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Abstract: The purpose of this paper is to find a new way to prove the n! conjecture for

particular partitions. The idea is to construct a monomial and explicit basis for the space Mµ.

We succeed completely for hook-shaped partitions, i.e., µ = (K+1, 1L). We are able to exhibit

a basis and to verify that its cardinality is indeed n!, that it is linearly independent and that it

spans Mµ. We derive from this study an explicit and simple basis for Iµ, the annihilator ideal

of ∆µ. This method is also successful for giving directly a basis for the homogeneous subspace

of Mµ consisting of elements of 0 x-degree.

1 Introduction

Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µk > 0) be a partition of n. We shall identify
µ with its Ferrers diagram (using the French notation). To each cell s of
the Ferrers diagram, we associate its coordinates (i, j), where i is the height
of s and j the position of s in its row. The pairs (i − 1, j − 1) occurring
while s describes µ will be briefly referred to as the set of the biexponents
of µ. Now let (p1, q1), . . . , (pn, qn) denote the set of biexponents arranged in
lexicographic order and set

∆µ(x, y) = ∆µ(x1, . . . , xn; y1, . . . , yn) = det(x
pj

i y
qj

i )i,j=1...n.

Let Mµ be the collection of polynomials in the variables x1, . . . , xn; y1, . . . , yn

obtained by taking the linear span of all the partial derivatives of ∆µ. For-

1



mally we may write

Mµ = L{∂a
x∂

b
y∆µ(x, y); a, b ∈ N

n}

where ∂a
x = ∂a1

x1
. . . ∂an

xn
and ∂b

y = ∂b1
y1

. . . ∂bn
yn

. Then the n! conjecture can be
stated as follows.
Conjecture 1 (n! conjecture): Let µ be a partition of n, then dim Mµ = n!.

This conjecture, stated by A. Garsia and M. Haiman is central for their
study of Macdonald polynomials (cf. [5], [6]). To be more precise, Macdonald
introduced in [12] a new symmetric function basis and associated Macdonald-
Kostka coefficients Kλµ(q, t), which are a priori rational functions in q, t.
Macdonald conjectured that:
Conjecture 2 (MPK conjecture): The functions Kλµ(q, t) are polynomi-
als with non-negative integer coefficients.

Looking for a representation theoretical setting for the Macdonald basis,
A. Garsia and M. Haiman made the following conjecture:
Conjecture 3 (C = H̃ conjecture): For the diagonal action of Sn, Mµ is
a bigraded version of the left regular representation. Moreover, if Cλµ(q, t)
denotes the bigraded multiplicity of the character χλ in the bigraded character
of the module Mµ then: Cλµ(q, t) = Kλµ(q, 1/t)tn(µ), where n(µ) =

∑k

i=1(i −
1)µi.

Conjecture 3 clearly implies Conjecture 1 and 2. M. Haiman [9] using
Hilbert schemes theory recently proved that the n! conjecture actually implies
the C = H̃ conjecture. A part of the MPK conjecture is that the Kλµ(q, t)
are polynomials, which is not obvious from their definition. This part has
been recently proved in several independent papers (cf. [7], [8], [10], [11],
[14]).

When µ = (1n) or µ = (n), ∆µ reduces to the Vandermonde determinant
in x and y respectively. In these cases, it is a classical result (see [2]) that
dim Mµ = n!. But although this conjecture has been verified by computer
for small partitions up to n = 8 and proved for some special cases (cf. [1],
[4], [6], [13]), it has not been established in full generality. Several methods
have been developed to prove the n! conjecture but none of them has been
able to give a proof in more than some special cases.

In this paper our goal is to propose a new method to prove the n! con-
jecture for some particular partitions. We want to construct explicit bases
for the space Mµ. These bases are made of monomial derivatives of ∆µ.
We present here how we are able to do it for hook-shaped partitions, i.e.,
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µ = (K + 1, 1L) with K + L + 1 = n. In section 2 we describe the way to
construct the basis and prove that its cardinality is n!. In the third section
we show that our family spans Mµ. Moreover, we derive from that proof an
explicit and simple basis for Iµ, the annihilator ideal of ∆µ. In the fourth
section we prove by a completely new method that the elements of our ba-
sis are linearly independent. In section 5 we explain how this method is
also successful for the homogeneous subspace of Mµ consisting of elements
of 0 x-degree. We obtain in fact a direct way to construct a basis for this
subspace.

2 Construction and enumeration

Let µ be a partition of n whose Ferrers diagram is a hook, i.e., µ = (K+1, 1L)
with K + L + 1 = n.

2.1 Construction

Let us take an horizontal axis. A “shape” associated to µ is constructed
the following way: suppose the line has room for K + L spaces. Choose K
of these spaces to be y-columns and L to be x-columns. In the y-columns
place stacks of boxes above the line of height K, K − 1, . . . , 1 arranged in
decreasing order. In the x-columns place stacks of boxes of decreasing depth
L, L − 1, . . . , 1 below the line.

Here is an example of shape:

y

x

associated to the partition:

3



We shall now put crosses in the cells of the shape to obtain “drawings”.
As we shall not distinguish two drawings with the same number of crosses in
each column, we put the crosses near the axis. The rules for putting crosses
in a drawing are the following:

1. the number of crosses in the x-columns is any number (not greater than
the depth of the column);

2. the number of crosses in the y-columns depends on the x-crosses. For
a column which has no x-column to its right, the number of crosses is
not greater than the height of the column. In the other case, we look
at the first “plain” x-column on the right; i.e., the first column which
has only crosses (full x-column) or only white cells (empty x-column).
There is always one, at least the x-column of depth one. Then:

• if it is all white, then we impose at least one cross in the y-column.

• if it is all crossed, then we impose at least one white cell in the
y-column.

Remark 1: The family of drawings that we defined is invariant under the
operator that inverts the white cells and the crosses. We call this operator
flip (it is different from the flip introduced by A. Garsia and M. Haiman in
[6], that we denote from now on by Flip).

Here we give an example of drawing with crosses:
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Once we have defined the drawings (with crosses), we define associated
derivative operators. We give an index to the places of the drawing from
left to right and from 1 to n − 1. Then to each x-cross in place i, we
derive once with respect to xi. We do the same thing for the y-crosses.
For example, for the last drawing, the associated derivative operator is:
∂D = ∂y2

1∂x2∂x4∂x2
5∂y6.

2.2 Enumeration

We shall denote by D the set of drawings that we defined in the previous
subsection. We now verify that its cardinality is n!.

As the number of choices for the y-columns depends only on the shape
of the drawing (and not on the x-crosses), we can write that the cardinality
equals the following expression, where k1 denotes the number of y-columns
on the right of the last x-column:

∑

k1+k2=K

2 · 3 · · · (k1 + 1) · (k1 + 1) · · · (k1 + k2) · (L + 1)!

(

k2 + L − 1

k2

)

= L(L + 1)K!
K

∑

k2=0

(k2 + L − 1)!

k2!
(K + 1 − k2)

= (L + 1)!K!

K
∑

k2=0

(

L − 1 + k2

L − 1

)(

K + 1 − k2

1

)

= (L + 1)!K!

(

K + L + 1

L + 1

)

= (K + L + 1)!

by the Chu-Vandermonde formula ([3], p. 163).
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3 Proof that the family spans Mµ

We show here that {∂D∆µ}D∈D spans Mµ. We begin by studying Iµ, the
annihilator ideal of ∆µ.

3.1 Study of Iµ

For P, Q two polynomials, we write P ≡ Q if P (∂)∆µ = Q(∂)∆µ, i.e.,
P −Q ∈ Iµ (P (∂) corresponds to the substitution: xi → ∂xi, yi → ∂yi). We
denote as usual by hk the k-th complete homogeneous symmetric function.
Let also X denote a subset of (x1, x2, . . . , xn), Y a subset of (y1, y2, . . . , yn),
|X| and |Y | their cardinality. We also set X̄ =

∏

x∈X x and Ȳ =
∏

y∈Y y.
We first notice that:

1. for all 1 ≤ i ≤ n, xiyi ≡ 0;

2. X̄ ≡ 0 as soon as |X| > L;

3. Ȳ ≡ 0 as soon as |Y | > K;

4. for any symmetric homogeneous polynomial P of positive degree, P ≡
0.

The fourth relation is well known (cf. [2]). The others are clear by observing
the elements in the determinantal form of ∆µ when µ = (K + 1, 1L).

Proposition 1:
hk(Y ) ≡ 0

as soon as k > 0 and k + |Y | > n.
Proof. It is easily proved by an induction based on hk(y1, . . . , yn) ≡ 0 for

all k > 0. We have indeed h1(Yn) ≡ 0, where Yn = (y1, . . . , yn) and for any
y 6∈ Y :

hk(Y, y) = hk(Y ) + yhk−1(Y, y).

�

Proposition 2:
Ȳ hk(Y

′) ≡ 0

as soon as k > 0, k + |Y | > K and Y ⊂ Y ′.
Proof. Proposition 2 is proved by decreasing induction on |Y ′|.
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We observe that the result is true for |Y ′| equal to K + 1 and K. Let Y
and Y ′ satisfy the hypotheses and assume the result is true down to |Y ′|+1.
We write for all yi 6∈ Y ′:

hk(Y
′, yi) ≡ hk(Y

′) + yihk−1(Y
′, yi),

thus, by induction if k > 1 we obtain the following relation; this relation is
obvious if k = 1 because this implies that |Y | ≥ K:

Ȳ hk(Y
′, yi) ≡ Ȳ hk(Y

′).

Once we have this relation the conclusion easily follows by an increasing
induction on |Y ′| (for example up to n).

�

Proposition 3:
hk(Y )hl(X) ≡ 0

as soon as k > 0, l > 0, k + l + |Y | + |X| ≥ 2n and X ⊂ Y or Y ⊂ X.
Proof. We only show the result when k + |Y | = n and l + |X| = n (the

other cases are consequences of Proposition 1).
It is in fact proved as Proposition 1 by a simple induction based on:

h1(x1, . . . , xn−1)h1(y1, . . . , yn−1) ≡ 0

which is a consequence of Proposition 1 and xnyn ≡ 0.

�

Proposition 4:
hk(Y )hl(X) ≡ 0

as soon as k > 0, l > 0 and

• either Y ⊂ X and k + l + |Y | > n,

• or X ⊂ Y and k + l + |X| > n.

Proof. This is proved by induction on α = 2n − (k + |Y | + l + |X|).
The case α ≤ 0 reduces to Proposition 3.
Suppose the result is true up to α−1 and 2n−(k+ |Y |+ l+ |X|) = α > 0.

By symmetry, we shall assume that Y ⊂ X and k + l + |Y | > n. If l > 1,
then for any xi 6∈ X, we write:
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hk(Y )hl(X) ≡ hk(Y )hl(X, xi) − xihk(Y )hl−1(X, xi)

≡ hk(Y )hl(X, xi) − xihk(Y, yi)hl−1(X, xi) ≡ 0

by induction.
If l = 1, then |Y | + k ≥ n and we write for any xi 6∈ X:

hk(Y )h1(X) ≡ hk(Y, yi)h1(X) − yihk−1(Y )h1(X, xi).

The first term is zero by Proposition 1. The second term is proved to be also
zero by increasing induction on |X| (up to n), since n − k ≤ |Y | ≤ |X| ⇒
n − |X| ≤ k.

�

3.2 Application

We shall show here that any monomial derivative of ∆µ is a linear combina-
tion of the derivatives: {∂D∆µ}D∈D (derivatives corresponding to drawings,
i.e., the family defined in section 2).

Theorem 1: {∂D∆µ}D∈D spans Mµ.a

Proof. It is clear that any monomial can be associated to a diagram
of crosses (by the same process as in paragraph 2.1), and let D be such a
diagram which is not a drawing.

We look at the rightmost “anomaly”, that is the rightmost place where
the diagram D associated to the monomial can not be a drawing (we call
this place “guilty”).

- Case 1: the diagram D could not be put in a set of ordered columns (i.e.,
in the shape of a drawing). This case gives four subcases. Assume the
guilty column is a y-column. We can not put another y-column on the
right. Either because each y-column on the left has a cross (case 1a),
or because there is no first plain and white x-column on the right (case
1b). If the guilty column is an x-column, we are led to cases 1c (each
x-column on the left has a cross) and 1d (there is no first plain and
white y-column on the right). Since the rules are not involved here the
problems are symmetric for x or y.
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- Case 2: the diagram D could be put in a set of ordered columns but the
rules are broken. Either for the white cells (case 2a), or for the crosses
(case 2b).

We shall prove, using the propositions of the last section, that the mono-
mial associated to the diagram D can be written modulo Iµ as a linear
combination of monomials strictly smaller with respect to the lexicographic
order (x1 < x2 < · · · < xn < y1 < · · · < yn). We look at each case that we
have mentioned above.

• Case 1b with no x-column on the right is solved by Proposition 1, as
well as case 1d with no y-column on the right.

• Cases 1a and 1c are symmetric and treated by Proposition 2: we note
that the height of the h-th y-column is K−h+1. If it has k+1 crosses,
there is a problem if k + h > K. It then can be treated by Proposition
2: we take Y ′ = Y = {i1 < . . . < ih}, to be the places of the first h
y-columns, each of which has at least one cross. The monomial is a
multiple of

Ȳ yk
ih
≡ Ȳ (yk

ih
− hk(Y ))

and all monomials in the expansion of the right side are lexicographi-
cally smaller than the monomial on the left side.

• Case 2a is immediately settled by inverting the involved columns.

Therefore the only remaining cases are case 1b (resp. 1d) with a first full
x- (resp. y-) column on the right and case 2b.

• Let us first study the case 2b.

 
l

k
 k’ y-col.

l’ x-col.

k’’ y-columns

l’’ x-columns
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We observe that there is a problem if one has simultaneously:

– k = k′ + k′′ + 1,

– l = l′′ + 1,

– there is a cross in each of the l′ x-columns between the two columns
appearing on the figure.

Let:

– Y denote the places on the left of the y-column plus the place of
the y-column plus the l′ places of the x-columns between the y-
and the x-column on D plus the place of the x-column,

– X denote the places on the left of the x-column plus the place of
the x-column itself,

– X ′ denote the places of the l′ x-columns between the y- and the
x-column of D.

We shall be able to express the monomial corresponding to this D as
a linear combination of monomials stricly smaller with respect to the
lexicographic order if we establish that

hk(Y )hl(X) ≡ 0.

Indeed the leading monomial of X̄ ′hk(Y )hl(X) (for the lexicographic
order), in which we delete the multiples of xiyi for any i, is a divisor of
the monomial associated to D.

We want to apply Proposition 4 with |Y | = n − (k′ + k′′ + l′′ + 1) and
|X| = n − (k′′ + l′′ + 1). We have Y ⊂ X and we calculate:

k + l + |Y | − n = 1 > 0.

Hence we are done in this case.

• Let us now consider the case 1d with a first full y-column.
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 l

 k
k’ y-col. k’’ y-columns

  l’’ x-columns   l’ x-col.

Here a problem occurs if:

– k = k′′ + 1,

– l ≥ l′ + l′′ + 2,

– there is a cross in each of the k′ y-columns between the two
columns appearing on the figure.

We proceed as in the previous case. We want to use Proposition 4 to
show that

hk(Y )hl(X) ≡ 0

with Y corresponding to all the places strictly left of the y-column on
the diagram D and X corresponding to all the places up to the x-
column, plus the places of the k′ y-columns between the x-column and
the y-column.

We want to apply Proposition 4 with |X| = n − (l′ + k′′ + l′′ + 2) and
|Y | = n − (k′′ + l′′ + 1). We have X ⊂ Y and we compute:

k + l + |X| − n ≥ 1.

Thus this case is also settled.

• It remains to observe that the case 1b with a first full x-column is
treated by case 2b.

The proof of Theorem 1 is now complete.

�
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3.3 Conclusion

We can deduce from what precedes a basis for the ideal Iµ when µ is a hook,
since the first relations exposed at the beginning of the study of Iµ were
sufficient to prove that our family is a basis of Mµ.

Theorem 2: If we denote by 〈G〉 the ideal generated by a set G, then for
µ a hook partition of n, we have:

Iµ = 〈hi(Xn), 1 ≤ i ≤ n; hi(Yn), 1 ≤ i ≤ n;

xiyi, 1 ≤ i ≤ n; X̄, |X| = L + 1; Ȳ , |Y | = K + 1〉.

Proof. To prove this we assume that the previous ideal (we denote it by
I) is not equal to Iµ, so that there is a polynomial P in Iµ\I. According
to the proof of Theorem 1, we can decompose it as P = A + Q, where A is
a linear combination of monomials of our family and Q is an element of I.
Taking the derivatives and applying it to ∆µ, we obtain A(∂)∆µ = 0. As we
shall see in section 4, this implies A = 0, and P = Q ∈ I.

�

4 Proof of the independence

4.1 Exposition and reduction of the problem

We shall now prove that our family is an independent set.
Since the derivative operator associated to a drawing D depends only on

the crosses and not on the shape of the drawing, we define S as the diagram
consisting only of the crosses of D. We also define T as the diagram consisting
of the white cells (a “complement” of S).

Let S denote the set of S when D varies in D, the set of drawings defined
in section 2.

For example, for the drawing in section 2, we have:

S =

12



T =

Let now ∂S and ∂T denote the derivative operators associated to S and
T (after putting crosses in all the cells of T ).

Theorem 3:
The family {∂S.∆µ}S∈S is an independent set.

Lemma 1:
S or T determines the drawing from which it comes.
Proof. Indeed, we can recontruct the shape of the drawing from S by

proceeding from left to right. The method is the following: if there are
crosses at the place we are looking at, we complete the column with respect
to the size of the successive columns. If there is no cross, we look at the
x-crosses on the right: if they can fit in with one x-column missing, then we
put an x-column at the empty place, else we put a y-column.

The method is the same for T since the family is invariant under flip.

�

Let us now show that the family is linearly independent. Let us begin
with some definitions. Let D = (S, T ) and D1 = (S1, T1) be two different
drawings; we shall say that D1 is a son of D if ∂T ◦ ∂S1

.∆µ ∈ Z\{0}. We
shall denote by T + S1 the figure corresponding to the superposition (place
by place) of the cells of T and S1 (all these cells being crossed). If we repeat
this process, we obtain the notion of descendant.

Lemma 2:
To show the independence, it is sufficient to prove that a drawing can not

be its own descendant (i.e., there is no “loop”).
Proof. We assume we have a relation of dependence:

∑

S cS∂S .∆µ = 0,
that the coefficients are not all zero, and that there is no loop. Then we take
a S0 for which cS0

6= 0. If S0 has no son or if they have all cS equal to zero,
we obtain a contradiction by applying ∂T0

to the relation and by looking at

13



the constant term of the result. If S0 has a son S1 for which cS1
6= 0, we

repeat with S1. As the set is finite and there is no loop, we certainly obtain
a S ′ which gives a contradiction.

�

So we have to prove that there is no loop. It is sufficient to show that
a drawing D = (S, T ) is different from all its descendants that have the
same shape (i.e., the x-columns at the same places). Let D′ = (S ′, T ′) be a
descendant of D that has the same shape. We want to show that D 6= D′.

4.2 Definition of completeness

To explain this notion, let D1 denotes a drawing and D2 one of its sons. We
define on the places of D2 a notion of “completeness” (relative to D1 too)
as follows: We say that the first k places of D2 are complete if the heights
of the y-columns of T1 + S2 in these k places and read from left to right are
K, K − 1, K − 2, . . . and if we have the same for x-columns.

We want now to obtain a (more quantitative) characterization of the
completeness. To do this we need to introduce some more definitions.

We look at the left parts (made of the first k − 1 places) of D1 and D2.
We define d as the difference between the number of times where a y-column
of D1 has been replaced in D2 by a white x-column and the number of times
where an x-column of D1 has been replaced in D2 by a white y-column. We
also define d′ as the difference between the number of times where a crossed
y-column of D1 has been replaced in D2 by an x-column and the number of
times where a crossed x-column of D1 has been replaced in D2 by a y-column.
We should note that d and d′ are relative to k − 1.

Since the problem is symmetric with respect to x and y (as long as we do
not use the rules of construction), we shall only examine the case where we
derive with respect to yk, i.e., where there is a y-column at the k-th place of
T1 + S2. The symmetric case has a similar characterization (with opposite
signs for d and d′). We now introduce the following notations: b1 (resp. b2)
denotes the number of white cells at place k in D1 (resp. D2) and c1 (resp.
c2) the number of crosses. The characterization can now be stated as follows:

Characterization :
If the first k − 1 places are complete, the k-th is complete if one of the

following conditions is verified:

14



1. at place k in D1 and D2 there is a y-column and b2 = b1 + d and
c2 = c1 + d′ (each of these equalities easily implies the other);

2. at place k, there is a crossed x-column in D1 (i.e., b1 = 0) and a
y-column in D2, and b2 = d;

3. at place k, there is a y-column in D1 and a white x-column in D2

(c2 = 0), and c1 = −d′.

Proof. To prove this result, we begin by observing that we can not have
x- and y- cells at the same place in T1 + S2: when µ is a hook, we have
∂xi∂yi∆µ = 0. There are in fact three possibilities for the columns at place
k:

1. D1 and D2 have a y-column;

2. D1 has a crossed x-column and D2 a y-column;

3. D1 has a y-column and D2 a white x-column.

We deal with these three cases.

1. Case 1: if in T1 + S2 the heights of the y-columns in the first k − 1
places are K, K − 1, . . ., K − l + 1 and if our y-column is the h-th
of D2, we observe that l = h − 1 + d. The height of the y-column of
T1 + S2 at place k is at most K − l. But if we observe that the height
of the h-th y-column of D2 is K − h + 1, we obtain:

b1 + c2 ≤ K − l = K − h + 1 − d = b2 + c2 − d.

Hence b2 ≥ b1 + d and equality holds when it is complete. As b2 + c2 =
b1 + c1 + d + d′, the equality c2 = c1 + d′ holds too.

2. Case 2: this case is treated like Case 1.

3. Case 3: the reasoning is similar to Case 1. If our y-column is the h-th
of D1 and if in the first k−1 places of T1 +S2 the successive y-columns
have height K, K −1, . . ., K − l +1, then l = h−1−d′. As the height
of the y-column at place k of T1 + S2 is at most K − l, we deduce that
c1 ≥ −d′, with equality corresponding to completion.

�
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Remark 2: If the first k − 1 places are complete but not the k-th, we
observe easily that it corresponds to an increasing of the number of white
cells in D2. We have indeed seen in the proof that b2 ≥ b1 +d and c2 ≤ c1+d′

in Case 1 and similar inequalities in Cases 2 and 3.

Remark 3: We observe that the Cases 2 and 3 can not happen simulta-
neously since we can not have at the same place a crossed column in D1 and
a white column in D2 (there is at least one cell at each place).

Once we have obtained this characterization of completeness, we shall use
it to progress in the proof of Theorem 3.

4.3 Application

Lemma 3:
If we have completeness on the first k places along the chain between two

drawings D and D′ with the same shape, then the sum of the d along the
chain is equal to zero, as well as the sum of the d′ (d and d′ relative to the
first k places).

We will first apply this result in the following lemma and prove it after
Lemma 4.

Lemma 4:
If we have completeness on the first k places between D and D′, then these

two drawings are identical on the first k places.
Proof. To prove this result we shall use Lemma 3. Indeed we notice that

if we keep either an x- or a y-column at place k along the chain between D
and D′, the result is obvious since (by Lemma 3) the sum of the d is equal
to zero. With natural notations, we have: b′ = b +

∑

d = b. Now, if the
“shape” of the column at place k changes, let us observe the two following
cases (by symmetry we look at the changes for a y-column):
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    1 :

   2 :

   1 :

   2 :

(simple arrows mean single generation, broken arrows mean possibly several
generations, but at fixed shape at place k).

In view of the characterization of completeness, we observe that we have
in both cases: b2 = b1 + d, c2 = c1 + d′, as if we had not changed the shape
(it is easily seen by looking at the d on the left and at the d′ on the right).

By Lemma 3, we are now able to remove the condition that the shape
does not change at the broken arrows. Indeed, we begin by reasoning about
chains as above, then we can ignore the change of shape. By this method we
obtain the general result (analogy with a Dick path for which we repeat the
removing of sequences ∨ and ∧).

�
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Proof of Lemma 3. This will be done by induction on k.

• If k = 1, the result is obvious.

• To prove the result for k, we have to show that along the chain between
D and D′, the shape of the k-th column has changed as many times by
appearance of a white x-column as by appearance of a white y-column
(i.e., sum of d equal to zero) and as many times by disappearance of a
crossed x-column as by disappearance of a crossed y-column (i.e., sum
of d′ equal to zero).

We suppose that our column (assume it is a y-column in D and D′)
changes more times by appearance of a white x-column than by appear-
ance of a white y-column. Let us observe the subchain on the figure
below:

1

2

3

4

   d  , d’

   d  , d’

   d  , d’   

 2        2 

 3        3

 1          1         
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Let h1 denote the height of the y-column of drawing 1 and h′
1 the depth

of the first x-column on its right. We observe that b4 = d3 ≥ 0 (Case 2
of the Characterization) and that d2 = h′

1−d1−d′
1 since b3 = 0 = b2−d2

(Case 1). Thus: d1 + d2 = h′
1 − d′

1.

We now visualize the changes of shape at place k between D and D′

on the following representation.

y

x

y

x

y

x

y

x

y

The even coordinates correspond to a y-column at place k, the odd ones
to an x-column. A north-east line is either the appearance of a white
x-column or disappearance of a crossed x-column (according to odd or
even coordinate) and a south-east line is either the appearance of a
white y-column or disappearance of a crossed y-column. The vertical
dotted lines are defined as follows. The first is placed at the last point
for which the coordinate is equal to zero. Then we have clearly two
north-east lines and we put another dotted line. Then we restart with
taking coordinate 2 as a new zero for the coordinates.

Let us suppose that between D and D′ there is a single ascent (i.e.,
a subchain like 1-2-3-4). If we verify that d0 + d1 + d2 > 0, where d0

is the sum of the d before the ascent, then since
∑

d = 0 between D
and D′, we have necesseraly some d < 0 after this sequence, which is
impossible without a disappearance of the crossed y-column. That is
what we wanted to show.

Let us prove that d0 + d1 + d2 > 0.

Let b denote the number of white cells at place k of D then b1 = b+d0.
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Hence:

d0 + d1 + d2 = d0 + h′

1 − d′

1 = b1 − b + h′

1 − d′

1 = h1 + h′

1 − b.

It is easy to check that h1 + h′
1 − b > 0.

It remains to observe that when there are several ascents, the previous
reasoning is still true, by looking at the last one. Indeed, it suffices
to replace the equality b1 = b + d0 by b1 ≤ b + d0 (thanks to what
precedes), which keeps the result unchanged.

The proof of Lemma 3 is almost complete. It remains to observe that the
symmetries between x and y and between crossed and white cells allow us to
deal with the other cases.

�

Lemma 5 :
If there is no total completeness along the chain between D and D′, then

D 6= D′ which implies Theorem 3.
Proof. This is an easy consequence of Lemmas 2 and 4 and Remark 2. It

suffices to look at the leftmost place for which the completeness fails: D′ has
more white cells (and less crosses) than D at this place.

�

4.4 End of the proof

It is now sufficient to show that there is at least one generation between D
and D′ that is not complete. We shall in fact show that each generation is
not complete.

Let again D1 = (S1, T1) and D2 = (S2, T2) denote two different drawings,
father and son.

If D1 and D2 have the same shape, the result is obvious.
It then remains to study the case where D1 and D2 have different shape.

We suppose that completeness holds and reduce it to the absurd.

By looking at the place at most on the left where the shape changes,
we can consider only the case where the shape changes at place 1. The
only changes for which the non-completeness is not obvious are the following
(remark that here d = d′ = 0):
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case 1

case 2

case 3

case 4

The following remark allows us to divide by two the number of cases:

Remark 4: D2 is a son of D1 if and only if flip(D1) is a son of flip(D2).
This allows us to only consider cases 2 and 4.
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1. Case 2 :

D2=

D1= a

If at place “a”(corresponding to the first plain crossed x-column in D2),
there is

• an x-column: we first verify that at each place on the left of “a”
we have d = 0; then we show that the x-column in D1 is smaller
than the one in D2, which contradicts b2 = b1 − d = b1.

• a y-column: we first show that in each x-column of T1 + S2 there
is at least one cell coming from D1 and one coming from D2. This
is absurd since there are not enough x-columns.
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2. Case 4:

D2=

D1=

In this case, if the first plain x-column of D1 is the l-th x-column of
D1, we begin by observing that the x-column on its left have at least
one white cell, hence have a contribution to T1 + S2. Thus on the left
of this place there is already an x-column of depth L− l + 1 (there are
at least l x-columns in T1 + S2 on the left). This is absurd.

5 Elements of 0 x-degree

5.1 Description

Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µk > 0) be any partition of n. The goal of this
section is to give an explicit basis for M0

µ, which denotes the homogeneous
subspace of Mµ of elements of 0 x-degree. We construct this basis with the
same visual objects as in the case of hooks. We also obtain a basis for the
subspace of n(µ) x-degree which we shall denote by M

n(µ)
µ .

The space M0
µ has already been studied in [2] and [6]. In particular it

is proved that its dimension is n!/µ′!, where µ! = µ1! . . . µk! and µ′ is the
conjugate of µ. In fact our basis is related to a family introduced in [2]. But
we obtain here a direct (and not recursive) method of construction. Moreover
we apply the monomial derivatives to ∆µ itself and therefore obtain a simple
and explicit basis for M0

µ.
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We use again the drawings introduced for hook-shaped partitions, here
in the case of any partition of n. A shape is then made of n − 1 bars. Each
of these bars has nx x-cells and ny y-cells. The set of pairs (nx, ny) is the set
of biexponents of the partition (the biexponent is omitted). We again put
crosses in the shapes and the set of rules for these drawings is the following:

1. the bars with the same number of x-cells are arranged in decreasing
height;

2. there are crosses in every x-cell;

3. if a bar B is on the left of a bar with more x-cells than B and q y-cells,
then the bar B must have at least q + 1 y-white cells.

Remark 5: By applying flip we obtain a family of drawings with no
x-crosses.

We now give an example of a drawing:

associated to the partition:
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5.2 Enumeration

We verify that the number of drawings introduced in subsection 1 is n!/µ!.
We consider the drawing from the left to the right. The bar we are looking
at corresponds to a corner of the Ferrers diagram of the partition from which
we have removed the cells corresponding to the bars on the left.

Number the cells of the partition µ by writing i in the cell associated to
the bar at place n − i + 1 in the drawing. By the preceding paragraph, this
gives a standard tableau.

We now look at the following figures:

 i

 i

 x

 x

We observe that the number of choices for cell i is the length of the arrow
that we denote by coarm∗

i (T
i+1), where T i+1 is the (standard) tableau T from

which we have removed the cells numbered from i + 1 to n.
We thus obtain that the cardinality is:

(1)
∑

T standard

1
∏

i=n

coarm∗

i (T
i+1).

We show that this number equals n!/µ′! by induction on n. The result
is obvious when n = 1. We write µ′ = (cα1

1 , . . . , cαh

h ), where the cj ’s are
the height of columns of µ and αj their multiplicities. In particular, µ has

h corners, µ′! =
∏h

i=j(cj!)
αj , n =

∑h

j=1 αjcj and αj is the contribution of
corner j in the product of (1). We then rewrite this formula as:

h
∑

j=1

αj .
∑

T ′

1
∏

i=n−1

coarm∗

i (T
′i+1)

where T ′ varies amongst every standard tableaux of the Ferrers diagram
from which we have removed its j-th corner (let µj denote the corresponding
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partition). We are now able to conclude, since µ′j ! = µ′!/cj:

h
∑

j=1

αj

(n − 1)!

µ′j!
=

(n − 1)!

µ′!

h
∑

j=1

αj .cj =
n!

µ′!
.

5.3 Independence and conclusion

As in the case of the hook-shaped partitions, we denote by S (respectively
T ) the diagram consisting only of the crosses (respectively of the white cells)
of a given drawing. For example in the case of the drawing of subsection 5.1,
we have:

    S=

    T=

Let now ∂S and ∂T denote the derivative operators associated to S and T .
Let also S and T denote the set of all S’s and T ’s constructed by this way.
We also associate to S and T a monomial by the same way. For example,
in the case of the previous figures, we have: MS = x2y2x

4
3x

3
4x6x

2
7x8 and

MT = y3
1y2y

2
5y6y9.

Theorem 4:
The set {∂S∆µ}S∈S is linearly independent and hence is a basis of M0

µ.

The set {∂T ∆µ}T∈T is linearly independent and hence is a basis of M
n(µ)
µ .

The theorem is a consequence of the two following lemmas.

Lemma 6:
We can reconstruct the drawing from S or T .
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Lemma 7:
For the lexicographic order (x1 < x2 < · · · < xn < y1 < · · · < yn) MT is

the minimal monomial for ∂S∆µ and MS for ∂T ∆µ.

Proof. The proof of Lemma 6 is easy: we reconstruct the drawing from
the left to the right, as in the case of hooks, thanks to the rules.

The proof of Lemma 7 requires attention only in the case of T , so we
develop this point. Once the crossed cells have been fixed, we have to show
that the white cells are at most on the left. It suffices in fact to show that
the x-white cells can not be moved to the left. We show it by looking at
the drawing from the left to the right. Let k and l denote the number of
x-cells and of y-crossed cells at place p. We have to prove that a bar with
l′ > l x-cells and k′ ≥ k y-crossed cells is forbidden at place p. If the couple
(k′, l′) is not a biexponent of the partition or if it is present on the left, we
are done. To conclude we observe that this couple can not be a biexponent of
the partition appearing on the right of the initial drawing. Indeed, because
of the rules we should have: k > k′.

�

Remark 6: It is possible to show that our family of monomials {MS}S∈S

is equal to the family Bµ of [2], section 4. But whereas Bµ was constructed
recursively, our construction is direct. Moreover we apply it directly to ∆µ

and obtain simple and explicit bases for M0
µ and M

n(µ)
µ , whereas N. Bergeron

and A. Garsia were dealing in [2] with linear translates of Garnir polynomials.
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