David Coeurjolly 
email: david.coeurjolly@univ-lyon2.fr
  
Visibility in Discrete Geometry: an application to discrete geodesic paths

In this article, we present a discrete definition of the classical visibility in computational geometry. We present algorithms to compute the set of pixels in a non-convex domain that are visible from a source pixel. Based on these definitions, we define discrete geodesic paths in discrete domain with obstacles. This allows us to introduce a new geodesic metric in discrete geometry.

Introduction

In discrete geometry, many Euclidean geometric tools are redefined to take into account specificities of the discrete grid. In this article, we propose a definition of the classical Euclidean visibility based on discrete objects. The interest is double: on one hand we extend the discrete geometry with a new tool and on the other hand, since this visibility allows us to define discrete geodesic paths and discrete shortest paths, we have a practical tool needed by many applications in medical imaging or image analysis to estimate geodesic distance in non-convex domains.

The visibility definition we propose is based on classical Discrete Straight Lines (DSL for short). Many algorithms exist for the DSL recognition problem. Some of these approaches are based on chain code analysis [START_REF] Wu | On the chain code of a line[END_REF], on links between the chain code and arithmetical properties of DSL [START_REF] Debled-Rennesson | Etude et reconnaissance des droites et plans discrets[END_REF][START_REF] Debled-Rennesson | A linear algorithm for segmentation of digital curves[END_REF], on links between the chain code and the feasible region in the dual -or parameter-space [START_REF] Dorst | Decomposition of discrete curves into piecewise straight segments in linear time[END_REF][START_REF] Lindenbaum | On recursive, o(n) partitioning of a digitized curve into digital straigth segments[END_REF][START_REF] Vittone | Recognition of digital naive planes and polyhedization[END_REF] and others on linear programming tools such that Fourier-Motzkin's algorithm [START_REF] Franon | Recognizing arithmetic straight lines and planes[END_REF]. All these algorithms present a solution either to decide if a given set of pixels is a discrete straight segment (DSS for short) or to segment a discrete curve into DSS, or both. In our case, the problem is quite different, we want to decide if there exits a DSS between two pixels in a non-convex domain.

We present definitions and algorithms to compute the set of pixels which are visible from a source. Then, we define a notion of discrete geodesic path and a metric associated to such path based on this visibility definition. We also proposed an efficient implementation of the geodesic distance labelling from a source pixel.

Notions and definitions

Let us denote D a discrete domain, that is a n-connected set of pixels. We denote D the complement of D, we call this set indifferently the background or the set of obstacles. In the following, we consider D a 8-connected domain.

In this domain, we define the discrete visibility by analogy to the continuous definition.

Definition 1 (Discrete Visibility) Let s and t be two pixels in D, we define the discrete visibility as a binary relationship v : D → D such that we have v(s, t) if and only if there exists a 8-connected discrete straight segment from s to t whose pixels belong to D Before introducing the visibility problem in non-convex domain, we recall classical parameter space characterizations of DSL [START_REF] Lindenbaum | On recursive, o(n) partitioning of a digitized curve into digital straigth segments[END_REF][START_REF] Mcilroy | A note on discrete representation of lines[END_REF][START_REF] Vittone | Recognition of digital naive planes and polyhedization[END_REF]. If we consider an Euclidean straight line y = αx + β, the digitization of this line using the Grid Intersect Quantization (see [START_REF] Jonas | Digital representation schemes for 3d curves[END_REF] for a survey on digitization scheme) is the set of discrete points such that:

∆(α, β) = {(x, y) ∈ Z 2 | - 1 2 ≤ αx + β -y < 1 2 }
Note that all classical digitization schemes (GIQ, Object Boundary Quantization or Background Boundary Quantization) can be used and such a choice will not interfere in our algorithms. We choose the GIQ scheme because of its symmetry properties.

In the parameter space of the previous definition, we can describe the set of Euclidean straight lines whose the digitization contains a pixel p(x, y):

S p = {(α, β) ∈ R 2 | - 1 2 + y ≤ αx + β < 1 2 + y}
A pixel in D defines a strip in the (α, β)-space delimited by two lines L 1 : αx + βy ≥ - 1 2 and L 2 : αx + βy < 1 2 . If we want to know if a set of pixels belongs to a DSL, a classical way is to compute the intersection in the (α, β)-space of strips associated to each pixel. If the feasible domain is not empty, it describes all DSL containing the pixels (cf figure 1 for an example). In the following, we define the domain S(s, t) associated to pixels s and t the, intersection S s ∩ S t .

In order to compute the visibility in non-convex domains, the main idea is to check in the dual space if domains associated to obstacle pixels do not hide the current pixel t from the source s.

Visibility domain

Let o denote an obstacle pixel. If we want to describe the set of Euclidean straight lines whose digitizations do not contain o, we also introduce a strip in Fig. 1. An example of S(s, t) domain with pixels (0,0) and [START_REF] Coeurjolly | Segmentation and length estimation of 3d discrete curves[END_REF][START_REF] Braquelaire | Error free construction of generalized euclidean distance maps and generalized discrete voronoï diagrams[END_REF], the S(s, t) domain in the parameter space defined by inequations :

{β < 1/2, β ≥ -1/2, β < -3α + 5/2, β ≥ -3α + 3/2}.
the parameter space such that the inequations are reversed. Hence, an obstacle o is associated to constraints L1 (o) : αx+β-y < -1/2 and L2 (o) : αx+β-y ≥ 1/2. If we want to know if this obstacle blocks the visibility from s to t, we just have to compute in the (α,

β)-space L 1 (s) ∩ L 2 (s) ∩ L 1 (t) ∩ L 2 (t) ∩ L1 (o) ∩ L2 (o). If this intersection is empty then t is not visible from s.
More generally, if we consider a non-convex domain D and a set of obstacle pixels O = {o i } i=1..n that is a restriction of D such that all point abscissas are between the abscissa of s and the abscissa of t (all other points can be omitted for the visibility problem). We have the lemma: Lemma 1 Let s be the source and t a pixel in D, t is visible from s in D if and only if:

S(s, t) ∩ i=1..n L1 (o i ) ∩ L2 (o i ) = ∅
The proof of this lemma can be deduced by the visibility definition and by construction of S.

Obviously, we do not have to consider all obstacle pixels. We first define:

Definition 2 A pixel o in O is called "blocking pixel" for the visibility problem v(s, t) if: S(s, t) ∩ L1 (o) ∩ L2 (o) = S(s, t)
and the abscissa of o is between the abscissa of s and t.

These blocking pixels are those which interfere in the visibility problem. Nonblocking pixels in O can be removed from the v(s, t) test. We can characterize the shape of the domain when a blocking pixel modifies it:

Lemma 2 If o is a blocking pixel for the v(s, t) problem, either the domain S(s, t) ∩ L1 (o) ∩ L2 (o)

is empty or it has only one connected component.

Proof: we consider the domain S(s, t) and a blocking pixel o such that o, s and t are not collinear (in that case, the domain is empty). We show that either L1 (o) or L2 (o) crosses the domain. We have different cases (cf figure 2-a) that induce two components but the left and the middle cases are excluded because they imply that the abscissa of o denoted x o is not between x s and x t and thus, o is not a blocking pixel according to definition 2. As the matter of fact, if x o is between x s and x t , then the slope of L1 (o) is between the slope of L 1 (s) and the slope of L 1 (t). By construction of the strips, the vertical distance between L 1 and L 2 is equal to 1. Hence, in figure 2-b, the intersection in a ′ of L1 with the vertical line going through b implies that b ′ must be outside the interval [a, b] on the vertical line. Since the slope of L2 is greater than the slope of the edge cb, L2 cannot cross the domain. Same idea can be applied when L2 crosses the domain. Hence, all cases of the figure 2 According to this lemma, if a straight line L1 (resp. L2 ) of an obstacle crosses the domain, the other constraint L2 (resp. L1 ) can be removed for the visibility problem. Geometrically, an obstacle such that L1 crosses the domain is above the Euclidean segment [s, t] and an obstacle such that L2 crosses the S(s, t) domain is beneath the segment [s, t] (cf figure 3 for an example). We denote U(s, t) the set of blocking pixels above [s, t] and L(s, t) the set of blocking pixels beneath the segment [s, t].

Visibility algorithm

In this section, we present algorithms that compute the equivalence class associated to the visibility binary relationship of a source s.

We propose two algorithms, the first one computes the equivalence class with the visibility definition given above, and the second one introduces a new visibility definition that is a restriction of the previous one but the associated algorithm complexity justifies this new version of the visibility.

The first algorithm we propose is a really straightforward computation of the visibility. Indeed, we can use classical linear programming tools to solve the linear inequation system given by obstacle constraints. Such tools are for example the Fourier-Motzkin [START_REF] Franon | Recognizing arithmetic straight lines and planes[END_REF] system simplification algorithm, the Simplex algorithm or the Megiddo's algorithm [START_REF] Megiddo | Linear programming in linear time when the dimension is fixed[END_REF]. Note that the complexity of the Megiddo's algorithm is linear in the number of inequations but the problem comes with the dimension of the system. In our case, the constraint system is in dimension 2 and thus the implementation of the Megiddo's algorithm is tractable with a complexity bounded by 4n where n is the number of inequations.

We consider a source s, a domain D. We label all pixels in D using a breadthfirst tracking of the domain using for example the 8-adjacency. During the propagation process, if we meet an obstacle we store its coordinates in a list O. At each pixel visited in the breadth-first tracking, we extract from O the set of blocking pixels and we solve the visibility problem using the Megiddo's algorithm. If we denote n the number of pixels in D and m the number of obstacles in O, each step in the while loop has got a complexity bounded by O(m). Hence, the global cost of this algorithm is O(nm).

Due to the difficulties to provide an efficient data structure to propagate blocking points from a point to its neighbors, this algorithm has a quite important complexity and is not efficient for the geodesic computation. Thus, we propose a new definition of the discrete visibility which is a weak version of the definition presented above but that leads to an efficient algorithm for the visibility computation and the discrete geodesic problem.

Definition 3 (Weak Discrete Visibility) Let s and t two pixels in D, we define the weak discrete visibility as a binary relationship v * : D → D such that we have v * (s, t) if and only if there exists an Euclidean straight line going through s and whose digitization contains t and no pixels in D between s and t.

Instead of considering the inequation associated to s, we constraint the set of Euclidean lines to go through s. This new definition restricts the previous one and make the visibility not be a symmetric binary relationship. However, this definition allows an efficient data structure for the visibility test. We suppose that all obstacle pixels are sorted by polar angles using s as the origin. Using this data structure and the above definition, we have the following property.

Proposition 1 Given a set of obstacles sorted by polar angles of center s and a point t, we denote u the minimum of U(s, t) and l the maximum of L(s, t). We have:

v * (s, t) ⇔ S * (s, t) ∩ L1 (u) ∩ L2 (l) = ∅
where S * denotes the new domain associated to the weak visibility which is now a segment in the parameter space.

Hence, instead of considering all blocking pixels, we just have to test two characteristic pixels given by a polar sort. The proof of this property is a straightforward application of the visibility definition. Note that the polar sort can be done with integer arithmetic.

We can present the algorithm associated to this definition:

Weak visibility algorithm Input: a domain D and a source s Output: the set of pixels which satisfy v(s, t)

Let Q be a FIFO queue Let O be the obstacle list sorted in a polar trigonometric order of center s Append last(s,Q)

While Q is not empty t:=remove first(Q) For each 8-neighbor n of t not labelled closed or visible If n is an obstacle then Append sort(n,O) else Let (u, l) be the localization of n in the sorted set O If S * (s, t) ∩ L1(u) ∩ L2(l) = ∅ then Label n as visible Append last(n,Q) else
Label n as closed //n is not visible and the point is closed endFor endWhile

The visibility test has got a constant time cost and according to the data structure, both localization and obstacle insertion have a cost in O(log(m)). Thus, the global cost of this algorithm is O(nlog(m)). Moreover, the cone (s, u, l) associated to a point t can be propagated for both localization and insertion to reduce the expected complexity of the algorithm that makes this labelling very efficient.

Discrete shortest path and discrete geodesic metric

Based on these definitions of the visibility, we can define discrete shortest paths and discrete geodesic paths.

Definition and previous works

We first remind some classical facts on discrete metrics that approximate the Euclidean one. All discrete metrics are based on:

either a mask approach where elementary steps in the neighborhood graph are weighted in order to approximate the Euclidean distance of these steps. For example, elementary steps of the Manhattan distance (or d 4 ) are horizontal or vertical moves weighted to 1, the chess-board distance (or d 8 ) also considers diagonal moves weighted to 1. More generally, chamfer metrics first list elementary moves and then associate weights to each move (see [START_REF] Borgefors | Distance transformations in digital images[END_REF][START_REF] Verwer | Local distances for distance transformations in two and three dimensions[END_REF] for initial works) ; -or a vector approach that leads to exact Euclidean metric where displacement vector (dx, dy) is stored and then the distance can be exactly computed d = dx 2 + dy 2 but the main goal is to design distance map algorithm that only deal with the integer displacements [START_REF] Danielsson | Euclidean distance mapping[END_REF][START_REF] Ragnemalm | Contour processing distance transforms[END_REF][START_REF] Cuisenaire | Distrance Transformations : Fast Algorithms and Applications to Medical Image Processing[END_REF].

For the discrete geodesic problem, the mask based approach leads to efficient algorithms because a weighted graph can be computed from the metric and the adjacency graph of the domain D and thus, classical shortest path algorithms can be applied such as the Dijkstra's graph search algorithm [START_REF] Piper | Computing distance transformations in convex and nonconvex domains[END_REF].

In the following, we use the data structure and the implementation of the geodesic mask given by Verwer et al. [START_REF] Verwer | An efficient uniform cost algorithm applied to distance transforms[END_REF]. The authors describe an bucket sorting implementation of the Dijkstra's graph search algorithm which leads to a uniform cost algorithm.

In [START_REF] Cuisenaire | Distrance Transformations : Fast Algorithms and Applications to Medical Image Processing[END_REF], Cuisenaire proposes a region growing Euclidean distance transform using the same structures but the bucket are indexed by the square distance dx 2 + dy 2 . For all the visible pixels from the source, this algorithm provides a good estimation of the Euclidean distance metric. This algorithm is not error-free but we will discuss this point later.

In [START_REF] Moreau | Modélisation et génération de dégradés dans le plan discret[END_REF][START_REF] Braquelaire | Error free construction of generalized euclidean distance maps and generalized discrete voronoï diagrams[END_REF], Moreau presents an algorithm for the geodesic metric problem based on a discrete arc chain code propagation scheme but some operations to maintain the data structure are expensive. In our case, we use a uniform cost data structure from which we can extract arc chain code but the visibility property is propagated instead of iso-metric points.

Algorithm

The main idea of our discrete geodesic algorithm is the following: for all pixels which are visible from the source, we do not have any problem to compute their distance because it exists a discrete straight line between the source and these points and thus, we can compute the displacement vector and return dx 2 + dy 2 . If a pixel p is not visible, we start a new visibility computation such that p is a new source and each pixel t such that v(p, t) will be labelled by the distance from p to the source plus the distance between p and t.

More formally, we have the following purely discrete definition of a geodesic path in D: Definition 4 (Discrete Geodesic Path) A discrete geodesic path between a point t and a source s is a sequence of pixels in D denoted {p i } i=0..n+1 with p 0 = s and p n+1 = t such that:

v(p i , p i+k ) iff k = {-1, 0, 1} with i = 1..n
And such that the geodesic distance d geodes (s, t) is minimal. The geodesic distance is defined by: The discrete geodesic path is thus a 8-connected curve that is segmented into DSS by construction. The metric we associate to this curve have been intensively studied and both the stability and multigrid convergence have been proved [START_REF] Kovalevsky | Theoritical and experimental analysis of the accuracy of perimeter estimates[END_REF][START_REF] Klette | Convergence of calculated features in image analysis[END_REF][START_REF] Coeurjolly | Segmentation and length estimation of 3d discrete curves[END_REF].

In order to design an efficient algorithm based on the Verwer's bucket structure [START_REF] Verwer | An efficient uniform cost algorithm applied to distance transforms[END_REF], we consider rounded geodesic distance to index the buckets: a pixel p belongs to the bucket d if and only if:

⌈d geodes (s, p)⌉ = d
This estimated metric is still consistent for the Verwer's algorithm (A *algorithm) because it satisfies the triangular inequality [START_REF] Moreau | Modélisation et génération de dégradés dans le plan discret[END_REF][START_REF] Braquelaire | Error free construction of generalized euclidean distance maps and generalized discrete voronoï diagrams[END_REF]:

for a, b, c ∈ R a + b ≥ c ⇒ ⌈a⌉ + ⌈b⌉ ≥ ⌈c⌉
For a computational efficiency of the algorithm, we implement the v * -visibility. Hence, at each pixel p in the buckets d, we associate a data structure that contains: its coordinates, the current source pixel p i such that v(p i , p) and the distance d geodes (s, p i ).

We also have an obstacle data structure associated to each new source. Each obstacle list contains the set of obstacles sorted by polar angles met during the visibility propagation associated to each source.

We can know present the discrete geodesic algorithm. Note that some steps of this pseudo-code are not detailed for sake of clarity.

  -a are impossible and thus, S(s, t)) ∩ L1 (o) ∩ L2 (o) has only one connected component.
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 2 Fig. 2. a) Different cases that induce two connected components, the left case and the middle case are impossible by definition of blocking points. The third case must be taken into account b) illustratcfion of the proof of lemma 2.
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 3 Fig. 3. Visiblity domain associated to a set of blocking pixels. The black feasible region in the parameter space is the visibility domain associated to grey pixels constrained with the black blocking pixels.
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  geodes (s, t) = n i=0 d euc (p i , p i+1 ) where d euc (a, b) denotes the Euclidean distance between pixels a and b.

Discrete Geodesic Algorithm

Input: a domain D, a source s and a goal g Output: the geodesic distance for each pixel of D Let Bucket[i] be an array of FIFO 

Experiments and discussions

In our experiments, we compute the geodesic distance labelling of a binary image according to the coordinates of a source. In figure 4, we present the distance labelling with three metrics: d 4 , d 8 and d geodes in various domains. Geodesic distances are represented using a circular gray scale map in order to check the wave front propagations. In figures 5, instead of labelling the pixels according to their distance, pixels with the same color belong to the same equivalence class for the visibility problem. An illustration of these figures can be the minimum number of guards needed to control a room and the visibility associated to each guard (the first guard is given here).

In figure 6, we present discrete geodesic metric on a blood vessel network. The domain is computed using a segmented angiography image.

Using this geodesic distance algorithm, we naturally would like to apply this algorithm to compute the discrete Voronoi diagram or the Euclidean distance Fig. 4. From the left column to the right column: the discrete domains and the source point (isolated white pixels), the geodesic labelling using d8, the geodesic labelling using d4, the geodesic labelling using d geodes . transform just considering multiple sources. Since this algorithm use a local propagation scheme (as the Cuisenaire's algorithm [START_REF] Cuisenaire | Distrance Transformations : Fast Algorithms and Applications to Medical Image Processing[END_REF]), the classical Danielsson's algorithm errors are not solved in this approach. Hence, this algorithm presents a solution to this problem but errors may occur.

Conclusion

In this article, we have presented a discrete definition of the visibility in classical computational geometry. This definition is based on well known discrete objects (DSS) and is computed only with integers. Based on this definition, we have presented several algorithms to solve several problems: if we want to decide if there exist DSS between two pixels, we have a cost linear in the number of obstacle pixels O(m) ; if we want to label all pixels in a domain visible from a source, we have an algorithm in O(nm). Using the weak visibility definition, we reduce the complexity of both algorithms respectively to O(log(m)) and O(nlog(m)). We also have presented a definition of discrete geodesic paths and an algorithm that compute the geodesic distance of each point in the domain according to a source. This article also introduces open problems: is it possible to find an efficient data structure for the straightforward visibility algorithm ? How to generalize this approach for 3D domains and for discrete surfaces ? For this last problem, solutions exist in mask based approaches [START_REF] Kiryati | Estimating shortest paths and minimal distances on digitized three-dimension surfaces[END_REF][START_REF] Di Baja | Detecting centres of maximal discs[END_REF] but for the proposed method, discrete straight lines in 3D are well studied [START_REF] Coeurjolly | Segmentation and length estimation of 3d discrete curves[END_REF] and thus similar visibility algorithm is expected.