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Abstract. Digital geometry is very different from Euclidean geometry
in many ways and the intersection of two digital lines or planes is often
used to illustrate those differences. Nevertheless, while digital lines and
planes are widely studied in many areas, very few works deal with the
intersection of such objects. In this paper, we investigate the geometrical
and arithmetical properties of those objects. More precisely, we give some
new results about the connectivity, periodicity and minimal parameters
of the intersection of two digital lines or planes.
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1 Introduction

Digital straight lines and digital planes properties have been widely studied in
many fields like topology, geometry and arithmetics. Topologically, those object
are well defined according to the digitization scheme employed. On the geomet-
rical ground, connectivity features have been determined and a characterization
using convex hull properties [1] has been proposed. Finally, an arithmetical def-
inition [2, 3] provides a general model to handle all the definitions proposed so
far.

Those properties led to many recognition algorithms. Geometric algorithms
[4] decide whether a set of pixels/voxels is a digital line/plane or not, and arith-
metical algorithms [5] moreover return, for a given digitization scheme, the pa-
rameters of the Euclidean lines/planes the digitization of which contains the set
of pixels/voxels.

Discrete geometry is different from Euclidean geometry in many ways, but
the differences between the intersection of two Euclidean lines and two digital
lines is often used to illustrate this difference. Indeed, while the intersection of
two Euclidean lines is a Euclidean point, the intersection of two digital lines can
be a discrete point, a set of discrete points or even empty on rectangular grids.



However, only a few works deal with the properties of digital lines or planes
intersections. Nevertheless, a good knowledge of those objects is useful, for in-
stance during the polygonalization process of a discrete curve or a discrete sur-
face. Indeed, this process implies the definition of edges and vertices that are to
be found in the intersection of digital lines in the case of polygonal curves or
digital planes in the case of digital surfaces.

In [6], using the arithmetical definition of a discrete line/plane, Debled et
al. present a definition of the set of intersection pixels/voxels of two digital
lines/planes using an unimodular matrix. This definition enables the design of
an efficient algorithm to determine all the pixels/voxels of an intersection given
the parameters of the two lines/planes. However, no results are given about the
topology and arithmetics of this intersection.

In this paper, we present new results about digital lines and digital planes
intersection. We focus our study on two properties that describe both topology
and arithmetics: connectivity and minimal parameters. The first part deals with
the intersection of two digital lines. We present a criterion to analyze the con-
nectivity of the intersection of any two digital lines, thus completing the results
presented in [2] for lines with slopes between 0 and 1. Then, we propose a study
about the minimal arithmetic parameters of digital lines intersection and give
a result allowing to design an efficient algorithm to find those parameters. The
second part deals with digital planes intersection: after some results about con-
nectivity characteristics, we prove that the intersection is periodic and give the
minimal period. Finally, we define and determine the minimal parameters of the
intersection of two digital planes.

2 Digital Lines Intersection

In this section, we focus on the properties of digital lines intersections. A digital
naive line of parameters (a, b, 1) is the set of integer points {(z, y)} fulfilling the
conditions 0 < az + by + ¢ < maz(|al, |b]). An illustration is proposed in Figure
1(a). Let us consider two digital naive lines denoted Ly and La. Ly N Lo is a set
of pixels the connectivity of which depends on the parameters of the two digital
lines.

2.1 Connectivity

In 1991, J.-P. Reveillés [2] proposed a criterion to determine whether the inter-
section of two digital naive lines with slopes between 0 and 1 is connected or
not. Nevertheless, he does not give any information about the intersection of any
two digital naive lines. We propose here such a criterion using the Freeman code
depicted on Figure 1(b). These directions define 8 octants but only 4 remain if
we consider symmetries around the central point. For instance, the octant {4, 5}
is equivalent to the octant {0,1}. A classical result is that the Freeman code of
any digital naive line is composed of at most two consecutive different directions,
which means that one digital line belongs to one octant.

Proposition 1. Let Ly and Lo be two digital naive lines. Then:



— if they belong to the same octant, their intersection may be not connected ,
and [2] gives a criterion to analyze exactly the connectivity;

— if they belong to two neighbors octants, their intersection is either empty or
connected;

— otherwise, their intersection is either empty or reduced to o unique pixel.

In the following we denote Fy (resp. F») the set of directions composing the
Freeman code of L (resp. L2). An illustration is given Figure 1.
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Fig. 1. (a) The digital naive line (2, —3,0); (b)Freeman code; (c) Two naive lines with
no common direction; (d) Two naive lines with one common direction; (e¢) Two naive
lines in the same octant.

Proof. Let Ly and Lo be two digital naive lines. If L; and L2 belong to the same
octant, |Fy NFy| = 2. If they belong to neighbor octants, |Fy N Fy| = 1. Otherwise
|F1 N F3| = 0. Let us give a classification of the pixels of Ly and Ly. We denote
D1,k = P2,k = pi the pixel of Ly N Ly with minimal x-coordinate and maximal
y-coordinate, if there exist one. Then, py k41 (resp. pa2,k+1) is the successor of py
along L; with increasing x-coordinate (resp. Ls).

— if |Fi N F3| = 0 (Figure 1(c)), then p1 g+1 # p2,k+1 as they are the successors
of the same point using two different directions. Suppose that L; is composed
of 0 and 1 freeman codes, and that L, is composed of 2 and 7. The other
cases are symmetrical. Then, let us consider a pixel p1 (2p,Yp,) € L1 with z,
greater that the z-coordinate xy of py, and pa(zp, yp,) € La. Then, yi < yp,
and y,, <y — (zp, — z1), with =, >= x;. Hence, the two lines do not have
any common point after py.

— if |4 N Fy| =1 (Figure 1(d)) then let us denote ay; (resp. ag;) the direction
used from pq; to p1,i+1 (resp. pa,; to P2 i+1). Hence, while ai; = a9y, @ > K,
Pi,i+1 = P2,i+1- Both pixels p; ; and p; ;41 belong to the intersection and
are 8-connected. Unless the two lines are confounded, there exist j such
that oq; # ag;. Hence, p1 j4+1 # P2,j+1. Suppose that L, is composed of
0 and 1 freeman codes, and that L, is composed of 1 and 2. The other
cases are symmetrical. Then, let us consider a pixel p1 (p,Yp,) € L1 with z,
greater that the z-coordinate z; of p1 ; = p2 j, and pa(zp,yp,) € La. Then,
Yp, <y; + (zp —z; — 1) and yp, > y; + (2, — z;). Hence, the two lines do
not have any common point after pi ;.

— if |Fy N F3| = 2 (Figure 1(e)) , we refer to [2] to analyze the connectivity. O



2.2 Minimal Parameters

The intersection of two digital lines is a set of collinear discrete points. To char-
acterize this set of points, it is interesting to know the straight lines which
digitization contains all the intersection pixels. Obviously, the two lines we are
studying are solutions.

Consider a straight line y = agz+ 80,0 < ap, fo < 1, thus in the octant {0, 1}.
Its digitization with the Object Boundary Quantization is the set of discrete
points lying on or just under the line. Given a set of discrete points P, we call
preimage and denote D(P) the set of straight lines (o, 8) : y = ax + 8, the
OB() digitization of which contains the discrete points P.

Definition 1. Let P be a set of discrete points and D(P) its preimage. The
minimal parameters of P are the values (%, %) € D(P) such that b and p are
minimal.

In the following, we show how to find the minimal parameters of the intersec-
tion of any two digital naive lines using two different methods and emphasizing
the links between them.

Preimage Study First of all, we show how to find the directional vector of the
minimal parameters studying the structure of the intersection preimage.

To study the intersection of any two digital lines, we need to work in the
same straight line parameter space for any slope, greater or smaller than 1. In
[7], Veelaert shows that the transformation between the space where a > b into
the space where a < b can be done with a central symmetry in a 3D space.
Thus, we can work in the straight line parameter space where a point (a, 3)
represents the line y = ax + 3, for all & and B. In this space, the preimage of
a digital straight line of slope § with a < b and no remainder is the segment
[(%,0),(%,3)], and the preimage of a digital straight line of slope ¢ with a > b
and no remainder is the segment [(%,0), (%, —%)]. For instance, the preimage of
the line of slope 1 is the segment [(1, —1), (1,1)] in the parameter space.

We consider two digital naive lines L; and Ly with slopes § and 7 and
no remainder, and their intersection I = L; N Ly. Without loss of generality,
we assume that ¢ < §. We denote D(L;) (resp. D(Lz)) the preimage of L;
(resp. Ly). The preimage D(I) of Ly N Lo is a convex polygon including D(L;)
and D(Ls), and its convexity implies that it includes the segment [(§,0), (§,0)]
(see Figure 2 for illustrations). Moreover, as I contains all the discrete points
belonging simultaneously to L; and Ly, adding one more pixel of L; or Ly to
cuts D(I) into two parts, one including D(L;) and the other including D(L,).

Theorem 1. The minimal directional vector of the intersection of two lines of
slopes ¢ and 7, § < < is given by the rational fraction 3 lying between § and 3
with minimal denominator v.

Proof. Consider the set of discrete points belonging to Ly and L2, I = L1 N Ly
and call D(I) its preimage. We divide the proof of the theorem into 3 cases that
are depicted in Figure 2.



— Assume that § <0 and § > 0. Then the fractlon 1 lies between ¢ and 7
Consequently, the line W1th slope 2 1 is a solution, and obviously the solutlon
with minimal denominator. (cf. Figure 2a)

— Assume that $ < 1 and § > 1. Then, the fraction = lies between % and

2, and from what we said before we deduce that the hne with slope 1 1isa
solution, and by the way the one with minimal denominator.(cf. Figure 2b)

— Assume that 0 < § < 7 < 1. We know that any fraction between 7 and
(4]

3 is a solution. By the Way, the fraction with minimal denominator lying

between ¢ and 7 is a solution. We show that there does not exist a solution

fraction with a smaller denominator outside the segment defined by 7 and 7.
Suppose that there exist such a fraction denoted . Then, v < b and v <d.

Suppose that ¥ < £ and that | — %| is minimal for the set of irreducible

fractions smaller than § with denominator v. The case ¢ > § is symmetrical.
Consider the discrete point p(—v,—u — 1). Adding this point to L; N Lo
implies two new half-spaces constraints given by 0 < —av+u+ 1+ < 1
in the straight lines parameter space. This strip is delimited by two lines
li : —av+u+1+p=0and ls : —av+u+1+8 = 1. l; cuts the x-coordinate
axis for x = “vil and Iy for z = ¥ (see Figure 2c).Thus, since v is smaller
than any denominators of the fractions lying between ¢ and 2, utl i either
greater than 7 or smaller than . But since we assume that u - Was the closest
fraction with denominator v smaller than §, we get that ¥ < <3< “+1
Finally, D(I U p) includes at the same time D(L;) and D(Lz) which leads

to the contradiction.

All the remaining cases can be treated as one of those three. O

N —
o

alo

Fig. 2. Illustration of the three cases of Theorem 1

Geometrical Method The preimage study gives us the value of the minimal
directional vector of the intersection of two digital lines. We propose here a
geometrical point of view that leads to an algorithm to find both the minimal
directional vector and the corresponding remainder.

To do s0, let us introduce a structure called Stern-Brocot tree (see [8] for a
complete definition or [9] for a more informal approach) which contains all the
positive irreducible rational fractions. An illustration of this tree is proposed in



figure 3(a). The idea under its construction is to begin with the two fractions

9 and % and to repeat the insertion of the median of these two fractions as

1
follows: insert the median TZiz’ between % and ZZ—,' Many works deal with the
relations between irreducible rational fractions and digital lines (see [10,11] for
a characterization with Farey series, and [12] for a link with decomposition into
continuous fractions), but in [5], Debled first introduced the link between this
tree and digital lines. She noticed that recognizing a piece of digital line is like
going down the Stern-Brocot tree up to the directional vector of the line. In the

following, we call Stern-Brocot tree root the two fractions % and %.

7
~1/5-2/7-3/8-3/7 -4/7 -5/8 ~5/7 ~4/5-5/4 ~7/5-8/5 ~7/4~7/3 -8/3 =7/2 =5/1

-4 -2/5 -3/5 -3/4 -4/3 -5/3 -5/2 -4/1

=13 =23 -3/12 -3/1

1/4 2/5 35 3/4 413 5/3 5/2 411 12

1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5 5/4 7/5 8/5 7/4 7/3 8/3 7/2 5/1
1 5/8

(a) (b)

Fig. 3. (a) Stern-Brocot tree: positive and negative irreducible rational fractions. (b)
Decomposition of one period of the digital line of slope 2: for each fraction of the path
in the Stern-Brocot tree, the corresponding subset of pixels of the line.

Theorem 2. Let L be a digital line of slope ¢, and S(§) be the path going from
the Stern-Brocot tree root to the fraction .

Then, for each fraction 3% lying on S(3), there exist a subset of b; + 1 pizels
of L having a minimal directional vector %

Moreover, for any other fraction, there does not exist such a subset of L.

This theorem means that the path leading to the fraction § represents all
the patterns of length smaller than b included in L. If b = 0 for a given digital
line, then we consider the fraction % and the same results hold.

Before the proof of this theorem, let us give a few lemmas. The proof of
lemma 1 was given by Dorst and Duin in [13].

Lemma 1. Let Ly and Ly be two digital naive lines of slope Z—i and Z—z such
that usvy — urve = 1. Let Cy (resp. Ca) be the Freeman code associated to a
period of Ly (resp. L2) of length vi + 1 (resp. vo +1). Then, the Freeman code



associated to a period of the digital naive line of slope Zii:jj is C1Cy of length
vy +ve + 1.

An illustration of this lemma is given in Figure 3(b).
We call mothers of a fraction ;' the two fractions Z—ll and Z—s such that % =
- Hence, we have the following result:

Lemma 2. Let § an irreducible rational fraction and S(%) its related path.
Then, the mothers of § lie on S(§). Moreover, if we denote A(%) the set of
ancestors of ¢ according to the definition of mothers, we have S(§) = A(%).

This lemma is directly derived from the definition and construction of the
Stern-Brocot tree.

Proof (Theorem 2). Let § an irreducible rational fraction and S(§) its related
path. Let ¥ € S(%) another rational fraction. Two possibilities:

— if 7 is one of § mothers, then we derive the result from lemma 1;
— otherwise, according to lemma 2, ¥ is one of { ancestors, and the result is

obtained by induction.

7 ancestors represent all the connected subsets of discrete points that appear
in the digital line of slope §. As S(§) = A(%), there is no fraction outside the
path corresponding to a connected pattern of the digital line of slope . O

Hence, each node of the tree matches with a pattern. Since the intersection
of two digital lines is composed of patterns appearing in the two lines, we just
have to look for the closest common ancestor of the two corresponding fractions
to find the minimal parameters of the intersection,.

Theorem 3. Let Ly and Lo be two digital lines of slopes ‘;—11 and ‘;—j Then, the
minimal parameters of L1 N Ly are given by ‘;—11 and ‘;—j closest common ancestor
in the Stern-Brocot tree.

If the two digital lines studied are such that b; = 0 and ay = 0, then the
corresponding nodes are the root of the Stern-Brocot tree, and the minimal
parameters are any of the two fractions of the root.

Originally, the Stern-Brocot tree defines only the positive irreducible rational
fractions. In order to study the intersection of any two digital lines, we generalize
this tree adding its negative symmetrical as shown on Figure 3(a).

It is easy to see with the preimage study or the geometrical method that the
directional vector found for two digital lines with no remainder is also solution for
any remainder. Nevertheless, if the cardinal of the intersection is smaller than
the length of the common pattern described by the directional vector found,
there exist smaller parameters. In that case, the minimal directional vector can
be found among the common ancestors of the two fractions in the Stern-Brocot
tree, looking for the one with the smallest denominator greater than or equal to
the intersection cardinal minus 1.



Theorems 1 and 3 are equivalent as looking for the closest common ances-
tor of two fractions is the Stern-Brocot tree is like looking for the fraction with
minimal denominator lying between those two fractions. Nevertheless, this geo-
metrical point of view is useful to design an efficient algorithm to determine the
minimal directional vector. Moreover, we show that this method enables to find
the minimal remainder associated to this minimal directional vector.

Let us define the following labelling £ of the Stern-Brocot tree nodes:

- £(3) = prand £(8) = u's
— let § be a node and ¢ and 2 its mothers: then £(§) = L(31) + L£(52).
Finally, £(%) = by + ap'. Each node label thus depends on only two vari-
ables. Now let us consider the intersection of two digital lines L, (a, —b, p1) and

Ly(c,—d, p2). Mapping the remainder values with the corresponding nodes la-
bels, we get the following system:

bp + ap' =
dp +cp' = po

Hence, we can deduce the values of p and p', and injecting those values in

the label of the node corresponding to the intersection parameters, we get the
remainder of the intersection. Figure 4 illustrates this with an example.

112 2p + p!

u+2u

A

uu
1/5 27 3/8 37 417 @
5u 5

Fig. 4. Remainder calculation for the digital lines (4, —5, 1) et (5, —8, u2).

3 Digital planes intersection

In this part, we extend the properties found on digital lines intersection for
digital planes intersection and present some properties peculiar to planes. The
grid considered is a square grid with a 26-6 connectivity.



3.1 Periodicity

Proposition 2. Let Pi(a,b,c,u) and Pa(d,e, f,v) be two digital planes. Let
v(vi,ve,v3)T be the cross product of (a,b,c)” and (d,e, f)T. Let g = ged(vy,v2,v3)
and v' = év. Then Py, N Py is periodic of period v'.

Proof. Let us denote 71 (x,y,2) = ax+by+cy+pand ra(z,y,2) = dr+ey+ fy+v
the remainder function of the two planes. Let M (x,y, z) € PLNP,. Then M +tv'
is not an integer point if ¢ is not integer. We show that M + ' belongs to Py N P,
and that 7 (M + ') =71 (M) and ro(M +v") = ro(M):

1
rn(M+v)=ar+by+cz+p+ ;(abf—ace+bdc—abf+ace—bcd) =r (M)

The same calculation can be done with the ro function and this achieves that
P, N P, is periodic of period v'. O

3.2 Minimal parameters

In this part, we focus on the minimal parameters of the intersection of two
digital planes. To work in the same parameter space for any parameters, we use
the same trick as the one proposed by Veelaert [7] for lines, presented in section
2.2. Hence, we work in the parameter space where a point (ag, 5o, v0) stands for
the plane apx + Boy + z + 0 = 0 in the Cartesian space for any value of ag, So
and ~p.

Given two digital planes P; and P, we look for the plane parameters (u, v, w, u)
with minimal w and p the OBQ digitization of which contains all the voxels of
PiNP.

In the following, we consider digital naive planes with no remainder: digital
naive planes are the thinnest 18-connected digital planes without 6-connected
holes. First of all, Proposition 3 gives a description of the intersection preimage.

Proposition 3. Let Pi(a,b,c,0) and P:(d,e, f,0) be two digital naive planes.
We denote I = Py N Py. Then, D(I) is a polygon included in the plane perpen-
dicular to v = 0 and containing the points (2, %, 0) and (%, % 0).

Proof. Since the two planes have no remainder, the point (0,0,0) is a lower
leaning point of the two digital planes. As I is periodic of period v (Theorem
2), for all integer t, the point tv belongs to P, N P, and is a lower leaning point
of the two digital planes. In the dual space, the point tv corresponds to the two
constraints 0 < atvy + ftvs + tvg + v < 1. Since tv is a lower leaning point for
the two digital planes, the constraint atv, + ftvy + tvs + v = 0 goes through
the two points (%, %,0) and (%, %,0). Hence, for all ¢, D(I) is constrained by
the plane atvy + Btvs + tvs + v = 0, equivalent to avy + fva + vz + 37 =0
for t # 0. When ¢ goes to +o0o, the normal vector of this plane converge to the
value (v1,v2,0) with positive values of ¢ and with negative values of ¢ when ¢
goes to —oo. Then, for infinite planes, D(I) is reduced to a polygon included in
the plane with normal vector (v;,v2,0) which contains the two points (2,2, 0)

c’c?

and (%, %,0). O



An example of an intersection preimage is given Figure 5.

Fig.5. Preimage of the intersection of the digital naive planes Pi(1,3,5,0) and
P5(2,3,4,0)

This description enables to characterize the minimal parameters of I:

Theorem 4. Let Pi(a,b,c,0) and Py(d,e, f,0) be two digital naive planes. We
denote A(2, %, 0) and B(%, % 0) the corresponding points in the parameter space,
and I = P, N Py. Then, the minimal normal vector of I is given by the point
(%, 45,0) on [AB] with minimal w.

Proof. Without loss of generality, we suppose that ¢ < 4 To prove this theorem,
we use the results obtained for digital lines using a digital plane decomposition
into digital lines presented in [14]. Indeed, we can decompose any digital plane
P(a,b,c,p) into digital 3D lines: for instance, a decomposition along the y axis
gives the set of lines Sy;(P) = {(z0,Y0,20) € Plyo = j},Vj € Z. For two out of
these three possible decompositions, those lines are naive lines, and for the third
one, they are thicker than naive lines.

Since I is a piece of naive plane, we can use this decomposition. Consider
the decomposition of I along the y axis. We denote S,;(I) the 3D digital lines
of this decomposition. Then we have D(I) = (; D(Sy;(I)). Moreover, Sy;(I) =
Syi(P1 N Py) = Sy;(P1) N Sy;(P) as Sy;(I) is the set of pixels of P N P> the
y-coordinate of which is j.

Let us consider the set Syo(I) = Syo(P1) N Syo(FP2). Then, we get two cases:

— if Syo(P1) and Syo(P2) are naive lines, we denote them Ns3p 1(a,c,0) and
Nsp2(d, f,0). Then, Syo(I) = N3p,1 N Nap,2.

— otherwise, Syo(P1) or Syo(P2) is thicker than a naive line but contains the
naive line of the previous case. Thus we have Syo(I) D N3p1 N Nipo.

If we consider the preimages of those sets, we then get the following property:
D(Syo(I)) € D(N3p,1 N N3p,2)-

Ns3p 1NN3ps is a piece of 3D naive line and its preimage is a prism such that
the basis in the plane g = 0 is the preimage of the intersection of the two 2D
naive lines Nop1(a,c,0) and Naop 2(d, f,0) and such that the directional vector
is (1,0,0)T.



Let p(%,2 %) he a point of D(I) as illustrated on Figure 6. Then p €
D(Syo(I)) and thus p € D(Nsp,1 N N3ps2). The projection of p along the
prism previously described onto the plane 8 = 0 is the point proj(p)(s;,0,0).
proj(p) € D(Nap,1 N Nap2) and according to the results about the preimage
of the intersection of two digital 2D naive lines, if w < ¢ and w < f, then
IR RS %. If ¢ = %, then £ # £ and the same argument can be applied
using a decomposition along the z axis. Otherwise, finally, we derive that, if
w < ¢ and w < f, thus p belongs to [AB] from the structure of D(I) presented
in Proposition 3. This shows that the minimal parameters are to be found on

[AB]. i

proj(p) e P

Fig. 6. Illustration of the proof of Theorem 4.

4 Conclusion

In this paper, we present new results about the intersection of two digital lines
or two digital planes. We give criteria to analyze its connectivity and propose a
characterization of the minimal parameters of a given intersection in function of
the parameters of the two lines/planes.

Although the properties are enounced and proved for digital naive lines and
planes, those results are also true or can be easily transposed for standard ob-
jects. For instance, the connectivity results for lines intersections can be adapted
transforming any diagonal moving into an horizontal and a vertical one. More-
over, all the results about minimal parameters are based on the intersection
preimage features, which depend on the lines or planes preimage shape. But the
preimage of a standard line or plane is a translated copy of the preimage of the
naive line or plane having the same parameters.

Those properties can be used for instance in the polygonalization process for

digital curves and digital surfaces to define edges and vertices and a study of the
intersection of two 3D digital lines would be interesting for that problem.
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