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Abstract
We consider, in quantum scattering theory, symmetrised time delay defined
terms of sojourn times in arbitrary spatial regions symmetric with resp#oetorigin.
For potentials decaying more rapidly than— at infinity, we show the existence of
symmetrised time delay, and prove that it satisfies an anisotropic veiSi@vioe’s
formula. The importance of an anisotropic dilations-type operator isatesién our
study.

1 Introduction and main results

It is known for quite some time that the definition tiine delay(in terms of sojourn
times) in scattering theory has to bgmmetrisedn the case of multichannel-type scat-
tering processes (sexg.[3, 4, 12, 13, 21, 22]). More recently [6] it has been shown
that symmetrised time delay does exist, in two-body sdatigurocesses, for arbitrary
dilated spatial regions symmetric with respect to the arighe usual time delay does
exist only for spherical spatial regions [20]). This leadsitgeneralised formula for time
delay, which reduces to the usual one in the case of sphepedial regions. The aim
of the present paper is to provide a reasonable interpoatafithis formula for potential
scattering by proving its identity with an anisotropic versof Lavine’s formula [11].

Let us recall the definition of symmetrised time delay for a4vody scattering
process inR?¢, d > 1. Consider a bounded open s8tin R? containing the origin
and the dilated spatial regions, := {rz | = € X}, r > 0. Let Hy := —1A be
the kinetic energy operator i := L?(R%) (endowed with the nornj - || and scalar
product(-,-)). Let H be a selfadjoint perturbation df, such that the wave operators
Wy = s-lim,_ 4 e e~Ho exist and are complete (so that the scattering operator
S := WiW_ is unitary). Then one defines for some states 7 andr > 0 two sojourn
times, namely:
|2
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and

T-(¢) := /jo dt /EZ dz |(e*itH W—@)(I)F-

If the statep is normalized to one the first number is interpreted as the spent by the
freely evolving state "o ¢ inside the seE,, whereas the second one is interpreted as
the time spent by the associated scattering staté’ W_ within the same region. The
usual time delay of the scattering processXprwith incoming statep is defined as

() =Ty () — T (),

and the corresponding symmetrised time delaypis given by

() = To(p) — 5 [T7(9) + T (S9)] -
If ¥ is spherical and some abstract assumptions are verifieliyiteof 71" (o) andr, (¢)
asr — oo exist and satisfy [6, Sec. 4.3]
(Hy ¢, 5*[D, S|Hy ), (1.2)

lim 7,(p) = lm 7"(p) = —3

whereD is the generator of dilations. E is not spherical the limit of" () asr — oo
does not exist anymore [20], but the limitaf(p) asr — oo still exists, provided thall
is symmetric with respect to the origin [6, Rem. 4.8].

In this paper we study, (¢) in the setting of potential scattering. For potentials
decaying more rapidly thajp|~* at infinity, we prove the existence tifn, .. 7,.(¢) by
using the results of [6]. In a first step we show that the liratisies the equation

Jim 7. (p) = —(f(Ho)™"?p, "Dy, S|f (Ho) /%), 1.2)
where f is a real symbol of degreeé and Dy, = Dx(f) is an operator acting as an
anisotropic generator of dilations. Then we prove that koan(l.2) can be rewritten as an
anisotropic Lavine’s formula. Namely, one has (see Theatdnifor a precise statement)

lim 7,(¢p) = / ds (e W_f(Ho)™"%p, Vs p e ™ W_f(Ho)™"/%p), (1.3)

—
r—00 —co

where the operator
Vs = f(H) = f(Ho) —ilV, Ds]

generalises the viridl’ := 2V — 1[V, D]. Formula (1.3) provides an interesting relation
between the potentidl and symmetrised time delay, which we discuss.

Let us give a description of this paper. In section 2 we inficedthe condition on
the sety (see Assumption 2.1) under which our results are proved. [¢¢edefine the
anisotropic generator of dilation9y, and establish some of its properties. Section 3 is
devoted to symmetrised time delay in potential scatteting;existence of symmetrised
time delay for potentials decaying more rapidly thaf* at infinity is established in



Theorem 3.5. In Theorem 4.5 of Section 4 we prove the anigigtrioavine’s formula
(1.3) for the same class of potentials. Remarks and exarape® be found at the end of
Section 4.

We emphasize that the extension of Lavine’s formula to ndregpal sets. is
not straightforward due, among other things, to the appearaf a singularity in the
space of momenta not present in the isotropic case (seei&q(2i7) and the paragraphs
that follow). The adjunction of the symbdgl in the definition of the operatabsy; (see
Definition 2.2) is made to circumvent the difficulty.

Finally we refer to [9] (see also [8, 11, 15, 16, 17]) for a tethwork on Lavine’s
formula for time delay.

2 Anisotropic dilations

In this section we define the operatbs; and establish some of its properties in relation
with the generator of dilation® and the shape af. We start by recalling some notations.

Given two Hilbert space®(; andH,, we write B(H;, Hz) for the set of bounded
operators fronf; to Hy with norm|| - ||, —#,, and put8(H, ) := B(Hi, H1). We set
Q = (Q1,Q2,...,Qq) andP := (P1, P5,..., P;), whereQ); (resp.P;) stands for the
j-th component of the position (resp. momentum) operatét.it¥ := {0,1,2,...} is the
set of natural numberg{*, k € N, are the usual Sobolev spaces o€ and; (R?),
s,t € R, are the weighted Sobolev spaces dRér1, Sec. 4.1], with the convention that
HE(RY) = H(RY) andH;(RY) := HY(R?). Given a setM C R we write 1,4 for
the characteristic function fok1. We always assume thatis a bounded open set Rr*
containing0, with boundarydy: of classC*. Often we even suppose thatsatisfies the
following stronger assumption (see [6, Sec. 2]).

Assumption 2.1. ¥ is a bounded open set &’ containing0, with boundary¥. of class
C*. FurthermoreX. satifies

/0Oc dp (g (pz) — Ig(—px)] =0, Vo € RY

If p € R?, then the numbefoOo dt 15 (tp) is the sojourn time ifX of a free classical parti-
cle moving along the trajectorty— x(t) := tp, t > 0. ObviouslyX. satisfies Assumption
2.1if ¥ is symmetric with respect to (i.e. X = —). Moreover if3 is star-shaped with
respect t@ and satisfies Assumption 2.1, thEn= —>..

We recall from [6, Lemma 2.2] that the limit

+oo
Ry (z) := il\r% (/6 dju Is (pz) + lne) (2.4)

exists for eactr € R\ {0}, and we define the functiofis : R? \ {0} — R by

Gx(x) := % [Rs(x) + Rs(—2x)]. (2.5)



The functionGs, : R%\ {0} — Ris of classC* sincedX is of classC*. Letz € R4\ {0}
andt > 0, then Formulas (2.4) and (2.5) imply that

Gyx(tr) = Gx(x) — In(t).
From this one easily gets the following identities for theidiives ofG's::
z-(VGs)(z) = -1, (2.6)
el (0°Gy) (tx) = (0°Gsx) (), (2.7)

wherea is ad-dimensional multi-index witha| > 1 ando® := 0" - - - 95¢. The second
identity suggests a way of regularizing the functiéngss, which partly motivates the
following definition. We use the notatiofi*(R; R), 1 € R, for the vector space of real
symbols of degreg onR (see [1, Sec. 1.1]).

Definition 2.2. Let f € S*(R;R) be such that
(i) f(0)=0andf(u)> 0foreachu > 0,
(ii) for eachj = 1,2,...,d, the function — (9,Gx)(x)f(x*/2) (a priori only de-
fined forz € R4\ {0}) belongs toC?(R%; R).
Then we definégy. : R — R? by Iy (z) := —(VGsx)(z) f(22/2).

Given a seb: there are many appropriate choices for the funcfioRor instance if
v > 0 one can always takg(u) = 2(u? + v)~*u?, u € R. But whenX is equal to the
open unit ball3 := {x € R? | || < 1} one can obviously make a simpler choice. Indeed
in this case one has [6, Rem. 2.3.()}G5)(z) = —z;2~2, and the choice (u) = 2u,
u € R, leads to the>>°-function Fx(z) = z.

Remark 2.3. One can associate to each &t unique seb symmetric and star-shaped
with respect td such thati’s = G5, [6, Rem. 2.3.(c)]. The boundady: of ¥ satisfies

oy = {eGZ("")m |z € Rd\{O}},

andy, = = {rz | x € Z} r > 0. Thus the vector field, = F is orthogonal to the

hypersurface@Er in the following sense: it belongs to the tangent space@f at
y € 9%, then Fx(y) is orthogonal tov. To see this lek — y(s) = re@=() g(5)
be any differentiable curve any,.. Then% y(s) belongs to the tangent space®t,. at

y(s), and a direct calculation using Equatioii®.6)}(2.7) givesFx (y(s)) - % y(s) =0.

In the rest of the section we give a meaning to the expression
Dy := }[F(P)-Q+ Q- Fx(P)),
and we establish some properties/af in relation with the generator of dilations
D:=%(P-Q+Q-P).

For the next lemma we emphasize th&t is contained in the domai®(f(H,)) of
f(Hp). The notation(-) stands for,/1 + | - |2, and.” is the Schwartz space @&f'.
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Lemma 2.4. LetY be a bounded open setlf containing0, with boundarydy: of class
C*. Then

(a) The operatorDsy; is essentially selfadjoint orv’. As a bounded operatol)y, ex-
tends to an element o8 (H;, H; "} ) for eachs € R, t € [-2,0] U [1, 3].

(b) One has for eache R andy € D(Dx) ND(f(Hy))
e "o Dy, "0 o = [Dy; — tf (Ho)Jep. (2.8)
In particular one has the equality
i[Ho, Ds] = f(Ho) (2.9)
as sesquilinear forms oR(Dyx) N 'H2.

The second claim of point (a) is sufficient for our purposegneif it is only a
particular case of a more general result.

Proof. (a) The essential seladjointnessiof on . follows from the fact thatFy; is of
classC? (seee.qg.[1, Prop. 7.6.3.(a)]).
Due to the hypotheses di}; one has for each € . the bound

(07 Fo) (Pl < Const. [P} o] (2.10)

whereFy; is thej-th component of s anda is ad-dimensional multi-index witha| <
3. Furthermore

rgong SO sup [[(PYTHQ) [Py (P)Q;s + §(9,Fy)(P)] ¢
j<d Wey:“‘/’“nng

| Ds:|

for eachs € R. Since(Q)” acts as the operatdr— A after a Fourier transform, the
inequalities above imply thdds; extends to an element &8(H3, H5 ). A similar argu-
ment shows thaDsy; extends to an element o (H;, H*~ ') for eachs € R. The second
part of the claim follows then by using interpolation and litya

(b) Let p € e~iHo 7, Sincee~Ho @, eitHo o, = (Q; — tP})¢p, it follows by
Formula (2.6) that

e~ Dy ettt o = [Dy +tP - (VGx)(P)f(Ho)lp = [Ds — tf(Ho)lp.

This together with the essential selfajointneseof o Dy, e?tfo one~*Ho & implies
the first part of the claim. Relation (2.9) follows by takimgetderivative of (2.8) w.r.t.in
the form sense and then settihg: 0. O

Remark 2.5. If ¥ = B and f(u) = 2u, thenFy(x) = z for eachz € R¢, and the
operatorsDy, and D coincide. IfY: is not spherical it is still possible to determine part of



the behaviour of the group/; := ¢*P=. Indeed leR x R? > (¢, ) — & (x) € R? be the
flow associated to the vector fieldFy;, that is, the solution of the differential equation

d

aft(x) = (VGx)(&(2) f(&(2)%/2), &o(z) == (2.11)

Then it is known (see.qg.the proof of [1, Prop. 7.6.3.(a)]) that the grouy; acts in the
Fourier space as

(W) (@) = V/e(@)p(&(2)), (2.12)

wheren,(z) = det(VE:(z)) is the Jacobian at: of the mapping: — & (x). Taking the
scalar product of Equatioif2.11) with & (z) and then using Formul§2.6) leads to the
equation

d
&ft(%“)Q = =2f(&(2)%/2), &o(z) ==
If t < 0andx # 0, thené;(z)? > 22 > 0, and&;(z)? is given by the implicit formula

515(95)2
2t+/ du f(u/2)"' = 0.

2

This, together with the facts that — f(22?/2) belongs toS?(R;R) and f(u) > 0
for u > 0, implies the estimaté¢;(z)) < ¢~ (x) for some constant > 0. Since
(&(z)) < (z) for eacht > 0 it follows that

(€e(@) < (L+e7%) (x) (2.13)

forall t € Randz € R? (the caser = 0 is covered sincg;(0) = 0 for all t € R).
Equation(2.13)implies that the domaif? of H, is left invariant by the groupV;.

The results of Remarks 2.3 and 2.5 suggestiiatay be interpreted as an anisotropic
version of the dilation group, which reduces to the usuaitdih group in the case = B
andf(u) = 2u.

In the next lemma we show some properties of the mollifiedlveso

Ry =i\ Ds +i\)~', A eR\{0}.

We refer to [18, Lemma 6.2] for the same results on the usuatrgeor of the dilation
group D, that is, when = B and f(u) = 2u. See also [5, Lemma 4.5] for a general
result.

Lemma 2.6. LetX be a bounded open setlf containing0, with boundarydX: of class
C*. Then

(a) One has for eache R andy € D(&(P)?)

eitDs [ e~itDs 5 — %gt(p)%p, (2.14)



(b) For each) € R with |\| large enoughR, belongs toZ(H?), and R, extends to
an element of8(H~?2). Furthermore we have for eache H? and each) € H >

Jim (1= Bl =0 and T |1 Bl =0.

Proof. (a) Lety € e'*P» .7, A direct calculation using Formula (2.12) gives
(7 "P= Hye P> ) (k) = & (k)*(F 9)(k),

where.Z is the Fourier transformation. This together with the eBakselfajointness of
e*Ps [ e~ Px gne’P> .7 implies the claim.

(b) Letp € H? and takeh € R with |A\| > c, wherec is the constant in the
inequality (2.13). Using the (strong) integral formula

(Ds +i\) "t = i/;oc dt et e P= son(\) = +1,
and Relation (2.14) we get the equalities
(Ds +i\) "o = (Hy + 1) (Dg +iX) " H(Hy + 1)
+¢/OJFQO dt eM [e7*P® (Ho+1)7"] (Ho + 1)
= (Ho + 1) (Ds +i\) " H(Ho + 1)p

Foo )
— z/ dt eM(Ho+1)""e P [Hy — 3&(P)*] ¢
0
= (Ho+1)"Y(Ds +iX) o+ 2(Hy+1)7" / dt eM e D= ¢, (P)%p.
0

It follows that
Foo ,
HoRxp = —g/ dt eMe Pz ¢, (P)%p, sgn(\) = £1.
0
Now [A| > ¢, and||&(P)2%e|| < (1 +e~")[l¢|l3 due to the bound (2.13). Thus

| HoRx¢||

IN

B[ e P e (P

2l /O dt (e 4 elmn eI Y

< Counst. ||@||2- (2.15)

IN

Using the estimate (2.15) and a duality argument one getsahieds

IR ||72 72 < Const. and |Rx||#~2—2¢-2 < Const., (2.16)



which imply the first part of the claim. For the second part emark that
1— Ry, = (Z‘)\)ingR)\

onH. Using this together with the bounds (2.16) one easily shtasim, | [|(1 —
R)\)¢llnz = 0 for eachy € H* and thatlim| | [[(1 — Rx)¥|»-2 = 0 for each
Y eH2 O

3 Symmetrised time delay

In this section we collect some facts on short-range s@agt¢ineory in connection with
the existence of symmetrised time delay. We always assuatéhth potential” satisfies
the usual Agmon-type condition:

Assumption 3.1. V' is a multiplication operator by a real-valued function suttat 1/
defines a compact operator froh® to H,. for somex > 1.

By using duality, interpolation and the fact tHatcommutes with the operaté®)’,
t € R, one shows that” also defines a bounded operator frffi to Hff[l) foranys €
[0, 1], ¢ € R. Furthermore the operator sukh:= H, + V is selfadjoint orD(H) = H?,
the wave operator8l/,. exist and are complete, and the projectidigs (Q) are locally
H-smooth on(0, o) \ o, (H) (seee.g.[7, Sec. 3] and [19, Sec. XII1.8]).

Since the first two lemmas are somehow standard, we give phaafs in the ap-
pendix.

Lemma 3.2. LetV satisfy Assumption 3.1 with> 1, and takez € C\ {o(Ho)Uo(H)}.

Then the operatofH — z)~! extends to an eIementﬂ(H;Qs,Hf(l_s)) for eachs €
[0,1],t € R.

Alternate formulations of the next lemma can be found in [@yma 4.6] and [22,
Lemma 3.9]. For each > 0 we define the dense set

75 = {¢ € D((Q)") | n(Ho)p = ¢ for somen € C5°((0, 00) \ opp(H)) }.

Lemma 3.3. Let V satisfy Assumption 3.1 with > 2. Then one has for each € Z;
with s > 2 '
(W= —1)e o || € L'(R_, dt) (3.17)

and 4
(W — 1) e o ]| € LY (R4, dt). (3.18)

Lemma 3.4. Let V satisfy Assumption 3.1 with > 4, and lety € ¥, for somes > 2.
Then there exists > 2 such thatSy € 2., and the following conditions are satisfied:

|(W_ —1)e ol e LNR_,dt) and |(W4 —1)e "o Syl € L'(Ry,dt).



Proof. The first part of the claim follows by [10, Thm. 1.4.(ii)]. i@y € Z; andSy €
9 with s, s’ > 2, the second part of the claim follows by Lemma 3.3. O

Theorem 3.5. LetY satisfy Assumption 2.1. Suppose thiatatisfies Assumption 3.1 with
k > 4. Lety € 9, with s > 2. Then the limit of,.(¢) asr — oo exists, and one has

Jim 7 () = —(f (Ho) /%, 5*[Dx, 51/ (Ho)~/?¢). (3.19)

Proof. Due to Lemma 3.4 all the assumptions for the existencémf_. ., 7..(p) are
verified (see [6, Sec. 4]), and we know by Theorem [6, Thm. th&f

lim 7.(p) = —3 (p, 9" [i[Q% Gx(P)], 5] ¢) .

T—00

It follows that

39, 87[Q - (VGx)(P) + (VGx)(P) - Q, S]y)
= S{f(Ho) ¢, S*[f(Ho)"?*(Q - (VGx)(P)
+(VGs)(P) - Q) f(Ho)' 2, S| f(Ho) /%p)
= —(f(Ho) ™29, S*[Ds, S| f(Ho)~/?¢).

lim 7,.(¢) =

T —00

~

O

Note that Theorem 3.5 can be proved with the funcifén) = 2u, even if¥ is not
spherical. Indeed, in such a case, point (ii) of Definitio2 8.the only assumption not
satisfied byf, and a direct inspection shows that this assumption doeglagtany role
in the proof of Theorem 3.5.

Remark 3.6. Some results of the literature suggest that Theorem 3.5 maydved under

a less restrictive decay assumption @rif one modifies some of the previous definitions.
Typically one proves the existence of (usual) time delaypfiientials decaying more
rapidly than|z|=2 (or even|z|~!) at infinity by using a smooth cutoff in configuration
space and by considering particular potentials. The readeeferred to [2, 14, 15, 23,
24] for more information on this issue.

4 Anisotropic Lavine’s formula

In this section we prove the anisotropic Lavine’s formula3j1We first give a precise
meaning to some commutators.

Lemma4.1. LetY. be a bounded open setRf* containingd with boundarydy. of class
C*. LetV satisfy Assumption 3.1 with> 1. Then

(@) The commutatoV, Dy], defined as a sesquilinear form @ Ds) N H?, extends
uniquely to an element oB(H?, H~2).



(b) For eacht € R the commutatof Dy, e~ ], defined as a sesquilinear form on
D(Ds) N'H2, extends uniquely to an eleménts,, e~ *# ]2 of (H2, H~2) which
satisfies

|[Ds, e " < Const. |t].

}a||H2HH—2

(c) For eachn € C§°(R) the commutatofDs, n(H)], defined as a sesquilinear form
onD(Dys) N 'H?, extends uniquely to an element®{H). In particular, the oper-
ator (H) leavesD(Dy) invariant.

Proof. Point (a) follows easily from Lemma 2.4.(a) and the hypo#isemnl’. Given point
(a) and Lemma 2.6.(b), one shows points (b) and (c) as in [@8rha 7.4]. O

If V satisfies Assumption 3.1 with > 2, then the result of Lemma 4.1.(a) can be
improved by using Lemma 2.4.(a). Namely, there exists % such that the commutator
[V, Ds], defined as a sesquilinear form ®{Dy;) N H?2, extends uniquely to an element
[V, Ds]® of 2(H? 5, Hz?).

The next Lemma is a generalisation of [9, Lemmas 2.5 & 2.7 froved under
the following assumption on the functigh

Assumption 4.2. For eacht € R there existg > 1 such that the operatof (H)— f(Hy),
defined or?, extends to an element &f(H7, H,,).

We refer to Remark 4.4 for examples of admissible functipnidere we only note
that the operator

Vs.p = f(H) —i[H,Ds]* = f(H) — f(Ho) — iV, Ds]".
belongs toZ(H? ;, H; *) for somes > 1 as soon ag satisfies Assumption 4.2.

Lemma 4.3. LetX be a bounded open setRf containing0, with boundarydy: of class
C*. LetV satisfy Assumption 3.1 with > 2. Suppose that Assumption 4.2 is verified.
Then

(a) One has for each € C§°((0,00) \ opp(H)) and eacht € R the inequality
|(Ds, + i)~ e~ y(H)(Ds, + i)~ '|| < Const. ().

(b) Foreach; € Cg°((0, 00)\opp (H)) the operator§ Dy, Wn(Ho)] and[Ds, Win(H)],
defined as sesquilinear forms @1 Dy;), extend uniquely to elements@f(H). In
particular, the operator$V,n(H,) andWin(H) leaveD(Dy) invariant.

Proof. (a) Since the case= 0 is trivial, we can suppose# 0. Lety, v € D(Ds) NH?,
then

t
(Dzp, ™) — (o™ D) = lim | ds(p, "™ i[H, DpRy]e™*" )

10



due to Lemma 2.6.(b). By using Lemma 2.4.(b) and Lemma 4.wélget in% (H?, H~?)
the equalities

t
[Dz,efitH}a _ efitH/ ds eiSHi[H, Dz]aefisH
0
t
=te " f(H) —e / ds vy pe . (4.20)
0

Taken,d € C§°((0,00) \ opp(H)) with ¥ identically one on the support of, and
let ¢ € C5°((0,00) \ opp(H)) be defined by (u) = f(u)~'9(u). Thenn(H) =
f(H)C(H)n(H) and
e~ () = C(H)te™ " F(H)n(H)

1

ot
— Eg(H) e*”H/O ds e Vg pe 1 p(H) + %C(H)[Dg,e’”H]“n(H).

SinceVs, ; belongs to%(H? s, H; *) for somes > 1, a local H-smoothness argument
shows that the first term is bounded Oynst.|t| ! in H. Furthermore by using Lemma
4.1.(c) one shows thaDs, + i)~ *¢(H)[Ds, e~ ]y (H)(Dx + i)~* is bounded irH
by a constant independent©fThus

|(Ds + i) Le " py(H)(Dy +1i)~* | < Const. [t~

and the claim follows.

(b) Consider first{Ds;, Wyn(Hy)]. Givenn € C§°((0,00) \ opp(H)) let ¢ €
C§°((0,00) \ opp(H)) be identically one on the support gf Due to Lemma 4.1.(c)
one has oD(Dy)

[Ds, ¢(H) ™™ n(H) e ((Ho)]

= ((H)[Ds, e y(H) e "™|¢(Ho) + [Dg, C(H)] e y(H) e~ ((Ho)

+C(H) e n(H) e [Dy, ((Ho),

and the last two operators belong #(H) with norm uniformly bounded irt. Let
»,¥ € D(Ds). Using Lemma 2.4.(b) and Lemma 2.6.(b) one gets for the fppsta

11



tor the following equalities

(@,¢(H)[Ds, e n(H) e ™ 01¢(Ho )

= (@, C(H)[Ds, ™ ]n(H) e~ ((Ho)y)
+ (¢, C(H) "™ Dy, n(H)] e~ "o ¢(Hq)t)
+ (p, C(H) ™ n(H)[Ds, e~ "¢ (Ho )1))

_ /t s <¢,C(H) ei(t_s)H i[H, Dz]aeiSH W(H) e—itHo C(H0)>
0

+ (¢, ((H) "™ [ Dy, n(H)] e~ "o ¢ (Ho))
+t{p,((H) e n(H)e "™ f(Ho)((Ho))

t
- / ds (o, C(H) &= vy, oisH () e~ H0 ¢ (Hy))
0

+ (0, C(H) ™ [Dy,n(H)] e~ ((Ho)y)
—t{p.n(H) " {f(H) — f(Ho)} e~ ((Ho)y) .
The first two terms are bounded byj|| - ||¢|| with ¢ > 0 independent op, ¢) andt (use

the local H-smoothness o¥x, ; for the first term). Furthermore, due to the lo¢al and
Hy-smoothness of (H) — f(Hy) one can find a sequencg — oo asn — oo such that

lim t, (@, n(H) " {f(H) — f(Ho)} e~ ((Ho)y) = 0.
This together with the previous remarks implies that
lim (¢, Dy, ((H) " n(H)e "o ¢(Ho)lp) < |l - [0,

n—00

with ¢’ > 0 independent ofp, ) and¢. Thus using the intertwining relation and the
identity n(Ho) = ¢(Ho)n(Ho)((Hp) one finds that

| (Dso, Win(Ho)¥) — (@, Win(Ho)) |
= lim | (¢, [Ds, ((H) e n(H)e "0 ((Ho)]y) |

n—oo

<l - 1.

This proves the result foDy., W,n(Hp)]. A similar proof holds for[Ds,, W_n(Hy)].
Since the wave operators are complete, ondhag(H) = s-lim;_, 4, e?*Ho e~ p(H),
and an analogous proof can be given for the operafoss Win(H)]. O

Remark 4.4. In the casex = B the requirements of Definition 2.2 and Assumption 4.2
are satisfied by many functiorfs A natural choice isf(u) = 2u, u € R, since in such
acasef(H) — f(Hy) = 2V € B(H}, Hitr), t € R, £ > 1. If X is not spherical
there are still many appropriate choices fgr For instance ify > 0, then the function
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f(u) = 2(u? + v)~ '3, u € R, satisfies all the desired requirements. Indeed in such a
case one has oi? the following equalities

J(H) = f(Ho)

=2V —2y[(H? +~) 'H — (H§ +~) " Ho|

=2V — 29(H? + )" 'V + 2y(H? +~) " (HoV + VHy + V?)(H§ +~) "' Ho,
and thusf(H) — f(H,) also extends to an element@f(H?, H, 1), t € R, x > 1, due
to Lemma 3.2 and the assumptionsion

The next Theorem provides a rigorous meaning to the anigiatt@vine’s formula
(1.3).

Theorem 4.5. Let X satisfy Assumption 2.1. L&t satisfy Assumption 3.1 with > 4.
Suppose that Assumption 4.2 is verified. Then one has foreact; with s > 2

lim 7, (¢p) = / ds (e W f(Ho) ™" /%p, Vs pe " W_f(Ho) " ?0), _,,

T o (4.21)
where(-, ), ,:H? x H~? — Cis the anti-duality map betwee* andH .
Proof. (i) Set W (t) := ¢itH ¢~itHo and lety := n(H)y, wheren € C§°((0,00) \
Opp(H)) andi € D(Ds). We shall prove that D W (¢)*¢|| < c, with ¢ independent
of t. Due to Lemma 2.4.(b) and Lemma 4.1.(c) one has
IDsW ()¢ = || e~ Dy ™o e ™  n(H)(Dy + 1) 4 |
< [t|[{F(H) = f(Ho)} e " n(H)(Ds + 1)~ 4| (4.22)
+|{Ds — tf(H)}e " n(H)(Ds +0) 4,
wherey = n(H)(Dyx, + i) 4. Letz € C\ {o(Hop) Uo(H)} and setj(H) := (H —
2)?n(H). Then Lemmas 2.4.(a), 3.2, and 4.3.(a) imply that
[tI[|{f (H) — f(Ho)} e~ n(H)(Ds + i) 4|
< [H{f(H) = f(Ho)}H — 2)(Ds + )| - [(Ds +0) 7" e 7(H)(Ds +0)7 ||
< Const.

Calculations similar to those of Lemma 4.3.(a) show thas#wond term of (4.22) is also
bounded uniformly irt.

(i) Let W (¢) andv be as in point (i). Lemma 2.4.(b), Lemma 4.1.(c), and commu-
tator calculations as in (4.20) lead to

<W(t)*¢, DZW(t)*’l/)> = <w, eltH Ds e itH 1/)> —t <¢a et f(HO) e~ itH w>
t
= <¢7 DEQZ}) - /0 ds < e_iSH w’ VZ,f e_iSH w>2,_2
+t <1/},eitH{f(H) o f(HO)}efitH 1/}> )
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The local H-smoothness of (H) — f(Hy) implies the existence of a sequerige— co
asn — oo such that

Jim o (9, {f(H) = f(Ho)} e~ ) = 0.

This together with point (i) and the local-smoothness o¥s; ; implies that

(Wi, DsWiap) = (b, Dstp) — [ ds (e ™, Vg pe ),
; ,

Similarly, one finds

0

(W* o, DsW* ) = (4, D) + / ds (e Vi ooy

and thus
(Wi, DsWi) — (Wi, DsWZep) = _/ ds(e ™,V pe ™M y), .
> (4.23)
Let p € s with s > 2. Due to Lemma 4.3.(b) the vectdV_ f(Hy)~/?¢p is of the
form n(H)y, withn € C§°((0,00) \ opp(H)) andy € D(Dy). Thus one can set =
W_ f(Hy)~*/?¢ in Formula (4.23). This gives

<Sf(H0)—1/230,Dsz(HO)—1/2<p> _ <f(H0)_1/2<,0,sz(Ho)_1/2<,0>

oo
=- / ds (™" W_f(Ho)™"?p, Ve pe T W_f(Ho)"/?p)

2,2
— 00

and the claim follows by Theorem 3.5. O

Remark 4.6. Symmetrised time delay and usual time delay are equal Whsispherical
(see Formula(1.1)). Therefore in such a case Formu(d.21) must reduce to the usual
Lavine’s formula. This turns out to be true. Indeedif= B and f(u) = 2u, then
f(Ho) = 2Hy, Vs, 5 is equal to the viriall’ := 2V — i[V, D]*, and Formula(4.21)takes
the usual form

oo

Tim () = 3 / ds (e ™M W_Hy 2, Ve W H; ), .

In the following remark we give some insight into the meandfig-ormula (4.21)
whenX is not spherical. Then we present two simple examples asusirdtion.

Remark 4.7. LetV satisfy Assumption 3.1 with> 4, and choose a sét # B satisfying
Assumption 2.1. In such a case the functfgiu) := 2(u? + v)~'u?, u € R, fulfills the
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requirements of Definition 2.2 and Assumption 4.2 (see Rerhd). Thus Theorem 4.5
applies, and one has far € 2, with s > 2

lim TT(QO)

= lim ds(e’”HW fo(Ho) 20, Vs p e S W_ £ (Ho) /%)

YN0 2,—2

Now f.,(Hy)¢ converges in norm teHyp as~ \, 0, so formally one gets the identity

o0
Tim 7,(p) = %/ ds (e T W_Hy V2, Ve e T W_H; 2g), . (4.24)
—o0
where

Vs :=2V —i[V,Dg]* =2V — £ ¥ {[V,Fs;(P)]-Q; +Q; - [V, Fs;(P)]},

Fy;(P) = —(9;Gx)(P)P*. (4.25)

The pseudodifferential operatdts; generalises the virial” of the isotropic case. It
furnishes a measure of the variation of the potentiadlong the vector field- Fx;, which
is orthogonal to the hypersurfacé®., due to Remark 2.3. Therefore Formul&.24)
establishes a relation between symmetrised time delaytentriation ofl” along— Fx..
Moreover one can rewrit¥s. as

Vs, =V +i[V,D — Dg]*
fV+QZ{ P Fz] ))} Q; +Qj- [ (P FEJ(P))]}

j<d

where P — Fx(P) is orthogonal toP due to Formulag4.25)and (2.6). Consequently
there are two distinct contributions to symmetrised timiageThe first one is standard,
it is associated with the terivi, and it is due to the variation of the potentiélalong the
radial coordinate (see [11, Sec. 6] for details). The seconé is new; it is associated
with the termi[V, D — Dx]* and it is due to the variation o¥ along the vector field
x— x — Fy(z).

Example 4.8(Examples inR?). Setd = 2, suppose that” satisfies Assumption 3.1 with
k > 4, and lets be the superellips€ := {(z1,22) € R? | z + 23 < 1}. Then

one hasGe(x) = —§In (¢ + 23) and (9;Ge)(x) = —a? (x] + 23) ' Thus, due to
Remark 4.7 the symmetrised time delay associated &vith(formally) caracterised by
the pseudodifferential operator

Ve =2V = £ 3 {[V, Fe;(P)] - Q; + Q; - [V Fe;(P)]},

j<d
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Figure 1:The vector field Fe and the sets d&,
whereFg ;(P) = P}P?(P} + PQ‘*)_1 (see Figure 1).
WhenX is equal to the star-type set
S:= {4(9) ¢ € R2 |0 € [0,2r), £(0) < [cos(20)® + sm(ge)S]*”Q},

one hasis(z) = I In(z3+23)— 1 In [(23 —23)% +28(212,)8], and a direct calculation

using Formula(4.25)gives the vector field's. The result is plotted in Figure 2.

Figure 2:The vector field Fis and the sets S,
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Appendix

Proof of Lemma 3.2We first prove that 7 —2) ~* extends to an element &# (H; >, H;)
for eacht > 0. This clearly holds fot = 0. Since(Hy — z)~* <P>2 =2+ (1+22)(Ho—
2)~! one has by virtue of the second resolvent equation

(@ (H -2 (P Q)" (4.26)
=2+ (1+22)(Q)" (Ho —2) (@)™
— (@) (Ho = 2) (@ V)@ (@) (H =) (P ()"

If we taket = 1 we find that each term on the r.h.s. of (4.26) isA(H) due to [2, Lemmas
1 & 2]. Hence, by interpolationQ)" (H — z)~* (P)* (Q) ™" € #(H) for eacht € [0,1].
Next we choose < (1,2] and obtain, by using the preceding result and (4.26), that
(Q)' (H — 2)71 (P)* (Q) ™" € #(H) for these values of. By iteration (take' € (2,3],
thent € (3,4], etc.) one obtains thaY)' (H — z)~* (P)*(Q)™" € (H) for each
t > 0. Thus(H — z)~! extends to an element ¥ (H, >, H,) for eacht > 0. A similar

argument shows thdt/ — z)~! also extends to an element &f(H; >, ’H,) for each
t < 0. The claim follows then by using duality and interpolation. O

Proof of Lemma 3.3For ¢ € 7, andt € R, we have (see the proof of [7, Lemma 4.6])
t
(W, _ 1) e—itHo o= —i e—itH/ dr eiTH Ve—i‘rHU 0,
where the integral is strongly convergent. Hence to provk7(3t is enough to show that
-6 t ‘
/ dt/ dr ||[Ve ™o p|| < oo (4.27)

for somes > 0. If ¢ := min{x, s}, then|| (Q)° ¢|| < oo, andV (P)~* (Q)* belongs to
A(H) due to Assumption 3.1. Sineg Hy)p = ¢ for somen € C5°((0,00) \ opp(H)),
this implies that

[Vemmo o] < Const]| (@)~ (P)* n(Ho) e ™ (@) .
For eacte > 0, it follows from [2, Lemma 9] that there exists a constant 0 such that

|V emitHo o|| < c(1+ |7])"°**. Since¢ > 2, this implies (3.17). The proof of (3.18)
is similar. O
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