
HAL Id: hal-00185518
https://hal.science/hal-00185518v1

Preprint submitted on 6 Nov 2007 (v1), last revised 14 Jun 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weighted power variations of iterated Brownian motion
Ivan Nourdin, Giovanni Peccati

To cite this version:
Ivan Nourdin, Giovanni Peccati. Weighted power variations of iterated Brownian motion. 2007.
�hal-00185518v1�

https://hal.science/hal-00185518v1
https://hal.archives-ouvertes.fr


ha
l-

00
18

55
18

, v
er

si
on

 1
 -

 6
 N

ov
 2

00
7

Weighted power variations of iterated Brownian motion

by Ivan Nourdin∗ and Giovanni Peccati†

University of Paris VI

Abstract: We characterize the asymptotic behaviour of the weighted power variation processes
associated with iterated Brownian motion. We prove weak convergence results in the sense of
finite dimensional distributions, and show that the laws of the limiting objects can always be
expressed in terms of three independent Brownian motions X, Y and B, as well as of the local
times of Y . In particular, our results involve “weighted” versions of Kesten and Spitzer’s Brow-

nian motion in random scenery. Our findings extend the theory initiated by Khoshnevisan and
Lewis (1999), and should be compared with the recent results by Nourdin, Nualart and Tudor
(2007) and Swanson (2007), concerning the weighted power variations of self-similar Gaussian
processes.

Key words: Brownian motion; Brownian motion in random scenery; Iterated Brownian motion;
Limit theorems; Weighted power variations.
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1 Introduction and main results

The characterization of the single-path behaviour of a given stochastic process is often based
on the study of its power variations. A quite extensive literature has been developed on the
subject, see e.g. [4, 15] (as well as the forthcoming discussion) for references concerning the power
variations of Gaussian and Gaussian-related processes, and [1] (and the references therein) for
applications of power variation techniques to the continuous-time modeling of financial markets.
Recall that, for a given real κ > 1 and a given real-valued stochastic process Z, the κ-power
variation of Z, with respect to a partition π = {0 = t0 < t1 < . . . < tN = 1} of [0, 1] (N > 2 is
some integer), is defined to be the sum

N∑

k=1

|Ztk − Ztk−1
|κ. (1.1)

For the sake of simplicity, from now on we shall only consider the case where π is a dyadic
partition, that is, N = 2−n and tk = k2−n, for some integer n > 2 and for k ∈ {0, . . . , 2n}.

The aim of this paper is to study the asymptotic behaviour, for every integer κ > 2 and for
n → ∞, of the (dyadic) κ-power variations associated with a remarkable non-Gaussian and self-
similar process with stationary increments, known as iterated Brownian motion (in the sequel,
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I.B.M.). Formal definitions are given below: here, we shall only observe that I.B.M. is a self-
similar process of order 1

4 , realized as the composition of two independent Brownian motions.
As such, I.B.M. can be seen as a non-Gaussian counterpart to Gaussian processes with the same
order of self-similarity, whose power variations (and related functionals) have been recently the
object of an intense study. In this respect, the study of the single-path behaviour of I.B.M. is
specifically relevant, when one considers functionals that are obtained from (1.1) by dropping the
absolute value (when κ is odd), and by introducing some weights. More precisely, in what follows
we shall focus on the asymptotic behaviour of weighted variations of the type

2n∑

k=1

f(Z(k−1)2−n)
(
Zk2−n − Z(k−1)2−n

)κ
, κ = 2, 3, 4, . . . , (1.2)

or

2n∑

k=1

1

2
[f(Z(k−1)2−n) + f(Zk2−n)]

(
Zk2−n − Z(k−1)2−n

)κ
, κ = 2, 3, 4, . . . , (1.3)

for a real function f : R → R satisfying some suitable regularity conditions.
Before dwelling on I.B.M., let us recall some recent results concerning (1.2), when Z = B is

a fractional Brownian motion (fBm) of Hurst index H ∈ (0, 1) (see [16] for definitions) and, for
instance, κ > 2 is an even integer. Recall that, in particular, B is a continuous Gaussian process,
with an order of self-similarity equal to H. In what follows, f denotes a smooth enough function
such that f and its derivatives have subexponential growth. Also, here and for the rest of the
paper, µq, q > 1, stands for the qth moment of a standard Gaussian random variable, that is,
µq = 0 if q is odd, and

µq =
q!

2q/2(q/2)!
, if q is even. (1.4)

We have (see [14, 15]) as n→ ∞:

1. When H > 3
4 ,

2n−2Hn
2n∑

k=1

f(B(k−1)2−n)
[(

2nH(Bk2−n−B(k−1)2−n)
)κ−µκ

] L2

−→µκ−2

(
κ

2

)∫ 1

0
f(Bs)dZ

(2)
s ,

(1.5)

where Z(2) is the Rosenblatt process (see [15] for more details).

2. When H = 3
4 ,

2−
n
2

√
n

2n∑

k=1

f(B(k−1)2−n)
[(

2
3n
4 (Bk2−n−B(k−1)2−n)

)κ−µκ

]
Law−→σκ

∫ 1

0
f(Bs)dWs, (1.6)

where σκ is an explicit constant depending only on κ, and W is a standard Brownian motion
independent of B.
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3. When 1
4 < H < 3

4 ,

2−
n
2

2n∑

k=1

f(B(k−1)2−n)
[(

2nH(Bk2−n−B(k−1)2−n)
)κ−µκ

] Law−→σH,κ

∫ 1

0
f(Bs)dWs, (1.7)

for an explicit constant σH,κ depending only on H and κ, and where W denotes a standard
Brownian motion independent of B.

4. When H < 1
4 ,

22Hn−n
2n∑

k=1

f(B(k−1)2−n)
[(

2nH(Bk2−n−B(k−1)2−n)
)κ−µκ

] L2

−→ 1

4
µκ−2

(
κ

2

)∫ 1

0
f ′′(Bs)ds.

(1.8)

Note, however, that the relations (1.5)-(1.8) do not cover the critical case H = 1
4 . This is an

unfortunate gap, at least from two points of view. Indeed, on the one hand (as explained e.g. by
Swanson in [19]) the characterization of the asymptotic behavior of (1.2)-(1.3), when Z is a fBm
of index H = 1

4 and κ = 2, would represent a fundamental step towards the construction of a
stochastic calculus for the fBm with Hurst index H = 1

4 . On the other hand, a full understanding
of the single-path behaviour of the fBm of index H = 1

4 would bear a remarkable physical
interpretation in terms of particle systems. This striking fact has been first pointed out by Harris
in [6], where the author considered an infinite number of particles, initially placed on the real line
according to a Poisson distribution, performing independent Brownian motions and undergoing
“elastic” collisions, and showed that the trajectory of a fixed particle (after rescaling) converges
to a fBm with index H = 1

4 .
Now observe that, by using Taylor’s type formulae, in the case H = 1

4 one can deduce an
explicit relation between objects of the type (1.2) and the weighted variations obtained by using
‘symmetric weights’, as in (1.3). Indeed, one has that

2−
n
2 × 1

2

2n∑

k=1

[
f(B(k−1)2−n) + f(Bk2−n)

] [(
2nH(Bk2−n−B(k−1)2−n)

)κ−µκ

]
(1.9)

converges (stably) towards some random variable I◦(f) if, and only if,

2−
n
2

2n∑

k=1

f(B(k−1)2−n)
[(

2nH(Bk2−n−B(k−1)2−n)
)κ−µκ

]

converges (stably) towards some variable I−(f); in this case, one has moreover the relation

I−(f) = I◦(f) +
3

2

∫ 1

0
f ′(Bs)ds −

∫ 1

0
f ′′(Bs)ds.

Note that the asymptotic characterization of an object such as (1.9) (for B a fBm of index H = 1
4 )

is still an unsolved problem.
Another Gaussian process with a self-similarity index of order 1

4 has been introduced by
Swanson in [19], in terms of the solution of a stochastic heat equation. This solution is a random
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function of time and space: for a fixed point in space, the resulting random function of time
has the same local behaviour as a fractional Brownian motion with Hurst parameter H = 1

4 .
In particular, Swanson was interested in the proof of a ‘change of variable formula’ for such a
process, a program that (for the moment) has been performed only in very particular cases.

In the current paper, we focus on iterated Brownian motions, that is, on continuous non-
Gaussian self-similar processes of order 1

4 . Unlike fBm of index 1
4 and Swanson’s stochastic heat

solution, we will be able to provide a complete characterization of the asymptotic behaviour of
its symmetric weighted variations. We shall now present a detailed outline of our framework and
our main results.

Let X be a two-sided Brownian motion, and let Y be a standard (one-sided) Brownian motion
independent of X. In what follows, we shall denote by Z the iterated Brownian motion (I.B.M.)
associated with X and Y , that is,

Z(t) = X
(
Y (t)

)
, t > 0. (1.10)

The process Z appearing in (1.10) has been first introduced in [2], and then further studied in a
number of papers – see for instance [11] for a comprehensive account up to 1999, and [5, 12, 13, 17]
for more recent references on the subject. Such a process can be regarded as the realization of
a Brownian motion on a random fractal (represented by the path of the underlying motion Y ).
Note that Z is self-similar of order 1

4 , Z has stationary increments, and Z is neither a Dirichlet
process nor a semimartingale or a Markov process in its own filtration. A crucial question is
therefore how one can define a stochastic calculus with respect to Z. This issue has been tackled
by Khoshnevisan and Lewis in the ground-breaking paper [10] (see also [11]), where the authors
develop a Stratonovich-type stochastic calculus with respect Z, by extensively using techniques
based on the properties of some special arrays of Brownian stopping times, as well as on excursion-
theoretic arguments. Khoshnevisan and Lewis’ approach can be roughly summarized as follows.
Since the paths of Z are too irregular, one cannot hope to effectively define stochastic integrals
as limits of Riemann sums with respect to a deterministic partition of the time axis. However,
a winning idea is to approach deterministic partitions by means of random partitions defined in
terms of hitting times of the underlying Brownian motion Y . In this way, one can bypass the
random “time-deformation” forced by (1.10), and perform asymptotic procedures by separating
the roles of X and Y in the overall definition of Z. Later in this section, by adopting the same
terminology introduced in [11], we will show that the role of Y is specifically encoded by the
so-called “intrinsic skeletal structure” of Z.

By inspection of the techniques developed in [10], one sees that a central role in the definition of
a stochastic calculus with respect to Z is played by the asymptotic behavior of the quadratic, cubic
and quartic variations associated with Z. Our aim in this paper is to complete the results of [11],
by proving asymptotic results involving weighted power variations of Z of arbitrary order, where
the weighting is realized by means of a well-chosen real-valued function of Z. Our techniques
involve some new results concerning the weak convergence of non-linear functionals of Gaussian
processes, recently proved in [18]. As explained above, our results should be compared with
the recent findings, concerning power variations of Gaussian processes, contained in [14, 15, 19].
Observe, in particular, that the order of self-similarity of Z (that is, 1

4) corresponds to the only
case which is not covered by formulae (1.5)-(1.8) above.

Following Khoshnevisan and Lewis [10, 11], we start by introducing the so-called intrinsic
skeletal structure of the I.B.M. Z appearing in (1.10). This structure is defined through a sequence
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of collections of stopping times (with respect to the natural filtration of Y ), noted

Tn = {Tk,n : k > 0}, n > 1, (1.11)

which are in turn expressed in terms of the subsequent hitting times of a dyadic grid cast on
the real axis. More precisely, let Dn = {j2−n/2 : j ∈ Z}, n > 1, be the dyadic partition (of R)
of order n/2. For every n > 1, the stopping times Tk,n, appearing in (1.11), are given by the
following recursive definition: T0,n = 0, and

Tk,n = inf
{
s > Tk−1,n : Y (s) ∈ Dn \ {Y (Tk−1,n)}

}
, k > 1,

where, as usual, A \ B = A ∩ Bc (Bc is the complement of B). Note that the definition of Tk,n,
and therefore of Tn, only involves the one-sided Brownian motion Y , and that, for every n > 1,
the discrete stochastic process

Yn = {Y (Tk,n) : k > 0}
defines a simple random walk over Dn. The intrinsic skeletal structure of Z is then defined to be
the sequence

I.S.S. = {Dn,Tn,Yn : n > 1},
describing the random scattering of the paths of Y about the points of the partitions {Dn}. As
shown in [10], the I.S.S. of Z provides an appropriate sequence of (random) partitions upon which
one can build a stochastic calculus with respect to Z. It can be shown that, as n tends to infinity,
the collection {Tk,n : k > 0} approximates the common dyadic partition {k2−n : k > 0} of order
n (see [10, Lemma 2.2] for a precise statement). Inspired again by [10], we shall use the I.S.S.
of Z in order to define and study weighted power variations, which are the main object of this
paper. To this end, recall that µκ is defined, via (1.4), as the κth moment of a centered standard
Gaussian random variable. Then, the weighted power variation of the I.B.M. Z, associated with
a real-valued function f , with an instant t ∈ [0, 1], and with integers n > 1 and κ > 2, is defined
as follows:

V (κ)
n (f, t) =

1

2

⌊2nt⌋∑

k=1

(
f
(
Z(Tk,n)

)
+ f

(
Z(Tk−1,n)

)) ((
Z(Tk,n) − Z(Tk−1,n)

)κ − µκ 2−κ n
4

)
. (1.12)

Note that, due to self-similarity and independence,

µκ 2−κ n
4 = E

[(
Z(Tk,n) − Z(Tk−1,n)

)κ]
= E

[(
Z(Tk,n) − Z(Tk−1,n)

)κ | Y
]
.

For each integer n > 1, k ∈ Z and t > 0, let Uj,n(t) (resp. Dj,n(t)) denote the number of
upcrossings (resp. downcrossings) of the interval [j2−n/2, (j+1)2−n/2] within the first ⌊2nt⌋ steps
of the random walk {Y (Tk,n)}k>1 (see formulae (3.30) and (3.31) below for precise definitions).

The following lemma plays a crucial role in the study of the asymptotic behavior of V
(κ)
n (f, ·):

Lemma 1.1 (See [10, Lemma 2.4]) Fix t ∈ [0, 1], κ > 2 and let f : R → R be any real function.
Then

V (κ)
n (f, t) =

1

2

∑

j∈Z

(
f(X

(j−1)2−
n
2
) + f(X

j 2−
n
2
)
)
× (1.13)

[(
X

j2−
n
2
−X

(j−1)2−
n
2

)κ
− µκ 2−κ n

4

] (
Uj,n(t) + (−1)κ Dj,n(t)

)
.
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The main feature of the decomposition (1.13) is that it separates X from Y , providing a rep-

resentation of V
(κ)
n (f, t) which is amenable to analysis. Using Lemma 1.1 as a key ingredient,

Khoshnevisan and Lewis [10] proved the following results, corresponding to the case where f is
identically one in (1.12): as n→ ∞,

2−n/4

√
2

V (2)
n (1, ·) D[0,1]

=⇒ B.M.R.S. and
2n/4

√
96

V (4)
n (1, ·) D[0,1]

=⇒ B.M.R.S.

Here, and for the rest of the paper,
D[0,1]
=⇒ stands for the convergence in distribution in the Skoro-

hod space D[0, 1], while ‘B.M.R.S.’ indicates Kesten and Spitzer’s Brownian Motion in Random
Scenery (see [9]). This object is defined as:

B.M.R.S. =

{∫

R

Lx
t (Y )dBx

}

t∈[0,1]

, (1.14)

where B is a two-sided Brownian motion independent of X and Y , and {Lx
t (Y )}x∈R, t∈[0,1] is

a jointly continuous version of the local time process of Y (the independence of X and B is
immaterial here, and will be used in the subsequent discussion). In [10] it is also proved that the
asymptotic behavior of the cubic variation of Z is very different, and that in this case the limit
is I.B.M. itself, namely:

2n/2

√
15

V (3)
n (1, ·) D[0,1]

=⇒ I.B.M.

As anticipated, our aim in the present paper is to characterize the asymptotic behavior of

V
(κ)
n (f, t) in (1.12), n → ∞, in the case of a general function f and of a general integer κ > 2.

Our main result is the following:

Theorem 1.2 Let f : R → R belong to C1 with f ′ bounded, and κ > 2 be an integer. Then, as
n→ ∞,

1. if κ is even,
{
Xx, 2

(κ−3)n
4 V

(κ)
n (f, t)

}
x∈R, t∈[0,1]

converges in the sense of finite dimensional

distributions (f.d.d.) to

{
Xx,

√
µ2κ − µ2

κ

∫

R

f(Xz)L
z
t (Y )dBz

}

x∈R, t∈[0,1]

; (1.15)

2. if κ is odd,
{
Xx, 2

(κ−1)n
4 V

(κ)
n (f, t)

}

x∈R, t∈[0,1]
converges in the sense of f.d.d. to

{
Xx,

∫ Yt

0
f(Xz)

(
µκ+1 dXz +

√
µ2κ − µ2

κ+1 dBz

)}

x∈R, t∈[0,1]

. (1.16)

Remark 1.3 1. We call the process

t 7→
∫

R

f(Xz)L
z
t (Y )dBz (1.17)
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appearing in (1.15) a Weighted Browian Motion in Random Scenery (W.B.M.R.S. – com-
pare with (1.14)), the weighting being randomly determined by f and by the indepen-
dent Brownian motion X. Note that, for f as in Theorem 1.2, the W.B.M.R.S. in (1.17)
is well-defined (for each t) as the Wiener-Itô stochastic integral of the random mapping
z 7→ f(Xz)L

z
t (Y ), with respect to the independent Brownian motion Bz. In particular, one

uses the fact that the mapping z 7→ Lz
t (Y ) has a.s. compact support.

2. The relations (1.15)-(1.16) can be reformulated in the sense of “stable convergence”. For
instance, (1.15) can be rephrased by saying that the finite dimensional distributions of

2(κ−3)n
4 V (κ)

n (f, ·)

converge σ(X)-stably to those of

√
µ2κ − µ2

κ

∫

R

f(Xx)Lx
· (Y )dBx

(see e.g. Jacod and Shiryayev [8] for an exhaustive discussion of stable convergence).

3. Of course, one recovers finite dimensional versions of the results by Khoshnevisan and Lewis
by choosing f to be identically to one in (1.15)-(1.16).

4. To keep the length of this paper within bounds, we defer to a separate work the rather

technical investigation of the tightness of the processes 2(κ−3)n
4 V

(κ)
n (f, t) (κ even) and

2(κ−1)n
4 V

(κ)
n (f, t) (κ odd).

Another type of weighted power variations is given by the following definition: for t ∈ [0, 1],
f : R → R and κ > 2, let

S(κ)
n (f, t) =

⌊
1

2

(
2

n
2 t−1

)⌋

∑

k=0

f
(
Z(T2k+1,n)

) [(
Z(T2k+2,n) − Z(T2k+1,n)

)κ

+(−1)κ+1
(
Z(T2k+1,n) − Z(T2k,n)

)κ]
.

This type of variations have been introduced very recently by Swanson [19] (see, more precisely,
relations (1.6) and (1.7) in [19]), and used in order to obtain a change of variables formula (in
law) for the solution of the stochastic heat equation. Since our approach allows us to treat this
type of signed weighted power variations, we will also prove the following result:

Theorem 1.4 Let f : R → R belong to C2 with f ′ and f ′′ bounded, and κ > 2 be an integer.
Then, as n→ ∞,

1. if κ is even,
{
Xx, 2

(κ−1)n
4 S

(κ)
n (f, t)

}
x∈R, t∈[0,1]

converges in the sense of f.d.d. to

{
Xx,

√
µ2κ − µ2

κ

∫ Yt

0
f(Xz)dBz

}

x∈R, t∈[0,1]

; (1.18)
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2. if κ is odd,
{
Xx, 2

(κ−1)n
4 S

(κ)
n (f, t)

}
x∈R, t∈[0,1]

converges in the sense of f.d.d. to

{
Xx,

∫ Yt

0
f(Xz)

(
µκ+1 dXz +

√
µ2κ − µ2

κ+1 dBz

)}

x∈R, t∈[0,1]

. (1.19)

Observe that the limits and the rates of convergence in (1.16) and (1.19) are the same, while the
limits and the rates of convergences in (1.15) and (1.18) are different.

The rest of the paper is organized as follows. In Section 2, we state and prove some ancillary
results involving weighted sums of polynomial transformations of Brownian increments. Section
3 is devoted to the proof of Theorem 1.2, while in Section 4 we deal with Theorem 1.4.

2 Preliminaries

In order to prove Theorem 1.2 and Theorem 1.4, we shall need several asymptotic results, involving
quantities that are solely related to the Brownian motion X. The aim of this section is to state
and prove these results, that are of clear independent interest.

We let the notation of the Introduction prevail: in particular, X and B are two independent
two-sided Brownian motions, and Y is a one-sided Brownian motion independent of X and B.

For every n > 1, we also define the process X(n) = {X(n)
t }t>0 as

X
(n)
t = 2n/4Xt2−n/2 . (2.20)

Remark 2.1 In what follows, we will work with the dyadic partition of order n/2, instead of that
of order n, since the former emerges very naturally in the proofs of Theorem 1.2 and Theorem
1.4, as given, respectively, in Section 3 and Section 4 below. Plainly, the results stated and proved
in this section can be easily reformulated in terms of any sequence of partitions with equidistant
points and with meshes converging to zero.

The following result plays an important role in this section. In the next statement, and for
the rest of the paper, we will freely use the language of Wiener chaos and Hermite polynomials.
The reader is referred e.g. to Chapter 1 in [16] for any unexplained definition or result.

Theorem 2.2 (Peccati and Tudor [18]). Fix d > 2, fix d natural numbers 1 6 n1 6 . . . 6 nd

and, for every k > 1, let Fk = (F k
1 , . . . , F

k
d ) be a vector of d random variables such that, for

every j = 1, . . . , d, the sequence of F k
j , k > 1, belongs to the njth Wiener chaos associated with

X. Suppose that, for every 1 6 i, j 6 d, limk→∞E(F k
i F

k
j ) = δij , where δij is Kronecker symbol.

Then, the following two conditions are equivalent:

(i) The sequence Fk, k > 1, converges in distribution to a standard centered Gaussian vector
N (0, Id) (Id is the d× d identity matrix),

(ii) For every j = 1, . . . , d, the sequence F k
j , k > 1, converges in distribution to a standard

Gaussian random variable N (0, 1).
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The forthcoming proposition is the key to the main results of this section.

Given a polynomial P : R → R, we say that P has centered Hermite rank > 2 whenever

∫

R

P (x) x exp

(
−x

2

2

)
dx = 0. (2.21)

Note that P has centered Hermite rank > 2 if, and only if, P (x) − E [P (G)] (where G is a
standard Gaussian random variable) has Hermite rank > 2, in the sense of Taqqu [20].

Proposition 2.3 Let P : R → R be a polynomial with centered Hermite rank > 2. Let α, β ∈ R

and denote by φ : N → R the function defined by the relation: φ(i) equals α or β, according as i
is even or odd. Fix an integer N > 1 and, for every j = 1, ..., N , set

M
(n)
j = 2−n/4

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1

φ (i)
{

P

(
X

(n)
i −X

(n)
i−1

)
− E[P(G)]

}
,

M
(n)
j+N = 2−n/4

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1

(−1)i
(
X

(n)
i −X

(n)
i−1

)
,

where G ∼ N (0, 1) is a standard Gaussian random variable. Then, as n → ∞, the random
vector

{
M

(n)
1 , ...,M

(n)
2N ; {Xt}t>0

}
(2.22)

converges weakly in the space R
2N × C0(R+) to

{√
α2 + β2

2
Var

(
P(G)

)(
∆B (1) , ...,∆B (N)

)
;∆B (N + 1) , ...,∆B (2N) ; {Xt}t>0

}
(2.23)

where ∆B (i) = B (i) −B (i− 1), i = 1, ..., N .

Proof. For the sake of notational simplicity, we provide the proof only in the case where α =√
2 and β = 0, the extension to the general case being a straightfroward consequence of the

independence of the Brownian increments. For every h ∈ L2 (R+), we writeX (h) =
∫ ∞
0 h (s) dXs.

To prove the result it is sufficient to show that, for every λ = (λ1, ..., λ2N+1) ∈ R
2N+1 and every

h ∈ L2 (R+), the sequence of random variables

Fn =
2N∑

j=1

λjM
(n)
j + λ2N+1X (h)

converges in law to

√
Var

(
P(G)

) N∑

j=1

λj∆B (j) +
2N∑

j=N+1

λj∆B (j) + λ2N+1X (h) .

9



We start by observing that the fact that P has centered Hermite rank > 2 implies that P is such
that

P

(
X

(n)
i −X

(n)
i−1

)
− E [P (G)] =

κ∑

m=2

bmHm

(
X

(n)
i −X

(n)
i−1

)
, for some κ > 2, (2.24)

where Hm denotes the mth Hermite polynomial, and the coefficients bm are real-valued and
uniquely determined by (2.24). Moreover, one has that

Var
(
P(G)

)
=

κ∑

m=2

b2m E

[
Hm (G)2

]
=

κ∑

m=2

b2mm!. (2.25)

We can now write

Fn = λ2N+1X (h) +
√

2 2−
n
4

N∑

j=1

λj

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1
i even

κ∑

m=2

bmHm

(
X

(n)
i −X

(n)
i−1

)

+2−
n
4

N∑

j=1

λN+j

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1

(−1)i
(
X

(n)
i −X

(n)
i−1

)

= λ2N+1X (h) +

κ∑

m=2

bm

N∑

j=1

λj

√
2 2−

n
4

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1
i even

Hm

(
X

(n)
i −X

(n)
i−1

)

+2−
n
4

N∑

j=1

λN+j

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1

(−1)i
(
X

(n)
i −X

(n)
i−1

)
.

By using the independence of the Brownian increments, the Central Limit Theorem and Theorem
2.2, we deduce that the κ+ 1 dimensional vector



X (h) ; 2−

n
4

N∑

j=1

λN+j

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1

(−1)i
(
X

(n)
i −X

(n)
i−1

)
;

N∑

j=1

λj

√
2 2−

n
4

⌊j2n/2⌋∑

i=⌊(j−1)2n/2⌋+1
i even

Hm

(
X

(n)
i −X

(n)
i−1

)
: m = 2, ..., κ





converges in law to



‖h‖2 ×G0;

N∑

j=1

λN+j Gj,1;

N∑

j=1

λj

√
m!Gj,m : m = 2, ..., κ



 ,

10



where {G0;Gj,m : j = 1, ..., N , m = 1, ..., κ} is a collection of i.i.d. standard Gaussian random
variables N (0, 1). This implies that Fn converges in law, as n→ ∞, to

λ2N+1 ‖h‖2G0 +

N∑

j=1

λN+jGj,1 +

N∑

j=1

λj

κ∑

m=2

bm
√
m!Gj,m

Law
= λ2N+1X (h) +

2N∑

j=N+1

λj∆B (j) +
N∑

j=1

λj

√
Var

(
P(G)

)
∆B (j) ,

where we have used (2.25). This proves our claim.

Remark 2.4 It is immediately verified that the sequence of Brownian motions appearing in
(2.20) is asymptotically independent ofX (just compute the covariance function of the 2-dimensional
Gaussian process (X,X(n))). However, by inspection of the proof of Proposition 2.3, one sees that
this fact is immaterial in the proof of the asymptotic independence of the vector (Mn

1 , ...,M
n
2N )

and X. Indeed, such a result depends uniquely of the fact that the polynomial P−E(P(G)) has

an Hermite rank of order strictly greater than one. This is a consequence of Theorem 2.2. It
follows that the statement of Proposition 2.3 still holds when the sequence {X(n)} is replaced by
a sequence of Brownian motions {X(∗,n)} of the type

X(∗,n)(t) =

∫
ψn(t, z)dXz , t > 0, n > 1,

where, for each t, ψn is a square-integrable deterministic kernel.

Theorem 2.5 Let the notation and assumptions of Proposition 2.3 prevail (in particular, P has
centered Hermite rank > 2), and set

J
(n)
t (f) = 2−

n
4

1

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2) + f(Xj2−n/2)

)

×
[
φ (j)

{
P

(
X

(n)
j −X

(n)
j−1

)
− E [P (G)]

}
+ γ(−1)j

(
X

(n)
j −X

(n)
j−1

)]
, t > 0,

where γ ∈ R and the real-valued function f is supposed to be globally Lipschitz. Then, as n→ +∞,
the two-dimensional process

{
J

(n)
t (f) ,Xt

}
t>0

converges in the sense of f.d.d. to

{√
γ2 +

α2 + β2

2
Var

(
P(G)

) ∫ t

0
f (Xs) dBs,Xt

}

t>0

.
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Proof. Set σ :=
√

α2+β2

2 Var
(
P(G)

)
. For every m > n, one has that

J
(m)
t (f) = 2−

m
4

1

2

⌊2n/2t⌋∑

j=1

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

(
f(X(i−1)2−m/2) + f(Xi2−m/2)

)

×
[
φ (i)

{
P

(
X

(m)
i −X

(m)
i−1

)
− E [P (G)]

}
+ γ(−1)i

(
X

(m)
i −X

(m)
i−1

)]

= A
(m,n)
t +B

(m,n)
t ,

where

A
(m,n)
t = 2−

m
4

1

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2) + f(Xj2−n/2)

)

×
⌊j2

m−n
2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

[
φ (i)

{
P

(
X

(m)
i −X

(m)
i−1

)
− E [P (G)]

}
+ γ(−1)i

(
X

(m)
i −X

(m)
i−1

)]

B
(m,n)
t = 2−

m
4

1

2

⌊2n/2t⌋∑

j=1

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1[
f(Xi2−m/2) − f(Xj2−n/2) + f(X(i−1)2−m/2) − f(X(j−1)2−n/2)

]

×
[
φ (i)

{
P

(
X

(m)
i −X

(m)
i−1

)
− E [P (G)]

}
+ γ(−1)i

(
X

(m)
i −X

(m)
i−1

)]
.

We shall study A(m,n) and B(m,n) separately. By Proposition 2.3, we know that, as m→ ∞, the
random element




X; 2−

m
4

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

φ (i)
{
P

(
X

(m)
i −X

(m)
i−1

)
− E [P (G)]

}
: j = 1, ..., 2n/2;

2−
m
4

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

(−1)i
(
X

(m)
i −X

(m)
i−1

)
: j = 1, ..., 2n/2





converges in law to
{
X; 2−

n
4 σ∆B (j) : j = 1, ..., 2n/2; 2−

n
4 ∆B

(
j + 2n/2

)
: j = 1, ..., 2n/2

}

Law
=

{
X;σ

(
B

(
j2−n/2

)
−B

(
(j − 1) 2−n/2

))
: j = 1, ..., 2n/2;

B2

(
j2−n/2

)
−B2

(
(j − 1) 2−n/2

)
: j = 1, ..., 2n/2

}
,

where B2 denotes a standard Brownian motion, independent of X and B. Hence, as m→ ∞,
{
X;A(m,n)

}
f.d.d.
=⇒

{
X;A(∞,n)

}

12



where

A
(∞,n)
t :=

σ

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2) + f(Xj2−n/2)

) [
B

(
j2−n/2

)
−B

(
(j − 1) 2−n/2

)]

+
γ

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2) + f(Xj2−n/2)

) [
B2

(
j2−n/2

)
−B2

(
(j − 1) 2−n/2

)]
.

By letting n → ∞, and by using the independence of X,B and B2, one obtains that A(∞,n)

converges uniformly on compacts in probability (u.c.p.) towards

A
(∞,∞)
t ,

∫ t

0
f (Xs)

(
σ dB(s) + γ dB2(s)

)
.

This proves that, by letting m and then n go to infinity
{
X;A(m,n)

}
converges in the sense of

f.d.d. to {
X;A(∞,∞)

}
Law
=

{
X;

√
σ2 + γ2

∫ ·

0
f (Xs) dB(s)

}
.

To conclude the proof of the Theorem we shall show that, by letting m and then n go to

infinity, B
(m,n)
t converges to zero in L2, for any fixed t > 0. To see this, write K = max(|α|, |β|)

and observe that, for every t > 0, the independence of the Brownian increments and the Lipschitz
property of f (Lf is the Lipschitz constant) yield the chain of inequalities:

E

[∣∣∣B(m,n)
t

∣∣∣
2
]

= 2−m/2

⌊2n/2t⌋∑

j=1

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

E

{∣∣∣f(X(i−1)2−m/2) − f(X(j−1)2−n/2) + f(Xi2−m/2) − f(Xj2−n/2)
∣∣∣
2
}

×E
{∣∣∣φ (i)

{
P

(
X

(m)
i −X

(m)
i−1

)
− E [P (G)]

}
+ γ(−1)i

(
X

(m)
i −X

(m)
i−1

)∣∣∣
2
}

6 2L2
f

(
K2Var

(
P(G)

)
+ γ2

)
2−m/2

⌊2n/2t⌋∑

j=1

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

[
(i− 1) 2−

m
2 −(j − 1) 2−

n
2

]

6 2L2
f

(
K2Var

(
P(G)

)
+ γ2

)
2−

m+n
2

⌊2n/2t⌋∑

j=1

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

1

6 2L2
f t

(
K2Var

(
P(G)

)
+ γ2

)
2−n/2.

This shows that

lim sup
m→∞

E

[∣∣∣B(m,n)
t

∣∣∣
2
]

6 cst. 2−n/2,

and the desired conclusion is obtained by letting n→ ∞.
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We now state several consequences of Theorem 2.5. The first one (see also Jacod [7]) is
obtained by setting α = β = 1 (that is, φ is identically one), γ = 0 and by recalling that, for an
even integer κ > 2, the polynomial P (x) = xκ − µκ has centered Hermite rank > 2.

Corollary 2.6 Let f : R → R be globally Lipschitz, and fix an even integer κ > 2. For t > 0, we
set:

J
(n)
t (f) = 2−

n
4

1

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2)+f(Xj2−n/2)

) {
2κ n

4

(
Xj2−n/2 −X(j−1)2−n/2

)κ
− µκ

}
.

(2.26)

Then, as n→ +∞,
{
J

(n)
t (f) ,Xt

}
t>0

converges in the sense of f.d.d. to

{√
µ2κ − µ2

κ

∫ t

0
f (Xs) dBs,Xt

}

t>0

.

The next result derives from Theorem 2.5 in the case α = 1, β = −1 and γ = 0.

Corollary 2.7 Let f : R → R be globally Lipschitz, κ > 2 be an even integer, and set, for t > 0:

J
(n)
t (f) = 2(κ−1)n

4
1

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2)+f(Xj2−n/2)

)
(−1)j

(
Xj2−n/2 −X(j−1)2−n/2

)κ
. (2.27)

Then, as n→ +∞, the process
{
J

(n)
t (f) ,Xt

}
t>0

converges in the sense of f.d.d. to

{√
µ2κ − µ2

κ

∫ t

0
f (Xs) dBs,Xt

}

t>0

. (2.28)

Proof. It is not difficult to see that the convergence result in the statement is equivalent to the

convergence of the pair
{
Z

(n)
t (f) ,Xt

}

t>0
to the object in (2.28), where

Z
(n)
t (f) = 2−

n
4

1

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2)+f(Xj2−n/2)

)
(−1)j

{
2κ n

4

(
Xj2−n/2 −X(j−1)2−n/2

)κ
− µκ

}
,

so that the conclusion is a direct consequence of Theorem 2.5. Indeed, we have

2−
n
4

1

2

⌊2n/2t⌋∑

j=1

(−1)j
(
f(X(j−1)2−n/2) + f(Xj2−n/2)

)
= 2−

n
4

1

2

(
f(X2⌊2n/2t⌋2−n/2) − f(X0)

)

which tends to zero in L2, as n→ ∞.
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A slight modification of Corollary 2.7 yields:

Corollary 2.8 Let f : R → R belong to C2 with f ′ and f ′′ bounded, let κ > 2 be an even integer,
and set:

J̃
(n)
t (f) = 2(κ−1)n

4

⌊
1

2

(
2

n
2 t−1

)⌋

∑

j=1

f(X
(2j+1)2−

n
2
)
[(
X

(2j+2)2−
n
2
−X

(2j+1)2−
n
2

)κ

−
(
X

(2j+1)2−
n
2
−X

(2j)2−
n
2

)κ]
, t > 0.

Then, as n→ +∞, the process
{
J̃

(n)
t (f) ,Xt

}
t>0

converges in the sense of f.d.d. to (2.28).

Proof. By separating the sum according to the eveness of j, one can write

J̃
(n)
t (f) = J

(n)
t (f) − r

(n)
t (f) + s

(n)
t (f),

for J
(n)
t (f) defined by (2.27) and

r
(n)
t (f) =

2(κ−1)n
4

2

⌊ 1

2

(
2

n
2 t−1

)
⌋∑

j=1

(
f(X(2j+2)2−n/2) − f(X(2j+1)2−n/2)

)(
X(2j+2)2−n/2 −X(2j+1)2−n/2

)κ

s
(n)
t (f) =

2(κ−1)n
4

2

⌊ 1

2

(
2

n
2 t−1

)
⌋∑

j=1

(
f(X(2j)2−n/2) − f(X(2j+1)2−n/2)

)(
X(2j)2−n/2 −X(2j+1)2−n/2

)κ
.

We decompose

r
(n)
t (f) =

2(κ−1)n
4

2

⌊ 1

2

(
2

n
2 t−1

)
⌋∑

j=1

f ′(X(2j+1)2−n/2)
(
X(2j+2)2−n/2 −X(2j+1)2−n/2

)κ+1

+
2(κ−1)n

4

2

⌊ 1

2

(
2

n
2 t−1

)
⌋∑

j=1

f ′′(Xθj,n
)
(
X(2j+2)2−n/2 −X(2j+1)2−n/2

)κ+2
= r

(1,n)
t (f) + r

(2,n)
t (f),

for some θj,n between (2j+1)2−n/2 and (2j+2)2−n/2. By independence of increments and because
κ is even, we have

E
∣∣r(1,n)

t (f)
∣∣2 = 2−n 1

4

⌊ 1

2

(
2

n
2 t−1

)
⌋∑

j=1

E
∣∣f ′(X(2j+1)2−n/2)

∣∣2 = O(2−n/2).

For r
(2,n)
t (f), we have

E
∣∣r(1,n)

t (f)
∣∣ = O(2−n/4).

Similarly, we prove that E
∣∣s(1,n)

t (f)
∣∣ tends to zero as n → ∞, so that the conclusion is a direct

consequence of Corollary 2.7.
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The subsequent results focus on odd powers.

Corollary 2.9 Let f : R → R be globally Lipschitz, κ > 3 be an odd integer, and define J
(n)
t (f)

according to (2.26) (remark however that µκ = 0). Then, as n → +∞,
{
J

(n)
t (f) ,Xt

}
t>0

con-

verges in the sense of f.d.d. to

{∫ t

0
f (Xs)

(
µκ+1dX (s) +

√
µ2κ − µ2

κ+1dBs

)
,Xt

}

t>0

. (2.29)

Proof. One can write:

J
(n)
t (f) = 2−

n
4

1

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2) + f(Xj2−n/2)

)

×
{(
X

(n)
j −X

(n)
(j−1)

)κ
− µκ+1

(
X

(n)
j −X

(n)
(j−1)

)}

+
µκ+1

2

⌊2n/2t⌋∑

j=1

(
f(X(j−1)2−n/2) + f(Xj2−n/2)

) (
Xj2−n/2 −X(j−1)2−n/2

)

= D
(n)
t + E

(n)
t .

Since xκ − µκ+1x has centered Hermite rank > 2, one can deal with D
(n)
t directly via Theorem

2.5. The conclusion is obtained by observing that E
(n)
t converges u.c.p. to µκ+1

∫ t
0 f (Xs) dXs.

A slight modification of Corollary 2.9 yields:

Corollary 2.10 Let f : R → R belong to C2 with f ′ and f ′′ bounded, κ > 3 be an odd integer,
and set:

J̃
(n)
t (f) = 2(κ−1)n

4

⌊
1

2

(
2

n
2 t−1

)⌋

∑

j=1

f(X
(2j+1)2−

n
2
)
[(
X

(2j+2)2−
n
2
−X

(2j+1)2−
n
2

)κ

+
(
X

(2j+1)2−
n
2
−X

(2j)2−
n
2

)κ]
, t > 0.

Then, as n→ +∞, the process
{
J̃

(n)
t (f) ,Xt

}
t>0

converges in the sense f.d.d. to (2.29).

Proof. Follows the proof of Corollary 2.8.

The next result can be proved analogously.

16



Corollary 2.11 Let f : R → R be globally Lipschitz, κ > 3 be an odd integer, and define J
(n)
t (f)

according to (2.27). Then, as n → +∞, the process
{
J

(n)
t (f) ,Xt

}
t>0

converges in the sense of

f.d.d. to

{√
µ2κ

∫ t

0
f (Xs) dB(s),Xt

}

t>0

.

Proof. One can write

J
(n)
t (f) = 2−

n
4

⌊2n/2t⌋∑

j=1

f(X(j−1)2−n/2)(−1)j
{(
X

(n)
j −X

(n)
(j−1)

)κ
− µκ+1

(
X

(n)
j −X

(n)
(j−1)

)}

+µκ+12
−n

4

⌊2n/2t⌋∑

j=1

f(X(j−1)2−n/2)(−1)j
(
X

(n)
j −X

(n)
j−1

)
.

Since xκ − µκ+1x has centered Hermite rank > 2, Theorem 2.5 gives the desired conclusion.

3 Proof of Theorem 1.2

Fix t ∈ [0, 1], and let, for any n ∈ N and j ∈ Z,

Uj,n(t) = ♯
{
k = 0, . . . , ⌊2nt⌋ − 1 : (3.30)

Y (Tk,n) = j2−n/2 and Y (Tk+1,n) = (j + 1)2−n/2
}

Dj,n(t) = ♯
{
k = 0, . . . , ⌊2nt⌋ − 1 : (3.31)

Y (Tk,n) = (j + 1)2−n/2 and Y (Tk+1,n) = j2−n/2
}

denote the number of upcrossings and downcrossings of the interval [j2−n/2, (j + 1)2−n/2] within
the first ⌊2nt⌋ steps of the random walk {Y (Tk,n), k ∈ N}, respectively. Also, set

Lj,n(t) = 2−n/2
(
Uj,n(t) +Dj,n(t)

)
.

The following statement collects several useful estimates proved in [10].

Proposition 3.1 1. For every x ∈ R and t ∈ [0, 1], we have

E
[
|Lx

t (Y )|
]

6 2E
[
|L0

1(Y )|
]√

t exp
(
− x2

2t

)
.

2. For every fixed t ∈ [0, 1], we have
∑

j∈Z
E

[
|Lj,n(t)|2

]
= O(2n/2).

3. There exists a positive constant µ such that, for every a, b ∈ R with ab > 0 and t ∈ [0, 1],

E
[
|Lb

t(Y ) − La
t (Y )|2

]
6 µ |b− a|

√
t exp

(
−a

2

2t

)
.
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4. There exists a random variable K ∈ L8 such that, for every j ∈ Z, every n > 0 and every
t ∈ [0, 1], one has that

|Lj,n(t) − Lj2−n/2

t (Y )| 6 Kn2−n/4

√
Lj2−n/2

t (Y ).

Proof. The first point is proved in [10, Lemma 3.3]. The proof of the second point is obtained
by simply mimicking the arguments displayed in the proof of [10, Lemma 3.7]. The third point
corresponds to the content of [10, Lemma 3.4], while the fourth point is proved in [10, Lemma
3.6].

We will also need the following result:

Proposition 3.2 Fix some integers n,N > 1, and let κ be an even integer. Then, as m → ∞,
the random element




Xx, 2−

m
4

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

[(
X

(m)
i −X

(m)
i−1

)κ
− µκ

]
Li,m(t) : j = −N, . . . ,N





x∈R, t∈[0,1]

converges weakly in the sense of f.d.d. to
{
Xx,

√
µ2κ − µ2

κ

∫ j2−n/2

(j−1)2−n/2

Lx
t (Y )dBx : j = −N, . . . ,N

}

x∈R, t∈[0,1]

.

Proof. For every m > k > n, we can write

2−
m
4

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

[(
X

(m)
i −X

(m)
i−1

)κ
− µκ

]
Li,m(t) = A

(m,k)
j,n,t +B

(m,k)
j,n,t + C

(m,k)
j,n,t

with

A
(m,k)
j,n,t = 2−

m
4

⌊j2
k−n

2 ⌋∑

i=⌊(j−1)2
k−n

2 ⌋+1

Li2−k/2

t (Y )

⌊i2
m−k+n

2 ⌋∑

ℓ=⌊(i−1)2
m−k+n

2 ⌋+1

[(
X

(m)
ℓ −X

(m)
ℓ−1

)κ
− µκ

]

B
(m,k)
j,n,t = 2−

m
4

⌊j2
k−n

2 ⌋∑

i=⌊(j−1)2
k−n

2 ⌋+1

⌊i2
m−k

2 ⌋∑

ℓ=⌊(i−1)2
m−k

2 ⌋+1

[
Lℓ2−m/2

t (Y ) − Li2−k/2

t (Y )
] [(

X
(m)
ℓ −X

(m)
ℓ−1

)κ
− µκ

]

C
(m,k)
j,n,t = 2−

m
4

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

[(
X

(m)
i −X

(m)
i−1

)κ
− µκ

] [
Li2−m/2

t (Y ) − Li,m(t)
]

We shall study A(m,k), B(m,k) and C(m,k) separately. By Proposition 2.3, we know that, as
m→ ∞, the random element



X; 2−

m
4

⌊i2
m−k+n

2 ⌋∑

ℓ=⌊(i−1)2
m−k+n

2 ⌋+1

[(
X

(m)
ℓ −X

(m)
ℓ−1

)κ
− µκ

]
:−N ≤ j ≤ N, ⌊(j − 1) 2

k−n
2 ⌋+1 6 i 6 ⌊j2k−n

2 ⌋




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converges in law to

{
X;

√
µ2κ − µ2

κ

(
Bi2−k/2 −B(i−1)2−k/2

)
: −N ≤ j ≤ N, ⌊(j − 1) 2

k−n
2 ⌋ + 1 ≤ i ≤ ⌊j2k−n

2
⌋
}
.

Hence, as m→ ∞, using also the independence between X and Y , we have:

{
X;A

(m,k)
j,n : j = −N, . . . ,N

}
f.d.d.
=⇒

{
X;A

(∞,k)
j,n : j = −N, . . . ,N

}
,

where

A
(∞,k)
j,n,t ,

√
µ2κ − µ2

κ

⌊j2
k−n

2 ⌋∑

i=⌊(j−1)2
k−n

2 ⌋+1

Li2−k/2

t (Y )
(
Bi2−k/2 −B(i−1)2−k/2

)
.

By letting k → ∞, one obtains that A
(∞,k)
j,n,t converges in probability towards

√
µ2κ − µ2

κ

∫ j2−n/2

(j−1)2−n/2

Lx
t (Y )dBx.

This proves, by letting m and then k go to infinity, that {X;A
(m,k)
j,n : j = −N, . . . ,N} converges

in the sense of f.d.d. to
{
X;

√
µ2κ − µ2

κ

∫ j2−n/2

(j−1)2−n/2

Lx
t (Y )dBx : j = −N, . . . ,N

}
.

To conclude the proof of the Proposition we shall show that, by letting m and then k go to

infinity (for fixed j, n and t > 0), one has that
∣∣∣B(m,k)

j,n,t

∣∣∣ and
∣∣∣C(m,k)

j,n,t

∣∣∣ converge to zero in L2. Let

us first consider C
(m,k)
j,n,t . In what follows, cj,n denotes a constant that can be different from line

to line. When t ∈ [0, 1] is fixed, we have, by the independence of Brownian increments and the
first and the fourth points of Proposition 3.1:

E

[∣∣∣C(m,k)
j,n,t

∣∣∣
2
]

= 2−
m
2

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

E

[∣∣∣
(
X

(m)
i −X

(m)
i−1

)κ − µκ

∣∣∣
2
]
E

[∣∣∣Li2−m/2

t (Y ) − Li,m(t)
∣∣∣
2
]

6 cj,n 2−mm2

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

E
[∣∣∣Li2−m/2

t (Y )
∣∣∣
]

6 cj,n 2−m/2m2.
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Let us now consider B
(m,k)
j,n,t . We have, by the third point of Proposition 3.1:

E

[∣∣∣B(m,k)
j,n,t

∣∣∣
2
]

= 2−
m
2

⌊j2
k−n

2 ⌋+1∑

i=⌊(j−1)2
k−n

2 ⌋+1

⌊i2
m−k

2 ⌋∑

ℓ=⌊(i−1)2
m−k

2 ⌋+1

E

[∣∣∣
(
X

(m)
ℓ −X

(m)
ℓ−1

)κ − µκ

∣∣∣
2
]

×E
[∣∣∣Lℓ2−m/2

t (Y ) − Li2−k/2

t (Y )
∣∣∣
2
]

6 cj,n 2−m/2

⌊j2
k−n

2 ⌋∑

i=⌊(j−1)2
k−n

2 ⌋+1

⌊i2
m−k

2 ⌋∑

ℓ=⌊(i−1)2
m−k

2 ⌋+1

(
i2−k/2 − ℓ 2−m/2

)

6 cj,n 2−k/2.

The desired conclusion follows immediately.

The next result will be the key in the proof of the convergence (1.15):

Theorem 3.3 For even κ > 2 and t ∈ [0, 1], set

J
(n)
t (f) = 2−

n
4

1

2

∑

j∈Z

(
f(X(j−1)2−n/2) + f(Xj 2−n/2)

) [
2κ n

4

(
X

j2−
n
2
−X

(j−1)2−
n
2

)κ
− µκ

]
Lj,n(t),

where the real-valued function f is globally Lipschitz. Then, as n → +∞, the random element{
Xx, J

(n)
t (f)

}

x∈R, t∈[0,1]
converges in the sense of f.d.d. to

{
Xx,

√
µ2κ − µ2

κ

∫

R

f(Xx)Lx
t (Y )dBx

}

x∈R, t∈[0,1]

.

Proof. For every m > n and p > 1, one has that

J
(m)
t (f) = 2−

m
4

1

2

∑

j∈Z

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

(
f(X(i−1)2−m/2) + f(Xi 2−m/2)

)

[(
X

(m)
i −X

(m)
i−1

)κ
− µκ

]
Li,m(t)

= A
(m,n,p)
t +B

(m,n,p)
t + C

(m,n,p)
t ,
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where

A
(m,n,p)
t = 2−

m
4

1

2

∑

|i|>p2m/2

(
f(X(i−1)2−m/2) + f(Xi 2−m/2)

) [(
X

(m)
i −X

(m)
i−1

)κ
− µκ

]
Li,m(t),

B
(m,n,p)
t = 2−

m
4

1

2

∑

|j|6p2n/2

(
f(X(j−1)2−n/2) + f(Xj 2−n/2)

)
×

×
⌊j2

m−n
2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

[(
X

(m)
i −X

(m)
i−1

)κ
− µκ

]
Li,m(t),

C
(m,n,p)
t = 2−

m
4

∑

|j|6p2n/2

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

1

2

[
f(X(i−1)2−m/2) − f(X(j−1)2−n/2) + f(Xi 2−m/2) − f(Xj 2−n/2)

]

×
[(
X

(m)
i −X

(m)
i−1

)κ
− µκ

]
Li,m(t).

We shall study A(m,n,p), B(m,n,p) and C(m,n,p) separately. By Proposition 3.2, we know that, as
m→ ∞, the random element




X; 2−

m
4

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

[(
X

(m)
i −X

(m)
i−1

)κ
− µκ

]
Li,m(t) : |j| 6 p2n/2





converges in law to

{
X;

√
µ2κ − µ2

κ

∫ j2−n/2

(j−1)2−n/2

Lx
t (Y )dBx : |j| 6 p2n/2

}
.

Hence, as m→ ∞,

{X;B(m,n,p)} f.d.d.
=⇒ {X;B(∞,n,p)}

where

B
(∞,n,p)
t =

√
µ2κ − µ2

κ

∑

|j|6p2n/2

f(X(j−1)2−n/2) + f(Xj 2−n/2)

2

∫ j2−n/2

(j−1)2−n/2

Lx
t (Y )dBx.

By letting n→ ∞, one obtains that B(∞,n,p) converges in probability towards

B
(∞,∞,p)
t =

√
µ2κ − µ2

κ

∫ p

−p
f(Xx)Lx

t (Y )dBx.

Finally, by letting p → ∞, one obtains, as limit,
√
µ2κ − µ2

κ

∫
R
f(Xx)Lx

t (Y )dBx. This proves

that, by letting m and then n and finally p go to infinity, {X;B(m,n,p)} converges in the sense of
f.d.d. to {X;

√
µ2κ − µ2

κ

∫
R
f(Xx)Lx

t (Y )dBx}.
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To conclude the proof of the Theorem we shall show that, by letting m and then n and finally

p go to infinity,
∣∣∣A(m,n,p)

t

∣∣∣ and
∣∣∣C(m,n,p)

t

∣∣∣ converge to zero in L2. Let us first consider C
(m,n,p)
t .

When t ∈ [0, 1] is fixed, the independence of the Brownian increments and the Lipschitz property
of f (Lf is the Lipschitz constant) yield that:

E

[∣∣∣C(m,k)
j,n,t

∣∣∣
2
]

6 cst. 2−
m
2

∑

|j|6p2n/2

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

E
{∣∣∣f(X(i−1)2−m/2) − f(X(j−1)2−n/2)

+f(Xi 2−m/2) − f(Xj 2−n/2)
∣∣∣
2
}
× E

{∣∣∣
(
X

(m)
i −X

(m)
i−1

)κ
− µκ

∣∣∣
2
}
E

{
|Li,m(t)|2

}

6 cst. 2L2
f2−

m+n
2

∑

j∈Z

⌊j2
m−n

2 ⌋∑

i=⌊(j−1)2
m−n

2 ⌋+1

E
{
|Li,m(t)|2

}

= cst. 2L2
f2−

m+n
2

∑

i∈Z

E
{
|Li,m(t)|2

}
.

The second point of Proposition 3.1 implies that
∑

i∈Z
E

[
|Li,m(t)|2

]
6 cst. 2m/2 uniformly in

t ∈ [0, 1]. This shows that

sup
m,p

E

[∣∣∣C(m,n,p)
t

∣∣∣
2
]

6 cst.2−n/2.

Let us now consider A
(m,n,p)
t . We have

E
[
|A(m,n,p)

t |2
]

=
1

2
2−

m
2

∑

|i|>p2m/2

E
[∣∣f(X(i−1)2−m/2) + f(Xi 2−m/2)

∣∣2
]
E

[
|Li,m(t)|2

]

6 cst. 2−
m
2

∑

|i|>p2m/2

E
[
|Li,m(t)|2

]
.

The fourth point in the statement of Proposition 3.1 yields

|Li,m(t)| 6 Li2−m/2

t (Y ) +Km2−m/4
√
Li2−m/2

t (Y ).

By using the first point in the statement of Proposition 3.1, we deduce that:

E
[
|A(m,n,p)

t |2
]

6 cst. 2−m/2
∑

i>p2m/2

exp
(
− i22−m

2t

)

6 cst.
∑

i>p2m/2

∫ i2−m/2

(i−1)2−m/2

exp
(
− x2

2t

)
dx

= cst.

∫ +∞

p
exp

(
− x2

2t

)
dx ≤ cst.

p
.

The desired conclusion follows.
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We are finally in a position to prove Theorem 1.2:
Proof of Theorem 1.2

Proof of (1.15). By using an equality analogous to [10, p. 648, line 8] (observe that our

definition of V
(κ)
n (f, t) is slightly different than the one given in [10]), 2(κ−3)n

4 V
(κ)
n (f, t) equals

2−
n
4

1

2

∑

j∈Z

(
f(X(j−1)2−n/2) + f(Xj 2−n/2)

) [
2κ n

4

(
Xj2−n/2 −X(j−1)2−n/2

)κ
− µκ

]
Lj,n(t).

As a consequence, (1.15) derives immediately from Theorem 3.3.

Proof of (1.16). Based on Lemma 1.1, it is showed in [10], p. 658, that

V (κ)
n (f, t) =





1
2

∑j⋆−1
j=0

(
f(X+

(j−1)2−n/2) + f(X+
j 2−n/2)

) (
X+

j2−n/2 −X+
(j−1)2−n/2

)κ
if j⋆ > 0

0 if j⋆ = 0
1
2

∑|j⋆|−1
j=0

(
f(X−

(j−1)2−n/2
) + f(X−

j 2−n/2
)
) (

X−
j2−n/2

−X−
(j−1)2−n/2

)κ
if j⋆ < 0

Here, X+ (resp. X−) represents X restricted to [0,∞) (resp. (−∞, 0]), and j⋆ is defined as
follows:

j⋆ = j⋆(n, t) = 2n/2 Y (T⌊2nt⌋,n).

For t ∈ [0, 1], let
Yn(t) = Y (T⌊2nt⌋,n).

Also, for t > 0, set

J±
n (f, t) = 2(κ−1)n

4
1

2

⌊2n/2t⌋∑

j=1

(
f(X±

(j−1)2−n/2) + f(X±
j 2−n/2)

) (
X±

j2−n/2 −X±
(j−1)2−n/2

)κ

and, for u ∈ R:

Jn(f, u) =

{
J+

n (f, u), if u > 0,
J−

n (f,−u), if u > 0.

Observe that

2(κ−1)n
4 V (κ)

n (f, t) = Jn

(
f, Yn(t)

)
(see also (4.3) in [10]). (3.32)

For every s, t ∈ R and n > 1, we shall prove

E
∣∣Jn(f, t) − Jn(f, s)

∣∣2 6 cf,κ

(
2−

n
2

∣∣⌊2n
2 t⌋ − ⌊2n

2 s⌋
∣∣
)
∧

(
2−n

∣∣⌊2n
2 t⌋ − ⌊2n

2 s⌋
∣∣2

)
(3.33)

for a constant cf,κ depending only of f and κ. For simplicity, we only make the proof when
s, t > 0, but the other cases can be handled in the same way. For u > 0, we can decompose

Jn(f, u) = J (a)
n (f, u) + J (b)

n (f, u)
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where

J (a)
n (f, u) = 2(κ−1)n

4

⌊2
n
2 u⌋∑

j=1

f
(
X

(j−1)2−
n
2

)(
X

j2−
n
2
−X

(j−1)2−
n
2

)κ

J (b)
n (f, u) =

1

2
2(κ−1)n

4

⌊2
n
2 u⌋∑

j=1

f ′
(
Xθj,n

)(
X

j2−
n
2
−X

(j−1)2−
n
2

)κ+1

for some θj,n lying between (j − 1)2−
n
2 and j2−

n
2 . By independence, and because κ is odd, we

can write, for 0 ≤ s ≤ t:

E
∣∣J (a)

n (f, t) − J (b)
n (f, s)

∣∣2 = µ2κ 2−
n
2

⌊2
n
2 t⌋∑

j=⌊2
n
2 s⌋+1

E
∣∣f

(
X

(j−1)2−
n
2

)∣∣2

6 cf,κ 2−
n
2

∣∣⌊2n
2 t⌋ − ⌊2n

2 s⌋
∣∣.

For J
(b)
n (f, ·), we have by Cauchy-Schwarz inequality:

E
∣∣J (b)

n (f, t) − J (b)
n (f, s)

∣∣2 6 cf,κ

(
2−

n
2

∣∣⌊2n
2 t⌋ − ⌊2n

2 s⌋
∣∣
)2
.

The desired conclusion (3.33) follows. Since X and Y are independent, (3.33) yields that

E
∣∣Jn

(
f, Yn(t)

)
− Jn

(
f, Y (t)

)∣∣2

is bounded by

cf,κE
[(

2−
n
2

∣∣⌊2n
2 Yn(t)⌋ − ⌊2n

2 Y (t)⌋
∣∣
)
∧

(
2−n

∣∣⌊2n
2 Yn(t)⌋ − ⌊2n

2 Y (t)⌋
∣∣2

)]
.

But this quantity tends to zero as n → ∞, because Yn(t)
L2

−→Y (t) (recall that T⌊2nt⌋,n
L2

−→ t, see
Lemma 2.2 in [10]). Combining this latter fact with the independence between Jn(f, ·) and Y ,
and the convergence in the sense of f.d.d. given by Corollary 2.9, one obtains

Jn(f, ·)−→
∫ ·

0
f(Xz)

(
µdXz +

√
µ2κ − µ2

κ+1dBz

)
,

where the convergence is in the sense of f.d.d., hence

Jn(f, Yn)−→
∫ Y

0
f(Xz)

(
µdXz +

√
µ2κ − µ2

κ+1dBz

)
,

where the convergence is once again in the sense of f.d.d.. In view of (3.32), this concludes the
proof of (1.16).
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4 Proof of Theorem 1.4

Let

UU2j+1,n(t) = ♯
{
k = 0, . . . , ⌊2n−1t⌋ − 1 : Y (T2k,n) = (2j)2−n/2,

Y (T2k+1,n) = (2j + 1)2−n/2, Y (T2k+2,n) = (2j + 2)2−n/2
}

UD2j+1,n(t) = ♯
{
k = 0, . . . , ⌊2n−1t⌋ − 1 : Y (T2k,n) = (2j)2−n/2,

Y (T2k+1,n) = (2j + 1)2−n/2, Y (T2k+2,n) = (2j)2−n/2
}

DU2j+1,n(t) = ♯
{
k = 0, . . . , ⌊2n−1t⌋ − 1 : Y (T2k,n) = (2j + 2)2−n/2,

Y (T2k+1,n) = (2j + 1)2−n/2, Y (T2k+2,n) = (2j + 2)2−n/2
}

DD2j+1,n(t) = ♯
{
k = 0, . . . , ⌊2n−1t⌋ − 1 : Y (T2k,n) = (2j + 2)2−n/2,

Y (T2k+1,n) = (2j + 1)2−n/2, Y (T2k+2,n) = (2j)2−n/2
}
.

denote the number of double upcrossings and/or downcrossings of the interval [(2j)2−n/2, (2j +
2)2−n/2] within the first ⌊2nt⌋ steps of the random walk {Y (Tk,n), k ∈ N}. Observe that

S(κ)
n (f, t) =

∑

j∈Z

f
(
X(2j+1)2−n/2

) [(
X(2j+2)2−n/2 −X(2j+1)2−n/2

)κ

+(−1)κ+1
(
X(2j+1)2−n/2 −X(2j)2−n/2

)κ
]
(UU2j+1,n(t) −DD2j+1,n(t)

)
.

(4.34)

The proof of the following lemma is easily obtained by observing that the double upcrossings and
downcrossings of the interval [(2j)2−n/2, (2j + 2)2−n/2] alternate:

Lemma 4.1 Let t > 0. For each j ∈ Z,

UU2j+1,n(t) −DD2j+1,n(t) =





1{0≤j<j̃⋆} if j̃⋆ > 0

0 if j̃⋆ = 0

−1{j̃⋆≤j<0} if j̃⋆ < 0

where

j̃⋆ = j̃⋆(n, t) =
1

2
2n/2Y (T2⌊2n−1t⌋,n).

Consequently, by combining Lemma 4.1 with (4.34), we deduce:

S(κ)
n (f, t) =





∑j̃⋆−1
j=0 f(X+

(2j+1)2−n/2
)
[(
X+

(2j+2)2−n/2
−X+

(2j+1)2−n/2

)κ

+(−1)κ+1
(
X+

(2j+1)2−n/2
−X+

(2j)2−n/2

)κ
]

if j̃⋆ > 0

0 if j̃⋆ = 0
∑|j̃⋆|−1

j=0 f(X−
(2j+1)2−n/2)

[(
X−

(2j+2)2−n/2 −X−
(2j+1)2−n/2

)κ

+(−1)κ+1
(
X−

(2j+1)2−n/2
−X−

(2j)2−n/2

)κ
]

if j̃⋆ < 0

.
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Here, as in the proof of (1.16), X+ (resp. X−) represents X restricted to [0,∞) (resp. (−∞, 0]).
For t > 0, set

J̃±
n (f, t) = 2(κ−1)n

4

⌊
1

2
2

n
2 t

⌋

∑

j=0

f(X±

(2j+1)2−
n
2
)

[(
X±

(2j+2)2−
n
2
−X±

(2j+1)2−
n
2

)κ

+(−1)κ+1
(
X±

(2j+1)2−
n
2
−X±

(2j)2−
n
2

)κ
]

and, for u ∈ R:

J̃n(f, u) =

{
J̃+

n (f, u), if u > 0,

J̃−
n (f,−u), if u > 0.

Also, let
Ỹn(t) = Y (T2⌊2n−1t⌋,n).

Observe that

2(κ−1)n
4 S(κ)

n (f, t) = J̃n

(
f, Ỹn(t)

)
. (4.35)

Finally, using Corollary 2.8 (for κ even) and Corollary 2.10 (for κ odd), and arguing exactly as
in the proof of (1.16), we obtain that the statement of Theorem 1.4 holds.

2
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