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Abstract. In this article, we present a discrete definition of the classical
visibility in computational geometry. We present algorithms to compute
the set of pixels in a non-convex domain that are visible from a source
pixel. Based on these definitions, we define discrete geodesic paths in dis-
crete domain with obstacles. This allows us to introduce a new geodesic
metric in discrete geometry.

Introduction

In discrete geometry, many Euclidean geometric tools are redefined to take into
account specificities of the discrete grid. In this article, we propose a definition of
the classical Euclidean visibility based on discrete objects. The interest is double:
on one hand we extend the discrete geometry with a new tool and on the other
hand, since this visibility allows us to define discrete geodesic paths and discrete
shortest paths, we have a practical tool needed by many applications in medical
imaging or image analysis to estimate geodesic distance in non-convex domains.

The visibility definition we propose is based on classical Discrete Straight
Lines (DSL for short). Many algorithms exist for the DSL recognition problem.
Some of these approaches are based on chain code analysis [24], on links between
the chain code and arithmetical properties of DSL [6,7], on links between the
chain code and the feasible region in the dual -or parameter- space [9, 15, 23] and
others on linear programming tools such that Fourier-Motzkin’s algorithm [10].
All these algorithms present a solution either to decide if a given set of pixels is
a discrete straight segment (DSS for short) or to segment a discrete curve into
DSS, or both. In our case, the problem is quite different, we want to decide if
there exits a DSS between two pixels in a non-convex domain.

We present definitions and algorithms to compute the set of pixels which
are visible from a source. Then, we define a notion of discrete geodesic path
and a metric associated to such path based on this visibility definition. We also
proposed an efficient implementation of the geodesic distance labelling from a
source pixel.



1 Visibility
1.1 Notions and definitions

Let us denote D a discrete domain, that is a n—connected set of pixels. We
denote D the complement of D, we call this set indifferently the background or
the set of obstacles. In the following, we consider D a 8-connected domain.

In this domain, we define the discrete visibility by analogy to the continuous
definition.

Definition 1 (Discrete Visibility) Let s and t be two pizels in D, we define
the discrete visibility as a binary relationship v : D — D such that we have
v(s,t) if and only if there exists a 8-connected discrete straight segment from s
to t whose pizels belong to D

Before introducing the visibility problem in non-convex domain, we recall
classical parameter space characterizations of DSL [15, 16, 23]. If we consider an
Euclidean straight line y = ax + (3, the digitization of this line using the Grid
Intersect Quantization (see [11] for a survey on digitization scheme) is the set of
discrete points such that:

Ao, = {(w,0) € 22| — 5 Saz+f-y < 3}

Note that all classical digitization schemes (GIQ, Object Boundary Quanti-
zation or Background Boundary Quantization) can be used and such a choice
will not interfere in our algorithms. We choose the GIQ scheme because of its
symmetry properties.

In the parameter space of the previous definition, we can describe the set of
Euclidean straight lines whose the digitization contains a pixel p(x,y):
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A pixel in D defines a strip in the («, 8)-space delimited by two lines L; :
1

ar+ 3 —y > —% and Ly : ar + 0 —y < 5- If we want to know if a set
of pixels belongs to a DSL, a classical way is to compute the intersection in
the (a, B)-space of strips associated to each pixel. If the feasible domain is not
empty, it describes all DSL containing the pixels (cf figure 1 for an example).
In the following, we define the domain S(s,t) associated to pixels s and ¢ the,
intersection S N S;.

In order to compute the visibility in non-convex domains, the main idea is
to check in the dual space if domains associated to obstacle pixels do not hide

the current pixel ¢ from the source s.

1.2 Visibility domain

Let o denote an obstacle pixel. If we want to describe the set of Euclidean
straight lines whose digitizations do not contain o, we also introduce a strip in
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Fig. 1. An example of S(s,t) domain with pixels (0,0) and (3,2), the S(s,t) domain in
the parameter space defined by inequations : {8 < 1/2,8 > —1/2,8< —3a+5/2,3 >
—3a +3/2}.

the parameter space such that the inequations are reversed. Hence, an obstacle o
is associated to constraints L;(0) : ax+B—y < —1/2and La(0) : ax+B—y > 1/2.
If we want to know if this obstacle blocks the visibility from s to ¢, we just have
to compute in the («, 3)-space Li(s) N La(s) N L1(t) N Ly(t) N Li(0) N Ly(0). If
this intersection is empty then ¢ is not visible from s.

More generally, if we consider a non-convex domain D and a set of obstacle
pixels O = {0;}i—1., that is a restriction of D such that all point abscissas are
between the abscissa of s and the abscissa of ¢ (all other points can be omitted
for the visibility problem). We have the lemma:

Lemma 1 Let s be the source and t a pizel in D, t is visible from s in D if and
only if:

S(S,t) N ( U El(oi) ﬂig(Oﬂ) 75 0

i1=1..n

The proof of this lemma can be deduced by the visibility definition and by
construction of S.
Obviously, we do not have to consider all obstacle pixels. We first define:

Definition 2 A pizel 0 in O is called “blocking pixel” for the visibility problem
v(s,t) if: B B
S(s,t) N Li(o) N La(o) # S(s,t)

and the abscissa of o is between the abscissa of s and t.

These blocking pixels are those which interfere in the visibility problem. Non-
blocking pixels in O can be removed from the v(s,t) test. We can characterize
the shape of the domain when a blocking pixel modifies it:

Lemma 2 If o is a blocking pizel for the v(s,t) problem, either the domain
S(s,t) N Ly1(0) N La(0) is empty or it has only one connected component.

Proof: we consider the domain S(s,t) and a blocking pixel o such that o, s and ¢
are not collinear (in that case, the domain is empty). We show that either L; (o)
or Ly(0) crosses the domain. We have different cases (cf figure 2-a) that induce



two components but the left and the middle cases are excluded because they
imply that the abscissa of o denoted z, is not between x; and x; and thus, o
is not a blocking pixel according to definition 2. As the matter of fact, if x, is
between x, and x;, then the slope of L;(0) is between the slope of L;(s) and the
slope of Li(t). By construction of the strips, the vertical distance between L
and Ls is equal to 1. Hence, in figure 2-b, the intersection in a’ of L; with the
vertical line going through b implies that  must be outside the interval [a, b] on
the vertical line. Since the slope of Ly is greater than the slope of the edge cb, Lo
cannot cross the domain. Same idea can be applied when Lo crosses the domain.
Hence, all cases of the figure 2-a are impossible and thus, S(s,t)) N L1 (0) N La(0)
has only one connected component. O

Vv

(a (b

Fig. 2. a) Different cases that induce two connected components, the left case and the
middle case are impossible by definition of blocking points. The third case must be
taken into account b) illustratcfion of the proof of lemma 2.

According to this lemma, if a straight line Ly (resp. Ly) of an obstacle crosses
the domain, the other constraint Ly (resp. L;) can be removed for the visibility
problem. Geometrically, an obstacle such that L; crosses the domain is above the
Euclidean segment [s, ] and an obstacle such that Ly crosses the S(s,t) domain
is beneath the segment [s,t] (cf figure 3 for an example). We denote U(s,t) the
set of blocking pixels above [s,t] and L(s,t) the set of blocking pixels beneath
the segment s, ¢].

1.3 Visibility algorithm

In this section, we present algorithms that compute the equivalence class asso-
ciated to the visibility binary relationship of a source s.

We propose two algorithms, the first one computes the equivalence class
with the visibility definition given above, and the second one introduces a new
visibility definition that is a restriction of the previous one but the associated
algorithm complexity justifies this new version of the visibility.

The first algorithm we propose is a really straightforward computation of
the visibility. Indeed, we can use classical linear programming tools to solve the
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Fig. 3. Visiblity domain associated to a set of blocking pixels. The black feasible region
in the parameter space is the visibility domain associated to grey pixels constrained
with the black blocking pixels.

linear inequation system given by obstacle constraints. Such tools are for example
the Fourier-Motzkin [10] system simplification algorithm, the Simplex algorithm
or the Megiddo’s algorithm [17]. Note that the complexity of the Megiddo’s
algorithm is linear in the number of inequations but the problem comes with
the dimension of the system. In our case, the constraint system is in dimension
2 and thus the implementation of the Megiddo’s algorithm is tractable with a
complexity bounded by 4n where n is the number of inequations.

We consider a source s, a domain D. We label all pixels in D using a breadth-
first tracking of the domain using for example the 8-adjacency. During the propa-
gation process, if we meet an obstacle we store its coordinates in a list O. At each
pixel visited in the breadth-first tracking, we extract from O the set of blocking
pixels and we solve the visibility problem using the Megiddo’s algorithm.

Straightforward visibility algorithm
Input: a domain D and a source s
Output: the set of pixels which satisfy v(s, t)

Let Q be a FIFO queue
Let O be the obstacle list
Append_last(s,Q)
‘While Q is not empty
t:=remove_first(Q)
For each 8-neighbor n of ¢ not labelled closed or visible
If n is an obstacle then
Append(n,O)
else
Let B be the set of blocking points of O according to the pixel n
Compute the linear inequation system S with L1 or Lo the constraints of each point of B
If Megiddo(S) # 0 then
Label n as visible
Append_last(n,Q)
else
Label n as closed //n is not visible and the point is closed
endFor
endWhile




If we denote n the number of pixels in D and m the number of obstacles in
O, each step in the while loop has got a complexity bounded by O(m). Hence,
the global cost of this algorithm is O(nm).

Due to the difficulties to provide an efficient data structure to propagate
blocking points from a point to its neighbors, this algorithm has a quite im-
portant complexity and is not efficient for the geodesic computation. Thus, we
propose a new definition of the discrete visibility which is a weak version of
the definition presented above but that leads to an efficient algorithm for the
visibility computation and the discrete geodesic problem.

Definition 3 (Weak Discrete Visibility) Let s and t two pizels in D, we
define the weak discrete visibility as a binary relationship v* : D — D such
that we have v*(s,t) if and only if there exists an Euclidean straight line going
through s and whose digitization contains t and no pizels in D between s and t.

Instead of considering the inequation associated to s, we constraint the set
of Euclidean lines to go through s. This new definition restricts the previous one
and make the visibility not be a symmetric binary relationship. However, this
definition allows an efficient data structure for the visibility test. We suppose
that all obstacle pixels are sorted by polar angles using s as the origin. Using
this data structure and the above definition, we have the following property.

Proposition 1 Given a set of obstacles sorted by polar angles of center s and a
point t, we denote u the minimum of U(s,t) and l the maxzimum of L(s,t). We
have:

v*(s,t) < S*(s,t) N Ly (u) N La(l) # 0

where §* denotes the new domain associated to the weak visibility which is
now a segment in the parameter space.

Hence, instead of considering all blocking pixels, we just have to test two
characteristic pixels given by a polar sort. The proof of this property is a straight-
forward application of the visibility definition. Note that the polar sort can be

done with integer arithmetic.
We can present the algorithm associated to this definition:

Weak visibility algorithm
Input: a domain D and a source s
Output: the set of pixels which satisfy v (s, t)

Let Q be a FIFO queue
Let O be the obstacle list sorted in a polar trigonometric order of center s
Append_last(s,Q)
‘While Q is not empty
t:=remove_first(Q)
For each 8-neighbor n of ¢ not labelled closed or visible
If n is an obstacle then
Append_sort(n,0)
else
Let (u, ) be the localization of n in the sorted set O
If S*(s,t) N L1(u) N La(l) # 0 then



Label n as visible
Append_last(n,Q)
else
Label n as closed //n is not visible and the point is closed
endFor
endWhile

The visibility test has got a constant time cost and according to the data
structure, both localization and obstacle insertion have a cost in O(log(m)).
Thus, the global cost of this algorithm is O(nlog(m)). Moreover, the cone (s, u, 1)
associated to a point ¢ can be propagated for both localization and insertion to
reduce the expected complexity of the algorithm that makes this labelling very
efficient.

2 Discrete shortest path and discrete geodesic metric

Based on these definitions of the visibility, we can define discrete shortest paths
and discrete geodesic paths.

2.1 Definition and previous works

We first remind some classical facts on discrete metrics that approximate the
Euclidean one. All discrete metrics are based on:

— either a mask approach where elementary steps in the neighborhood graph
are weighted in order to approximate the Euclidean distance of these steps.
For example, elementary steps of the Manhattan distance (or d4) are hori-
zontal or vertical moves weighted to 1, the chess-board distance (or dg) also
considers diagonal moves weighted to 1. More generally, chamfer metrics first
list elementary moves and then associate weights to each move (see [1,22]
for initial works) ;

— or a vector approach that leads to exact Euclidean metric where displacement
vector (dz,dy) is stored and then the distance can be exactly computed
d = +/dx? + dy? but the main goal is to design distance map algorithm that
only deal with the integer displacements [5, 20, 4].

For the discrete geodesic problem, the mask based approach leads to efficient
algorithms because a weighted graph can be computed from the metric and the
adjacency graph of the domain D and thus, classical shortest path algorithms
can be applied such as the Dijkstra’s graph search algorithm [19].

In the following, we use the data structure and the implementation of the
geodesic mask given by Verwer et al. [21]. The authors describe an bucket sorting
implementation of the Dijkstra’s graph search algorithm which leads to a uniform
cost algorithm.

In [4], Cuisenaire proposes a region growing Euclidean distance transform
using the same structures but the bucket are indexed by the square distance
dz? + dy?. For all the visible pixels from the source, this algorithm provides a



good estimation of the Euclidean distance metric. This algorithm is not error-free
but we will discuss this point later.

In [18,2], Moreau presents an algorithm for the geodesic metric problem
based on a discrete arc chain code propagation scheme but some operations to
maintain the data structure are expensive. In our case, we use a uniform cost data
structure from which we can extract arc chain code but the visibility property
is propagated instead of iso-metric points.

2.2 Algorithm

The main idea of our discrete geodesic algorithm is the following: for all pix-
els which are visible from the source, we do not have any problem to com-
pute their distance because it exists a discrete straight line between the source
and these points and thus, we can compute the displacement vector and return
\/dx? + dy?. If a pixel p is not visible, we start a new visibility computation
such that p is a new source and each pixel ¢ such that v(p,t) will be labelled by
the distance from p to the source plus the distance between p and t.

More formally, we have the following purely discrete definition of a geodesic
path in D:

Definition 4 (Discrete Geodesic Path) A discrete geodesic path between a
point t and a source s is a sequence of pizels in D denoted {p;}i—o.nt1 with
po =S and pp+1 =t such that:

v(pi,pivk) f k={-1,0,1} withi=1..n

And such that the geodesic distance dgeodes(s,t) is minimal. The geodesic dis-
tance is defined by:

n
dgeodes (87 t) = Z deuc(pivpiJrl)
=0

where deye(a,b) denotes the Euclidean distance between pizels a and b.

The discrete geodesic path is thus a 8-connected curve that is segmented into
DSS by construction. The metric we associate to this curve have been intensively
studied and both the stability and multigrid convergence have been proved [14,
13, 3].

In order to design an efficient algorithm based on the Verwer’s bucket struc-
ture [21], we consider rounded geodesic distance to index the buckets: a pixel p
belongs to the bucket d if and only if:

[dgeodes (5, p)] =d

This estimated metric is still consistent for the Verwer’s algorithm (A*-
algorithm) because it satisfies the triangular inequality [18, 2]:

for a,b,c € R a+b>c=[a]l+[b] > [c]



For a computational efficiency of the algorithm, we implement the v*-visibility.
Hence, at each pixel p in the buckets d, we associate a data structure that con-
tains: its coordinates, the current source pixel p; such that v(p;,p) and the
distance dgeodes (S, pi)-

We also have an obstacle data structure associated to each new source. Each
obstacle list contains the set of obstacles sorted by polar angles met during the

visibility propagation associated to each source.
We can know present the discrete geodesic algorithm. Note that some steps
of this pseudo-code are not detailed for sake of clarity.

Discrete Geodesic Algorithm
Input: a domain D, a source s and a goal g
Output: the geodesic distance for each pixel of D

Let Bucket([i] be an array of FIFO queues
Let O[i] be an array of double-linked list of obstacles
Let d denotes the current bucket (d:=0)
Append_last(s,Bucket[d])
‘While there is no more pixel in buckets
If the bucket d is empty then increment(d)
t:=remove_first(Bucket[d])
For each 8-neighbor n of ¢ not labelled closed or visible
If n is an obstacle then
Add n to the obstacle list associated to the source of p
else
Let (u, 1) be the localization of n in the sorted set O[i] associated to the current source
If n is visible then
Label n as visible
Compute the geodesic distance d’ of n
Append_last(n,Bucket[d']) if d’ > d
else
Label n as closed
Initialization of new source n whose obstacle list is empty
Compute the geodesic distance d’ of n
Append_last(n,Bucket[d']) if d’ > d
endFor
endWhile

3 Experiments and discussions

In our experiments, we compute the geodesic distance labelling of a binary image
according to the coordinates of a source. In figure 4, we present the distance
labelling with three metrics: dy, dg and dgeodes in various domains. Geodesic
distances are represented using a circular gray scale map in order to check the
wave front propagations. In figures 5, instead of labelling the pixels according to
their distance, pixels with the same color belong to the same equivalence class
for the visibility problem. An illustration of these figures can be the minimum
number of guards needed to control a room and the visibility associated to each
guard (the first guard is given here).

In figure 6, we present discrete geodesic metric on a blood vessel network.
The domain is computed using a segmented angiography image.

Using this geodesic distance algorithm, we naturally would like to apply this
algorithm to compute the discrete Voronoi diagram or the Euclidean distance
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Fig. 4. From the left column to the right column: the discrete domains and the source

point (isolated white pixels), the geodesic labelling using ds, the geodesic labelling
using dg4, the geodesic labelling using dgeodes-

Fig. 5. Global visibility graph: each pixel with the same color are in the same visibility
equivalence class, source points of domains are the same of figure 4.



Fig. 6. Application of the geodesic labelling in medical imaging: left An angiography
image, middle binary image when blood vessels are segmented and right the geodesic
labelling.

transform just considering multiple sources. Since this algorithm use a local
propagation scheme (as the Cuisenaire’s algorithm [4]), the classical Danielsson’s
algorithm errors are not solved in this approach. Hence, this algorithm presents
a solution to this problem but errors may occur.

4 Conclusion

In this article, we have presented a discrete definition of the visibility in classical
computational geometry. This definition is based on well known discrete objects
(DSS) and is computed only with integers. Based on this definition, we have
presented several algorithms to solve several problems: if we want to decide if
there exist DSS between two pixels, we have a cost linear in the number of
obstacle pixels O(m) ; if we want to label all pixels in a domain visible from
a source, we have an algorithm in O(nm). Using the weak visibility definition,
we reduce the complexity of both algorithms respectively to O(log(m)) and
O(nlog(m)). We also have presented a definition of discrete geodesic paths and
an algorithm that compute the geodesic distance of each point in the domain
according to a source.

This article also introduces open problems: is it possible to find an efficient
data structure for the straightforward visibility algorithm ? How to generalize
this approach for 3D domains and for discrete surfaces ? For this last problem,
solutions exist in mask based approaches [12,8] but for the proposed method,
discrete straight lines in 3D are well studied [3] and thus similar visibility algo-
rithm is expected.
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