

k
,b′

k
)

±∆{(a′

1,b′1),...,(a
′

k
,b′

k
)}(X̄n, Ȳn)

×∆µ/{(a′

1,b′1),...,(a
′

k
,b′

k
)}(Xn, Yn), (3.4)

where X̄n = {xn+1, . . . , xn+k} and Ȳn = {yn+1, . . . , yn+k}. Thus we get:

∂(xa1
n+1y

b1
n+1 · · ·x

ak

n+kybk

n+k)∆µ(Xn+k, Yn+k)=c∆µ/{(a1,b1),...,(ak,bk)}(Xn, Yn) + C
(3.5)

where c is a rational constant (different from 0) and C a linear combination with
coefficients in Q[xn+1, yn+1, . . . , xn+k, yn+k] of polynomials ∆µ/{(a′

1,b′1),...,(a
′

k
,b′

k
)}

(Xn, Yn), with:
∀ 1 ≤ l ≤ k, (a′

l, b
′
l) ∈ Sµ((i, j)). (3.6)

Indeed ∆{(a′

1,b′1),...,(a′

k
,b′

k
)}(X̄n, Ȳn) is not killed by ∂(xa1

n+1y
b1
n+1 · · ·x

ak

n+kybk

n+k)
only if there exists at least a permutation σ ∈ Sk, the symmetric group on k
elements, such that

(a′
σ(l), b

′
σ(l)) ∈ Sµ((al, bl)), ∀ 1 ≤ l ≤ k. (3.7)

This follows easily from the definition of the ∆{(a′

1,b′1),(a′

2,b′2),...,(a
′

k
,b′

k
)} as a de-

terminant:

∆{(a′

1,b′1),(a
′

2,b′2),...,(a
′

k
,b′

k
)} =

∑

σ∈Sk

sgn(σ) x
a′

σ(1)

n+1 y
b′σ(1)

n+1 x
a′

σ(2)

n+2 y
b′σ(2)

n+2 · · ·x
a′

σ(k)

n+k y
b′σ(k)

n+k .
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Taking the partial derivative ∂(xa1
n+1y

b1
n+1 · · ·x

ak

n+kybk

n+k), we get 3.7. For all 1 ≤
l ≤ k, we have Sµ(al, bl) ⊆ Sµ(i, j). Consequently (a′

σ(l), b
′
σ(l)) ∈ Sµ(i, j), ∀ 1 ≤

l ≤ k. Because σ is a permutation, 3.6 is now obvious.
To illustrate the equation 3.5, we give the following example: µ = (3, 2),

n = 3, k = 2, (a1, b1) = (0, 0), (a2, b2) = (1, 0), then

∂(x0
4y

0
4x

1
5y

0
5)∆µ(X5, Y5) = ∆µ/{(0,0)(1,0)}(X3, Y3) + y5∆µ/{(0,0)(1,1)}(X3, Y3)

− y4∆µ/{(1,0)(0,1)}(X3, Y3)

+ (−x4y5 + x4y4)∆µ/{(1,0)(1,1)}(X3, Y3)

− y2
4∆µ/{(1,0)(0,2)}(X3, Y3) + y4y5∆µ/{(0,1)(1,1)}(X3, Y3)

− y2
4y5∆µ/{(1,1)(0,2)}(X3, Y3).

Hence we get what we want because:

• I ⊆ Ik
i,j : let P be a polynomial in I. Since P kills the left-hand side of

3.5, it kills the constant term in Q[X̄n, Ȳn] of the left-hand side which is
∆µ/{(a1,b1),...,(ak,bk)}(Xn, Yn). Thus P is in Ik

i,j .

• Ik
i,j ⊆ I: let P be a polynomial in Ik

i,j . By 3.6, P kills all the terms of the
right-hand side of 3.5; thus it kills the left-hand side. This implies P ∈ I.

3.2 Sets of points and vanishing ideals

The reasoning is inspired from [5], Theorem 4.2.
Let µ be a partition of n + k, l = µ1 its length and h its height (the

number of its positive parts). We consider two sets α = (α0, . . . , αh−1) and
β = (β0, . . . , βl−1) of distinct rational numbers. To any injective tableau T of
shape µ with entries {1, . . . , n+k}, we associate a point (a(T ), b(T )) in Q2(n+k)

by the following process:

∀ 1 ≤ t ≤ n + k, at(T ) = αrt(T ) and bt(T ) = βct(T ) (3.8)

where rt(T ) (resp. ct(T )) is the number of the row (resp. column) of T where the
entry t lies in T . We think useful to recall here that the convention introduced
in the Definition 1.1 is that the first row and column are indexed by 0. We
define ρ as the orbit of (a, b) when T varies over the (n + k)! injective tableaux
of shape µ. Let us observe that, since the αt’s and βt’s are distinct, two different
tableaux give two different points, i.e. T 7→ (a(T ), b(T )) is an injective map.
We introduce Jρ the ideal of polynomials that are zero over all the orbit. We
recall that the operator gr is the operator that associates to a polynomial its
term of maximum degree and that the gr of an ideal is the ideal generated by
the gr of its elements. Next we define I = grJρ and H = I⊥. We will use the
following important result (cf. [8], Theorem 1.1):

Proposition 3.4 For any choice of αt’s and βt’s, if I is the graded ideal asso-
ciated to the vanishing ideal of ρ then we have the inclusion

I ⊆ I∆µ
. (3.9)

11



We now look at another set, this time in Q2n. We consider the set of tableaux
T of shape µ with n entries and k white cells such that the k white cells are in
the shadow of (i, j). Let us denote this set of tableaux by T k

i,j . By the same

process as described in 3.8, we define a set ρk in Q2n. We recall here that we
denote by sµ(i, j) or simply by s the cardinality of the shadow of the cell (i, j)
in µ. Since the cardinality of T k

i,j is
(

s
k

)

n! and the process 3.8 is still injective,

the set ρk has
(

s
k

)

n! points. We introduce Jρk the ideal of polynomials that are
zero all over ρk, and Ik = grJρk and Hk = (Ik)⊥.

The first information is given by the following equation:

dimHk =

(

s

k

)

n!. (3.10)

This comes from the fact that dim Hk = dim Q[X, Y ]/Jρk = #ρk =
(

s
k

)

n!. We
shall not develop this point, extensively treated in [9].

We want to prove that Mk
i,j ⊆ Hk and by Proposition 3.2, it is equivalent

to prove that Ik ⊆ I.

3.3 Inclusion

We want here to obtain the next proposition:

Proposition 3.5 We have the inclusion:

Ik ⊆ I. (3.11)

Proof. Let P be a polynomial in Jρk . Let us consider

Q(Xn+k, Yn+k) = P (Xn, Yn) ×
∏i−1

i′=0(xn+1 − αi′) · · ·
∏i−1

i′=0(xn+k − αi′)

×
∏j−1

j′=0(yn+1 − αj′ ) · · ·
∏j−1

j′=0(yn+k − αj′). (3.12)

We want to check that this polynomial is an element of Jρ. We take an element
(a, b) = (a(T ), b(T )) of ρ. If its projection on Q2n (by keeping the first n entries
of a and b) is in ρk then Q(a, b) = 0 because of P . If not, the tableau T must
have at least one entry between n + 1 and n + k in the complement of the
shadow of (i, j), i.e. in the first i rows or the first j columns and we have still
Q(α, β) = 0.

Thus Q ∈ Jρ, hence gr(Q) ∈ I∆µ
. Next by looking at the term of maximal

degree we get: gr(P ) ∈ I∂xi+1
n+1∂yj+1

n+1···∂xi+1
n+k

∂yj+1
n+k

∆µ
.

For any set of k cells {(a1, b1), . . . , (ak, bk)} in the shadow of (i, j), we observe
that ∀r, 1 ≤ r ≤ k, ar ≥ i and br ≥ j. Hence gr(P ) is in I, which was to be
proved.

3.4 Conclusion

The main result is now a consequence of all what precedes:

12



Theorem 3.6 If µ is a partition of n + k and s the cardinality of the shadow
of the cell (i, j), then we have:

dimMk
i,j ≤

(

s

k

)

n!. (3.13)

Remark 3.7 If we recall the proof of Theorem 1.1 of [8], we observe that the
previous reasoning implies the following fact. If equality holds in Theorem 3.6,
then Mk

i,j decomposes as
(

s
k

)

times the left regular representation.

Numerical examples and the fact that the construction described in the
previous subsection affords the “good” upper bound in the case of one set of
variables (see the next section) support the following conjecture, which was first
stated by F. Bergeron.

Conjecture 3.8 With the notations of the previous theorem:

dimMk
i,j =

(

s

k

)

n!. (3.14)

Remark 3.9 When k = 1, this conjecture reduces to Conjecture I.2 of [5] and
when s = k or k = 0 to the n! conjecture.

4 Case of one set of variables

Definition 4.1 Let M = M(X, Y ) be a subspace of Q[X, Y ]. Then we denote
by M(X) the subspace of M consisting of elements of 0 Y -degree. We also
denote the vanishing ideal of M(X) by IM (X).

The goal of this section is to obtain an explicit basis for Mk
i,j(X), the sub-

space of Mk
i,j(X, Y ) of elements of 0 Y -degree.

4.1 Construction

We first recall results about Mµ(X) the subspace of Mµ of elements of 0 Y -
degree (which was denoted by M0

µ in [2] and [3]). When µ is a partition of n,
we have

dimMµ(X) = n!/µ!, (4.1)

where µ! = µ1! · · ·µk!. This space has been studied in [2], [8], [7]. Let M(µ) be a
set of monomials whose cardinality is n!/µ!, such that the set Bµ = {M(∂)∆µ :
M ∈ M(µ)} is a basis for the space Mµ(X). By the work in [2] we know such
a set exists.

Now let µ be a partition of n + k. Next we choose in the Ferrers diagram
µ, k cells which are simultaneously in the shadow of (i, j) and such that any
circled cell has either a cell outside the partition on its right or a circled cell (see
the figure below). A circled cell satisfying this condition is said to be “Right”.

13



We denote by Fk
µ the set of the obtained objects, which we call Right diagrams

(associated to µ).
We are now going to associate to each Right diagram two objects: a partition

and a diagram with (at most) k holes in the shadow of (i, j). The Figure 1
illustrates this construction. In this figure, the chosen cells in the Right diagram
are cells with a circle, in the cell (i, j) appears a + sign and the holes are as
usual cells with crosses (×). In this example n = 142 and k = 10.

To a Right diagram F in Fk
µ we first associate µF the partition of n obtained

by pushing up the circled cells and by removing the corresponding cells (see
Figure 1).

We also define a diagram µk
F with k holes by proceeding as follows. We

look at the columns where a circled cell appears. In our example we have 8
such columns. For a column j′ ≥ j where a circled cell appears, we denote by
h(j′) the number of places where we could have put a circled cell (of course
a Right one) below the lowest circled cell of this column. In our example, we
have: h(3) = 1, h(5) = 0, h(6) = 0, h(7) = 1, . . . , h(13) = 0. Next for any
column j′ with a circled cell, we do the following. We denote the positions of
the circled cells in this column by (c(j′), j′), (c(j′)+a1, j

′), . . . , (c(j′)+ad, j
′),

with (c(j′), j′) the position of the lowest one, 0 < a1 < · · · < ad, and d + 1
the number of circled cells in the column j′. We then place holes in cells (i +
h(j′), j′), (i +h(j′)+ a1, j

′), . . . , (i + h(j′)+ ad, j
′). Doing this for all columns

gives the diagram µk
F . This construction is illustrated in Figure 1.

The crucial idea is to apply the monomials associated to µF to the deter-
minant associated to µk

F and we are now able to state the main result of this
section.

Theorem 4.2 With the previous notations

Bk
i,j(X) = {M(∂)∆µk

F
: M ∈ M(µF ), F ∈ Fk

µ} (4.2)

is a basis for Mk
i,j(X).

The object of the end of the article is to prove this theorem. We will obtain
an upper bound for the dimension of Mk

i,j(X), next verify that the cardinality

of Bk
i,j(X) is equal to this upper bound, and prove that the family Bk

i,j(X) is
linearly independent.
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Figure 1: A Right diagram F and its associated partition µF and diagram with
k holes µk

F .

µ

µ F

k
F =

 =

   F =
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4.2 Upper bound

Definition 4.3 We denote by T k
i,j the set of injective, row-increasing tableaux

of shape µ with n entries {1, . . . , n} and k white cells (without any entry) such
that the k white cells are in the shadow of (i, j) and not on the left side of an
entry 1, . . . , n.

We can also see T k
i,j as the set of injective, row-increasing tableaux with

entries 1, . . . , n of shapes all the Right diagrams F of Fk
µ .

The following lemma will be useful in the proof of the next proposition.

Lemma 4.4 Let M = M(X, Y ) be a subspace of Q[X, Y ] and M(X) its sub-
space of elements of 0 Y -degree. We suppose that M is stable under derivation.
Then we have the following relation between vanishing ideals:

IM (X) = IM ∩ Q[X ]. (4.3)

Proof. The inclusion I ∩ Q[X ] ⊆ I(X) is immediate. The reverse inclusion
is obtained as follows. If P is an element of I(X) and Q a polynomial in
M(X, Y ), we look at the monomials of Q in Y with coefficients in Q[X ]. These
coefficients are elements of M(X) because M is supposed to be stable under
derivation. Thus these coefficients are killed by P and so is Q itself.

The next proposition gives the analogue upper bound to Theorem 3.6 in the
case of one set of variables.

Proposition 4.5 The dimension of Mk
i,j(X) satisfies the following inequality:

dimMk
i,j(X) ≤ #T k

i,j . (4.4)

Proof. From the Proposition 3.3 and the Lemma 4.4 applied to Mk
i,j(X, Y ),

which is of course stable under derivation, we deduce that Ik
i,j(X) = Ik

i,j ∩
Q[Xn] = I ∩ Q[Xn].

We consider the projection of the set ρk on Qn, i.e. we associate to each
injective tableau T of shape µ with n entries {1, . . . , n} and k holes in the shadow
of (i, j) the point a|n(T ) following the process defined in 3.8. Let ρk

0 denote this
set of points and J0

ρk its vanishing ideal. From the definition of a|n(T ) it is
clear that two tableaux give the same point if and only if they have the same
entries on each line. It is therefore equivalent to associate a point a|n(T ) to each

tableau T in T k
i,j . In this case the correspondance is one-to-one and the number

of points in ρk
0 is precisely #T k

i,j , which is also the dimension of gr(J0
ρk )⊥ (this

is the analogue of 3.10).
It remains to prove the following inclusion to justify Proposition 4.5:

gr(J0
ρk) ⊆ Ik

i,j(X). (4.5)

Let P be a polynomial in J0
ρk . Since P ∈ Q[Xn] ⊂ Q[Xn, Yn], P is also in the

vanishing ideal of ρk, thus gr(P ) ∈ Ik
i,j and next gr(P ) ∈ Ik

i,j ∩Q[Xn] = Ik
i,j(X).

Hence we have gr(J0
ρk ) ⊆ Ik

i,j(X) and the equation 4.4 is now a consequence of
Proposition 3.2.
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4.3 Cardinality

We claim that:

Proposition 4.6 We have the following equality

#Bk
i,j(X) = #T k

i,j . (4.6)

Proof. Let h be the height of the partition µ. For a fixed Right diagram F in
Fk

µ , the number of associated elements in Bk
i,j(X) is equal to n!

r1!···rh! where the
rt’s are the lengths of the rows of µF because of 4.1 and 4.2. By Definition 4.3
the number of elements in T k

i,j associated to F is n!
s1!···sh! where the st’s are the

lengths of the rows of F .
It is therefore sufficient to observe that we do not change the cardinality by

pushing up the circled cells. We look at the example of the lines 9, 10 and 11
of the previous example.

We observe that the lengths of the lines before the transformation are 5, 7,
6 and after the transformation 7, 6, 5. Thus the set of the lengths is unchanged.
It is easy to see that it is always the case: the operation that pushes the holes
up only permutes the lengths of the rows.

4.4 Independence

We want here to conclude the proof of the Theorem 4.2 by proving the inde-
pendence of the set Bk

i,j(X).

Proposition 4.7 The set of polynomials Bk
i,j(X) defined in Theorem 4.2 is

linearly independent. Thus in particular equality holds in Proposition 4.5.

Proof. Assume that we have a non-trivial dependence relation.
We define the depth of a hole to be the number of cells (different from holes)

that are above this hole. We look at the k-tuples of the depths of the k holes of
µk

F : (d1 ≤ d2 ≤ · · · ≤ dk). The crux of the proof is the following result:

Lemma 4.8 The k-tuples (d1, d2, . . . , dk) are all distinct.

Proof. We want to prove that the depth of the holes increases from the right to
the left and from top to bottom, and that two different Right diagrams F and
F ′ of Fk

µ give two different k-tuples of depths. We look at the circled cells with
respect to this order. We refer to the next figure and look at the columns from
the right to the left. In this figure, c denotes the number of circled cells in the
column that we consider, m the number of positions below the lowest circled
cell where we could put a circle (these cells appear with a square), l the height
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of this column (we look only at the cells above the i-th row) and l + h is the
height of the “next” column (i.e. the first on the left). We want to prove that
if we put a circled cell either in this column or in the next one, its depth will be
greater or equal to the preceeding ones, and that its position is unambiguous if
its depth is given.

 h

l

m

c

The depth of the lowest circled cell is p = l− c−m. The highest depth that
could be obtained in this column is l − c if m = 0 and l − c − 1 if m > 0. In
the next column the lowest depth is (it corresponds to put a circle at the top of
the column): l + h − 1 − c − h + 1 = l − c. Thus there is no ambiguity for the
position of the next circle if its depth is given, which proves the lemma.

Now let us complete the proof of Proposition 4.7. If we have a non-trivial
dependence relation between the elements of Bk

i,j(X), we consider the great-
est k-tuple of depths with respect to the lexicographic order which appears in
this relation: (d0

1, d
0
2, . . . , d

0
k). This k-tuple is relative to a Right diagram F 0.

We then apply the differential operator hk(∂)d0
1 .hk−1(∂)d0

2−d0
1 . . . h1(∂)d0

k−d0
k−1

to the dependence relation. It kills all the terms but those which come from
the single Right diagram F 0. These terms give polynomials which are in
B = {M(∂).∆µ

F0 : M ∈ M(µF 0)}. They are independent since B is a basis of
Mµ

F0 (X).
The proof of Proposition 4.7 and as a consequence of Theorem 4.2 are now

complete.
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