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Abstract. In these note we review some basic approaches and algo-
rithms for discrete plane/hyperplane recognition. We present, analyze,
and compare related theoretical and experimental results and discuss on
the possibilities for creating algorithms with higher efficiency.

1 Introduction

In discrete geometry various definitions and properties of linear structures —
such as straight lines, planes, or hyperplanes — have been proposed. On this ba-
sis, computational efficient analytic characterizations of these objects have been
obtained. In many applications one considers a reverse problem: given a set of
pixels or (hyper)voxels, decide if it is a portion of a discrete line or (hyper)plane.
For this, a recognition algorithm is needed.

In dimension two, the arithmetic structure of discrete straight lines (DSL)
has been exploited to design efficient algorithms, as both their asymptotic com-
putational cost and practical efficiency have been studied (see [31] for a survey
on the matter). In higher dimension, similar arithmetic structures still exist in
digital planes and hyperplanes. However, to solve a recognition problem, one
usually adapts algorithms from linear programming (LP) [13,14,19, 27] or com-
putational geometry (CG) [23,24,35]. As a rule, there is a gap between the
theoretical time complexity bounds obtained for linear programming or com-
putational geometry problems and the practical efficiency of these algorithms
when applied to discrete objects. Indeed, one can observe that the existing time
complexity bounds are not tight when experimental analysis is performed.

In this presentation we review certain basic approaches for digital plane and
hyperplane recognition and consider related computational aspects from both
theoretical and practical point of view. In particular, we compare approaches
and results related to computational geometry on one hand and integer linear
programming on the other.



2 Approaches to Defining Digital Planarity

Throughout the paper we will refer to a set of integer points S = {p',p?,...,p™}.
In this section we review three basic approaches for defining digital planes and
hyperplanes. Chronologically the first one is the following.

Consider a Euclidean hyperplane I' defined by v + >, vz, = 0 with
{7i} €R, || < |yl for 1 <i < n and |y,| > 0 (the axis z,, is called the major
axis of the plane, see below). Let p = (p1,...,pn) be the intersection point of I"
and the straight line defined by z1 = r1,20 =79, ..., Tp_1 =1, With r; € Z,
1 <i < n. The grid point P = (r1,79,...,1,) € Z™ with p,, — % <Tn Spn—i—%
is the digital image of p with respect to I'. We have the following definition.

Definition 1 (Digital hyperplane [35]). S C Z" is a digital hyperplane iff
there exists an Euclidean hyperplane H such that each grid point P of S is the
digital image of a point p € H.

Another approach is based on the following definition.

Definition 2 (Digital flatness [36]). Let S C Z". S is called flat iff there

exist n + 1 real numbers g, ...,V such that:

1. max{|yol,..., ||} =1;

2. every point P = (Py,...,P,) € S satisfies the condition
Lo+ zn: p< (1)
2 Yo it Vil > 9 .

In [36] Veelaert proves that a discrete set satisfying Definition 1 is flat. Note
that Veelaert’s definition is more anisotropic since there is no constraints on the
Euclidean hyperplane orientation (i.e., the conditions |y;| < |y,| for 1 < i <n
and |y,| > 0 in Definition 1).

Another way to define a digital hyperplane is the following.

Definition 3 (Discrete analytic hyperplane [3]). A discrete analytic hy-
perplane P with coefficients (ay,as,...,a,,b) € Z" Y, ged(ay,...,a,) =1, and
thickness w € N* is given by:

P(ai,ag,...,an,0) = {(z1,22,...,2,) € Z"|0 < b—l—Zaixi < w} (2)

i=1

Thus a set S C Z™ is a subset of a discrete analytic hyperplane iff there exists a
vector (ai,as,...,an,b) € Z" Y with ged(ay, ..., a,) = 1 and w € N*, such that
S C P(a,as,...,a,,b).

This last definition is more general than the previous one since it allows to
control the thickness of the set of grid point (see [3]). In what follows, we consider
a class of discrete analytic hyperplanes, called naive, which have thickness w =
max;—1. n9{|ai|}-



If the coeflicients of the Euclidean plane in Definition 1 are rational numbers,
then the digital hyperplane obtained by that definition is a discrete analytic
hyperplane according to Definition 3 as well. Note that in plane recognition
problems we usually have to consider finite subsets of grid-points. Hence, the
case of irrational coefficients handled by Definitions 1 and 2 may not occur.

In the following, we will use the abbreviation DHP for a digital (or discrete)
analytic hyperplane, and DHPS (Digital Hyperplane Segment) for a finite subset
of grid points belonging to a DHP. In dimension three, we will denote digital
planes (resp. digital plane segments) by DP (resp. DPS).

We conclude this section with one more technical notion to be used in the
sequel.

Definition 4 (Major axis and DHP base). Let S be either a digital hyper-
plane or a naive discrete analytic hyperplane. Then there exists a major axis x;
such that the projection S of S along x; onto the plane x; = 0 is a one-to-one
and onto mapping. The (n — 1)-dimensional set S is called the base of the DHP.

It was proved in [10] that every digital plane has a major axis. For instance,
in Definition 1 the major axis is z,,, in Definition 2 it is z; provided that |y;| = 1,
while in Definition 2 the major axis is 2; whenever w = |a;|.

3 Survey on DHP Recognition Algorithms

In this section we review algorithmic solutions for the discrete (hyper)plane
recognition problem that can be stated as follows: Decide if a given finite set
S C Z" is a DHPS. Furthermore, if the answer to this last question is positive,
we would like the determine the DHP parameters.

We can distinguish two basic classes of recognition algorithms: ones based on
computational geometry techniques and ones using linear programming.

3.1 Computational Geometry Algorithms

The first algorithms of this kind have been proposed in [23, 24] for DPS (i.e. for
dimension n = 3). Let us define a support of a point set S to be a Euclidean
plane such that all points from S lie on the same side of the plane. Then we have
the following theorem.

Theorem 1. [23] Let S C Z3. S is a DPS iff there is a support H of S, such
that the distance between the points from S and H is less than 1.

This theorem has been stated for n = 3 but it trivially extends to higher
dimensions.

To find such a support plane, Kim considered the faces of the convex hull
CH(S) of S. He stated that S is a DPS iff there is a face of CH(S) that induces
a support plane satisfying the distance criterion of Theorem 1. In [23] and [24]
Kim proposed several algorithms to discover such a face. The last statement,



however, turned out to be wrong: as shown in [18,12], the support of S can be
defined by an edge of CH(S). In such a case, S can be a DPS and there may be
no face of its convex hull satisfying the distance criterion.

Another geometric approach to recognize DHPS is based on point set sepa-
rability. We have the following theorem.

Theorem 2. [35] Let S C Z™. S is a DHPS iff there exists an Euclidean hyper-
plane H that separates S from S’, where S’ is obtained by a translation of S ot
distance 1 along the major axis x,, of H.

Thus the recognition problem is reduced to a separability test for two sets
of grid-points. In [35], two algorithms are detailed. One of them uses linear
programming (see below). The other is based on computation of convex hull and
polytopes intersection [29]. Specifically, S can be separated from S’ by a plane
iff CH(S)NCH(S’) = (. Thus first CH(S) and CH(S’) are found, then their
intersection is computed. Convex hulls computation takes O(m -logm +ml"/2])

n

time, while the polytopes intersection can be found in O(2" - m? “n logm) (see
[35]).-

Finally, a class of algorithms are based on the notion of thickness of S (defined
for n = 3). The thickness can be linked to the distance criterion proposed in
Theorem 1. To this end, let us define the chords set of S as the set {P—P'|P, P’ €
S} [22]. Without loss of generality, suppose that the major axis of S is 3. Then
the geometric thickness of S is the x5 coordinate of the intersection point of the
convex hull of the chords set of S and the ray defined by x5 and the origin O

where x3 > 0. The following theorem holds.

Theorem 3. [22] Let S C Z3. S is a DPS iff its geometric thickness is less than
1.

These definitions and results have been proposed for dimension n = 3, but
admit easy generalizations. Some of the above-mentioned computational geom-
etry algorithms are illustrated in Figure 1.

Fig. 1. Illustration of Computational Geometry recognition algorithms. From left to
right: The input set of grid points S, recognition using a support, recognition using the
separability test, and recognition based on the thickness of the chords set.



3.2 Linear Programming and Integer Linear Programming
Algorithms

Since DHP definitions are based on inequalities, the aim of these recognition
techniques is to directly solve a linear inequality system using tools from Linear
Programming or Integer Linear Programming (ILP). Applying Definition 2 (resp.
Definition 3), we can associate to each grid-point P of S two inequalities with
n+1 unknowns {7o, ...,V } in R (resp. n+1 unknowns {ay,...,a,, b} in Z). For
example using Definition 2, for each grid point P € S we have the inequalities
Yo — % +> 0 7P <0and v+ % +> 1 1 7P > 0. Using LP or ILP algorithms
to these linear inequality systems, we can thus decide if the set S is a DHPS or
not.

If we consider a specific orientation of the DHPS, i.e. if we restrict our
attention to DHPS with a major axis x,, the dimension can be reduced
from n + 1 to n by considering the unknowns {yo/Yn,-..,Vn—1/7n,1} or
{ai1/an,...,an—1/an,1,b/a,}. Note that for the last system the unknowns are
in Q. Hence, for each grid point P € S we have, for example, the constraints:

n—1 n—1
1 1
F0—§+P,L+;Fiago and F0+§+P,L+;Fiﬂ->0. (3)

For solving such kind of linear programs one can take advantage of the rich
arsenal of available linear programming algorithms (see, e.g., [32]). Optimal theo-
retical algorithms exist to decide if a set of grid points is a DHPS using Megiddo’s
theorem:

Theorem 4 ([27]). Given a LP problem with m linear inequalities in R™ where
n is fized, an algorithm exists to solve the problem in O(m) time.

Unfortunately, the above bound O(m) includes an implicit factor that is expo-
nential in n (but is a constant when n is fixed). Considering the DHPS recog-
nition problem based on ILP problems, complexity results can be founded in
[13].

Algorithms Based on Preimage Computation For the sake of clarity we
will present separately the algorithms based on preimage computation, although
these methods are deeply linked to those using linear programming.

Definition 5 (DHP preimage). Given a DHP (resp. DHPS) S, its preimage
is the set of Euclidean hyperplanes whose digitization coincides with/contains S.

Note that for each DHP definition from Section 2 a digitization scheme can
be specified. So in what follows, whenever a digitization scheme is considered, we
will suppose that it is the one related to the particular DHP definition adopted.

Basically, the preimage is nothing but the feasible region of the LP inequality
system associated with a set of grid points. If we suppose that the major axis is
known (x,, for example), the preimage is an n-dimensional polytope, possibly



unbounded, whose vertices have rational coordinates. Obviously, if the preimage
associated with a set S is empty, then S is not a DHPS. Note that if the major
axis and the sign of each {I5} are known (i.e. if one knows the global orientation
of the DHPS), the preimage polytope is initialized using the unit hypercube
since (I, ...,I-1) € [0,1]™. A simple incremental DHPS recognition algorithm
is given next. Considering n—dimensional DHPS, the step 6 in Algorithm 1 may
have high computational cost due the combinatorial aspects of n—dimensional
polytopes.

However, if n = 3, several efficient DPS recognition algorithms have been
proposed [38,15]. Indeed, if we denote by E the number of preimage vertices,
the intersection of a Euclidean plane and a convex polyhedron can be computed
in O(F) time. It is not hard to realize that in this case the computational cost
of the above algorithm is O(m - E). Moreover, the algorithm admits an online
implementation which runs in time O(FE).

Algorithm 1 DHPS preimage based recognition

1: Let S be a set of grid points

2: Preimage initialization

3: for each grid point P of S do

4:  Let Cy and C> be the two linear constraints of dimension n — 1 associated to P
using Equation (3)

5: for each constraint C in {C1,C>} do

6: Update the preimage cutting the polytope with the oriented hyperplane C
7 if the preimage is empty then

8: Stop the recognition, S is not a DHPS

9: end if

10:  end for

11: end for

To have a tight computational cost bound, we need to bound E by the number
of grid points m. Several approaches have been proposed to solve this problem
for n = 3 (see [17]). It is not trivial, however. In dimension 3, we can easily
see that F is bounded by the number of vertices of CH(.S). This can be proved
using either the construction of the feasible region based on dual transformation
proposed in [29] or simply by observing that the preimage corresponds to the set
of Euclidean planes separating CH (S) and CH(S’) in view of Theorem 2. In this
case extremal Euclidean planes are defined by one or two grid points in CH(S)
and two or one grid point in CH(S”). Hence, the number of such extremal planes
is bounded by O(|CH(S)|). Finally, for n = 3, a bound on |[CH(S)| is also a
bound on E.

In the experimental results presented in Section 5.3, E is always less than
|CH(S)| whatever the dimension. Further developments on that point is an
important challenge since it is directly linked to the efficiency of Algorithm 1.



3.3 Other Algorithms

In this section we present some other algorithms that are not based on results
from computational geometry or linear programming. The first one has been
proposed by Veelaert [37]. It recognizes a DPS whose base is a strip, that is a
2-D set of the form {(z,y) | r <z < s} with r, s € Z. The recognition process
is based on the concept of evenness of a DHP [36].

Definition 6 ([36,37]). S C Z" is called even iff its projection along the x,
azis is a one-to-one mapping, and for every quadruple (A, B, C, D) of points in S
such that A, —o—By, —0 = Cy,,—0—Dx, —0, it holds |(Ay, — By, )—(Cy,—Dy, )| <
1.

This characterization is related to the Rosenfeld’s DSL chord property [30]
as well as to the Kim’s DP chordal triangle property [23]. Veelaert showed that a
strip of voxels S is a subset of a digital plane iff S is even [37]. (Note however that
such an equivalence does not hold for arbitrary dimension.) This result implies
an O(m?) algorithm for DPS recognition.

Another approach is based on the parametrization of DP by least-squares fits.
It is proved in [25] that, given a rectangular base DPS S, there is a one-to-one
correspondence between least-squares plane fit parameters and the coefficient of
the DPS S. Although these authors’ goal was just to give a finite parametrization
of DPS, the result can be used to obtain a simple recognition algorithm that
consists of two stages:

1. Given an input set S, first the least-squares plane fit is computed, which
provides the coeflicients of the relevant Euclidean plane H. This stage takes
O(m) time since the fitting problem is of linear complexity.

2. Then it is verified if the digitization of the plane H obtained in Stage 1
coincides with S. If it is so, then S is a DPS that is precisely the digitization
of H. Otherwise, S is not a DPS. It is shown that such a verification can be
done in O(m) time.

It is easy to show that the following holds.

Theorem 5. The least-squares plane fit algorithm solves correctly the rectangu-
lar base DPS recognition problem.

Proof. The proof is straightforward: if the two sets coincide, then S is a DPS
by Definition 1 or 2. Conversely, if S is a DPS, then because of the one-to-one
correspondence between leas-squares fit parameters and DPS coefficients, there
exists a unique least-squares plane fitting whose digitization coincides with S.0J

Although the algorithm described above is restricted to DPS’s with rectan-
gular bases, generalizations to other base shapes as well as to higher dimension
seem possible (see, e.g. [25] for a recent related results).



Description Sources|Dimension | Time Online |Remark
time
Convex hull width [23, 24] 3 O(m?) -
Convex hull separability [35] | n fixed |O(m-logm +|-
mln/2] +
L m2"72n
log m)
Point set width [22] 3 o(m") yes
Fourier-Motzkin Algorithm | [19] 3 n.a. -
Direct Linear Programming | [27] n fixed |O(m) 0(1) [14]
Separability test based on LP| [35] n fixed |O(m) 0(1) [14]
Integer Linear Programming | [13] n fixed |O(m -logD)! |-
Arithmetic Preimage [38] 3 O(m® -logm) |O()
Arithmetic Preimage [15] 3 O(m -log®m) |—
Preimage 3 O(m - FE) O(E)
Evenness property [37] 3 O(m?) strip base
DPS
Least-squares fits [25] 3 O(m) no rectangular
base DPS
Arithmetic recognition [28] 3 - rectangular
base DPS

Table 1. Survey of DPS and DHPS recognition techniques.

4 Efficiency of DHP Recognition Algorithms

Table 1 summarizes data about some basic DHPS recognition algorithms. One
can see that optimal algorithms exist to recognize DHPS in any fixed dimension.
However, these are only theoretical since no their implementation is available.
In fact, only few algorithms have been implemented for n = 3. Among these are
some algorithms based on point set thickness arguments [22], Fourier-Motzkin
elimination [19, 20], direct LP [26], and preimage computation [38, 34].

Considering the asymptotic bounds on these algorithms’ complexity, one can
observe that there is a gap between those bounds and the estimations of algo-
rithms’ efficiency obtained through experiments. To illustrate this point, con-
sider, for instance, the point set thickness algorithm from [22]. Its theoretic
computational cost is O(m”) whereas in practice it features near linear time
complexity when m increases.

Among the algorithms presented in Table 1, we will focus on the preimage
based techniques. We have two serious arguments to do so. First, these are
online algorithms and their incremental computational cost depends on the DPS
specific characteristics (see below). Moreover, preimage computation provides a
complete description of all Euclidean hyperplanes that satisfy the DP definitions.
These two features appear to be important requirements in various applications,
such as discrete surface segmentation into DPS and reversible polyhedrization
of binary objects [20, 26, 33, 34, 16].



In the next section, we consider some results from number theory, theory
of lattice polytopes, and integer linear programming in order to obtain time
complexity bounds for DHPS recognition algorithms based on preimage compu-
tation. More precisely, we focus on bounds on the size of the convex hull of S that
allows us to obtain bounds on the number of preimage vertices (see Section 3.2).

5 Towards Obtaining Tight Bounds on the Computational
Cost of DP and DHP Recognition

5.1 Integer Programming and Associated Lattice Polytopes

Consider the integer linear programming problem (ILP) [32]:

max cx (4)
Az <b (5)
x ez (6)

with A = (a;;) € Z™*™, b= (b;) € Z™ and ¢ = (c¢;) € Z™. The special case when
m = 1 and all coefficients as well as the solution components are nonnegative is
known as a knapsack problem.

It is well-known [21] that both ILP and KP are NP-complete, i.e., it is unlikely
to have polynomial algorithms for their solution. Despite of this, many results
have been obtained to characterize the set of grid-points in the feasible region
of system (5) [32,7, 39, 6].

Let us denote by P the convex polytope defined by Equation (5) and by P
the convex hull of P N Z". Further, let N(A,b) be the set of vertices of P and
|N(A,b)| its cardinality. Various upper and lower bounds on |N (A4, b)| have been
found (see, for instance, [39] for a recent survey). In particular, we have the
following theorem.

Theorem 6. Let A = (a;;) € Z™ ", b = (b;) € Z™, ¢ = (¢;) € Z" and
a =max{|a;;|,i=1,...,m,j=1,...,n}. Then

IN(A,b)| < c,m!™ 1og" 1 (1 + ) (7)

where « is an upper bound on the largest (by absolute value) coefficient in the
ILP formulation and c, is a quantity depending only on n.
Moreover, upper bound (6) is tight, i.e., there is a class of matrices A and
vectors b for which
IN(A,b)] > ¢m!"? og™ "} (a)

where ¢, is a constant depending only on n.

Similar tight bounds hold for the number of the knapsack polytope vertices.

Now let P be a non-empty n-dimensional lattice polytope and fi(P) the
number of its k—dimensional facets for 0 < k < n. In particular, fy is the
number of vertices of P. Then the following theorem holds.



Theorem 7. [§]
i < cn(Vol P)5i1 (8)

where ¢, is a quantity depending only on n and (Vol P) the volume of P.

In dimension 2, the above result can be linked to the maximal number of
edges e(N) of a convex digital polygon included into an N x N-grid [5,2]:

12
e(N) = WN2/3 + O(NY31log(N)) . (9)
Theorem 8. [8] Let K € C(D) where C(D) is the family of convex bodies with
C? boundary and radius of curvature at every point and every direction between
1/D and D, D > 1. Let K = conv(K NZ"). If the diameter of K is enough
large, then for every n > 2 there are constants c1(n) and ca(n) such that for all
ke{0,1,...,n—1},

Cad™ " < fr(K) < o dma (10)

In the following, we use these results to give bounds on the size of the convex
hull and the preimage of S.

5.2 Application to DPS Recognition

In the following, we suppose that S is parametrized using the discrete analyti-
cal hyperplane definition (see Definition 3). Hence, let o = max{|ay/,...,|an|}.
Obviously, diverse parametrizations exist for a DHPS. However, in a recognition
process it is common to consider a parametrization that minimizes o and this
parameter is usually bounded by the diameter of S (i.e. bounded by O(N) in
our framework).

Theorem 9. 1. Let S be a DHPS with o hyper-rectangular base. Then

|CH(S)| < ¢nlog" (1 +a); (11)
2. Alternatively,
ICH(S)| < euN 571 ; (12)

where ¢, ¢, are some quantities depending only on n.
3. If S is a DPS with digitally convex base containing the origin, then

|ICH(S)| < ¢N%log?(1 + max{N,a}). (13)

Proof. We first proof Equation (11). Given DHPS S with a hyper-rectangular
base, we can construct CH(S) using 2 - n + 2 linear constraints in dimension
n. First, 2 - n constraints are necessary to define the hyper-rectangular base (all
these are given by {0 < z; <b;} for 0 < j <n —1 and b; € N). Moreover, two
additional constraints are needed to encode the two parallel Euclidean leaning



hyperplanes associated with the DHPS. Finally, we can construct a matrix A =
(aij) € ZEH2X" with max{|a;|,i = 1,...,m,j = 1,...,n} = a whose size
depends only on n. Hence, using Theorem 6 with m = 2 - n + 2, we obtain
Equation (11).

To prove Equation (12), it suffices to observe that S is included in an N™ grid,
therefore Vol C H () is bounded by O(N™~1). Indeed, the thickness of C H(S) is
necessarily lower than 1. Finally, using Theorem 7, we obtain the result stated.

Similarly, to prove Equation (13), we observe that if S is a DPS with a
digitally convex base, then the base can be encoded by at most O(N %) 2-D
linear constraints (one constraint per edge of the 2-D convex hull of the base
using Equation (9)). Furthermore, since S is included in an N x N x N grid,
the coefficients of the linear constraints are bounded by N. Finally, using the
two constraints that define the 3-D discrete plane, CH(S) can be represented
by O(N#) constraints overall. Then Equation (13) follows from Theorem 6. [J

Note that for dimension three, the bound for a DHPS with a hyper-
rectangular base conforms to earlier results about rectangular base DPS pre-
sented in [17]. Combining geometric and number-theoretic approaches, the au-
thor also proves that, under some assumptions, the preimage has at most
O(log N) facets.

Through some experiments presented in the next section, we quantify the
differences between the size of the convex hull of S and its preimage.

5.3 Experimental Results

To evaluate the size of both the convex hull and the preimage of a DHPS, we
have utilized a specific experimental framework. First, we need a DHPS random
generator. Since no uniform random generator of DHPS is available, we created
one that conforms to the following natural scheme:

Without loss of generality let us fix the major axis to be x,,. Then:

1. Construct the DHPS base in an N~ !-grid;
2. Use a uniform normal vector generator to obtain the DHPS parameters;
3. Raise the base along the z,, axis using the parameters obtained in stage 2.

To generate the base, we consider two main classes of DHPS. The first is a
hyper-rectangular one in which the lengths of the (n — 1)-rectangle are given
by independent random generators. DHPS’s from the second class have digitally
convex bases. In the latter case we generate a random set of cospherical Euclidean
points that belong to the hyperparallelepiped [—1,1]"~!. Then the Euclidean
convex hull of this set is computed and digitized for a given grid resolution in
order to obtain digitally convex bases with round shapes. We choose this point
distribution since it seems to be close to the worst-case regarding the convex
hull size.

Figure 2 gives some examples of randomly generated DHPS’s in dimension
3.



0

Fig. 2. First row: a rectangular base DPS, its convex hull and its preimage in the
parameter space. Second row: a rounded base DPS,; its convex hull and its preimage in
the parameter space.

To test the theoretical results from Section 5.2, we use the well-known ghull
program for n—dimensional convex hulls computation [1,9]. To evaluate the
number of vertices of n—dimension preimages, we first obtain a system of linear
inequalities. For this, we apply Equation (3). Then we make use of the lrs
software to convert an H-representation (half-space) of a polytope into a V-
representation (vertex/ray) or vice versa, as exact arithmetic is used [4].

The above algorithm has been designed for problems of arbitrary dimension
n, S0 it is not surprising that it is outperformed by the incremental Algorithm 1
from Section 3.2 on practical three-dimensional recognition problems.

We present results concerning the two classes of DHPS defined above with
increasing N. In the graphs presented in Figure 3, 4 and 5, x-axis corresponds
to the number of grid points given by the DHPS generators and the y-axis
corresponds to either |CH(S)| or |Preimage(S)| with n = {3,4,5,6}. Figure 3
shows results on |CH(S)| and Figure 4 the results on |Preimage(S)|. Finally,
Figure 5 details a comparison between |CH(S)| and |Preimage(S)| for n = 3.

As expected in view of Theorem 9, the logarithmic behavior of both |CH (S)|
and |Preimage(S)| for hyper-rectangular base DHPS clearly appears in the
graphs. However, for the other class of DHPS with dimension greater than 3, the
experimental results do not show a polynomial behavior of the curves. Further
theoretical analysis is thus expected to lead to bounds closer to the experimental
framework.
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Fig. 4. Evaluation of |Preimage(S)| on randomly generated DHPS. Left: the hyper-
rectangular base class, and Right: the cospherical base DHPS class.

6 Conclusion and Future works

In this article we have first reviewed algorithmic solutions to recognize DHPS
whatever the dimension. We have theoretically optimal in time algorithm with-
out efficient implementations and fast algorithms with quite high worst case
computational costs. Our analysis suggests that specificities of DHPS recogni-
tion problems should be taken into account to obtain tights bounds. Based on
results from integer programming and associated lattice polytopes, several theo-
retical results have been proposed to bound the number of vertices of the convex
hull of a DHPS and the number of vertices of its preimage.

One may attempt to solve the recognition problem taking advantage of the
theoretical results of Section 5.2. Our experimental results suggest the following
conclusions. The direct use of convex hull computation may not be tractable
since the design of incremental and output sensitive convex hull algorithms is
a difficult task [11]. For dimension n = 3, our experiments on preimage com-
putation showed that the quantity F defined in Section 3.2 is indeed quite low
whatever the number of grid points. Thus Algorithm 1 appears to be a very
simple and practically efficient incremental DPS recognition algorithm.
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Fig. 5. Comparison between |CH(S)| and |Preimage(S)| for n = 3. Left the hyper-
rectangular base class and right, the cospherical base DHPS class.

Several questions related to DHPS recognition are still open. Among these
we list the following:

1. Are there tighter bounds on |CH(S)| in higher dimensions?
2. Can arithmetical structures of DHPS speed up recognition algorithms?
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