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Introduction

The character and symbol representation, description and classification are necessary tasks in many current applications, and concern both research and industrial challenges. Those tasks are applied on images generally designed within a regular grid, i.e. all the pixels have the same size, and their position can be easily indexed. However, it is now common to successively divide an image into subimages, as in quadtree decomposition [START_REF] Samet | The quadtree and related hierarchical data structures[END_REF][START_REF] Samet | Hierarchical spatial data structures. In Design and Implementation of Large Spatial Databases[END_REF], to represent a part of an image in a more compact and adapted structure. These techniques describe interesting parts of an image, from different points of view, through a set of irregular pixels. In this paper, we introduce the concept of shape representation within an irregular isothetic grid (I-grid for short) [START_REF] Coeurjolly | Supercover model and digital straight line recognition on irregular Isothetic Grids[END_REF]. The pixels are defined by variable sizes and positions, and may be determined by subdivision rules. We propose to represent the topology of the elements contained in the irregular twodimensional (2-D) image by constructing their associated Reeb graph [START_REF] Reeb | Sur les points singuliers d'une forme de Pfaff complément intégrable ou d'une fonction numérique[END_REF], then we represent them by a simple polygonal structure that respects the extended supercover digitization model defined in [START_REF] Coeurjolly | Supercover model and digital straight line recognition on irregular Isothetic Grids[END_REF]. This structure also preserves the topology that we reveal in the previous stage. We clearly address the problem of vectorization (or raster-to-vector) on irregular isothetic grids, and not only in the scope of document analysis. In our framework, we are interested in binary images containing irregular objects, i.e. k-objects in respect to the definition given in [START_REF] Coeurjolly | Supercover model and digital straight line recognition on irregular Isothetic Grids[END_REF], where k represents the considered relation of adjacency (see Section 2 for further details). Those complex objects may contain holes, and could represent characters, symbols, lines, etc. An application of such binary image processing is clearly document and line drawings analysis, but we can also consider a discrete subdivision of a part of R 2 representing the solutions of a given function f : R 2 → R. The algorithms designed in interval arithmetic are interesting approaches to address those problems [START_REF] De Figueiredo | Fast interval branch-and-bound methods for unconstrained global optimization with affine arithmetic[END_REF][START_REF] Kearfott | Interval computations: introduction, uses, and resources[END_REF][START_REF] Snyder | Interval analysis for computer graphics[END_REF].

The techniques of vectorization developed until now on the discrete regular domain can be divided into several classes, up to the final application of the method [START_REF] Cordella | Symbol recognition in documents: a collection of techniques ?[END_REF][START_REF] Hilaire | Robust and accurate vectorization of line drawings[END_REF][START_REF] Mertzios | On applying fast and efficient methods in pattern recognition[END_REF][START_REF] Wenyin | From raster to vectors: extracting visual information from line drawings[END_REF]. We will only focus on a few kinds of raster-to-vector methodologies, largely developped for document analysis applications. To our knowledge, there exists no generic extension of those approaches on irregular isothetic grids. The run length encoding (RLE) based methods first build a decomposition into elongated cells along an axis of the image where we can build a line adjacency graph (LAG) [START_REF] Burge | A minimal line property preserving representation of lines images[END_REF][START_REF] Elgammal | Graph-based segmentation and feature-extraction framework for arabic text recognition[END_REF]. Those methods aim to describe the topology of the encountered objects in the image, but the geometrical structure deduced from it has to be improved by many post-treatment processings. The skeletonization and thinning methods are surely the most widely employed methods in vectorization. We can notice that tools designed in mathematical morphology [START_REF] Soille | Morphological image analysis[END_REF] are a frequent choice to prepare the images before processing the skeletonization. A survey of vectorization methods based on skeleton can be found in [START_REF] Lam | Thinning methodologies -a comprehensive survey[END_REF], and another one about such techniques not using it in [START_REF] Wenyin | A Survey of non-thinning based vectorization methods[END_REF]. The aim is to compute a medial axis of the object that minimally represents its shape [START_REF] Klette | Digital geometry[END_REF]. However, those techniques modify the original geometry of the object to obtain a minimal representation of it. Besides, they need filtering or smoothing pre-treatment processings to reduce the noise that could pertubate the final medial axis. The k-object can contain holes, and so may be composed by thick arcs. In the work of Debled et al. [START_REF] Debled | A linear algorithm for segmentation of digital curves[END_REF][START_REF] Debled | Fast polygonal approximation of digital curves[END_REF][START_REF] Debled | Optimal blurred segments decomposition in linear time[END_REF], the definitions of discrete lines and blurred segments join the concept of thick regular arcs. But, beyond this geometrical representation of arcs, the global structure is not aborded, and thus there are no description of the topology of the recognized objects.

In this article, we first introduce the concepts of k-arcs and k-objects by recalling some definitions, then we present the extended supercover model on an I-grid. We also recall the invertible reconstruction of k-arcs described in [START_REF] Coeurjolly | Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids[END_REF]. In the third part, we give details about the two main phases of our system: the description of the topology of a complex object based on the Reeb graph [START_REF] Reeb | Sur les points singuliers d'une forme de Pfaff complément intégrable ou d'une fonction numérique[END_REF], and its polygonal reconstruction. Then, we present some experiments and revealing results to illustrate the two phases of our algorithm. We also proove the robustness of the polygonal reconstruction by a test on a large image of technical drawing. We finally discuss the applications of our contribution, and the improvement on its global performance.

We first define an irregular isothetic grid, denoted I, as a tiling of the plane with isothetic rectangles. We shortly recall that each rectangle P (also called cell) of I is defined by its center (x P , y P ) ∈ R 2 and a size (l x P , l y P ) ∈ R 2 . The position and the size of P may be controlled by different level of constraints; e.g. in the case of quadtree decomposition [START_REF] Samet | The quadtree and related hierarchical data structures[END_REF][START_REF] Samet | Hierarchical spatial data structures. In Design and Implementation of Large Spatial Databases[END_REF], for a cell of level k, (x P , y P ) = ( m 2 k , n 2 k ) and l x P = l y P = 1 2 k-1 for some m, n ∈ Z [START_REF] Coeurjolly | Supercover model and digital straight line recognition on irregular Isothetic Grids[END_REF][START_REF] Coeurjolly | Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids[END_REF]. In our framework, adjacency relation is an important feature that we depict through the following definitions.

Definition 1 (ve-adjacency and e-adjacency). Let P and Q be two cells. P and Q are ve-adjacent (vertex and edge adjacent) if :

or    |x P -x Q | = l x P +l x Q 2 and |y P -y Q | ≤ l y P +l y Q 2 |y P -y Q | = l y P +l y Q 2 and |x P -x Q | ≤ l x P +l x Q 2
P and Q are e-adjacent (edge adjacent) if we consider an exclusive "or" and strict inequalities in the above ve-adjacency definition. k may be interpreted as e or ve in the following definitions.

Definition 2 (k-arc). Let E be a set of cells, E is a k-arc if and only if for each element of E = {P i , i ∈ {1, ..., n}}), P i has exactly two k-adjacent cells, except P 1 and P n which are called extremities of the k-arc.

Definition 3 (k-object). Let E be a set of cells, E is a k-object if and only if for each couple of cells (P, Q) belonging to E × E, there exists a k-path between P and Q in E.

We now consider the extension of the supercover model from [START_REF] Cohen-Or | Fundamentals of surface voxelization[END_REF] on irregular isothetic grids [START_REF] Coeurjolly | Supercover model and digital straight line recognition on irregular Isothetic Grids[END_REF] to digitize Euclidean objects on I.

Definition 4 (Supercover on irregular isothetic grids). Let F be an Euclidean object in R 2 . The supercover S(F ) is defined on an irregular isothetic grid I by:

S(F ) = P ∈ I | B ∞ (P ) ∩ F = ∅ = P ∈ I | ∃(x, y) ∈ F, |x P -x| ≤ l x P 2 and |y P -y| ≤ l y P 2
where B ∞ (P ) is the rectangle centered in (x P , y P ) of size (l x P , l y P ) (if

l x P = l y P , B ∞ (P ) is the ball centered in (x P , y P ) of size l x P for the L ∞ norm).
This model has several interesting properties, e.g. for F , G two Euclidean objects in R 2 , we have [START_REF] Coeurjolly | Supercover model and digital straight line recognition on irregular Isothetic Grids[END_REF] for more details).

S(F ∪G) = S(F )∪S(G) or S(F ∩G) ⊆ S(F )∩S(G) (see proposition 2 in
We now present the k-arc reconstruction algorithm we use in our complex object geometrical representation phase (Section 3.2). Moreover, this approach respects the supercover model we have just presented. The algorithm proposed in [START_REF] Coeurjolly | Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids[END_REF] to decompose a curve into segments is first based on the following definition of an irregular digital line.

Definition 5 (Irregular isothetic digital straight line). Let S be a set of cells in I, S is called a piece of irregular digital straight line (IDSL for short) iff there exists an Euclidean straight line l such that:

S ⊆ S(l)
In other words, S is a piece of IDSL iff there exists l such that for all P ∈ S,

B ∞ (P ) ∩ l = ∅.
The algorithm inspired from [START_REF] Sivignon | Discrete analytical curve reconstruction without patches[END_REF] principally uses the construction and update procedures of a visibility cone, and can be sketched as follows. We first fix the extremity p 0 of the first segment such that p 0 ∈ P 0 . We note e 0 the Euclidean segment shared by P 0 and P 1 , and we consider the first cone C 0 (p 0 , s, t) such that s and t coincide with the extremities of e 0 and {p 0 , s, t} is sorted counterclockwise. Then, for each cell P i , we consider the shared segment e i between P i-1 and P i , and the current cone C j (p j , s, t) is updated. When the update procedure fails, a new cone C j+1 (p j+1 , s, t) is set up, and we add the point p j+1 to the reconstruction: to compute the new cone, authors of [START_REF] Coeurjolly | Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids[END_REF] consider the bisector of the cone and define p j+1 as the midpoint of the intersection between the bisector and the pixel P i-1 . The Figure 1 illustrates the progressive construction of cones in a k-arc, and the resulting segmentation into lines. 

Complex Objects Definition and Representation on Irregular Isothetic Grids

In this section, we present the two main phases of our system for object representation on irregular isothetic grids.

Representation of a Complex Topology

To represent the shape of a k-object E, we have chosen an incremental directional approach to build its associated Reeb graph G, as in continuous space (see Figure 2). It is an interesting structure introduced by G. Reeb [START_REF] Reeb | Sur les points singuliers d'une forme de Pfaff complément intégrable ou d'une fonction numérique[END_REF] based on the Morse theory [START_REF] Gramain | Topologie des surfaces[END_REF][START_REF] Hart | Computational topology for shape modeling[END_REF]. This graph is also used in many applications for surface and curve description [START_REF] Hétroy | Méthodes de partitionnement de surfaces[END_REF][START_REF] Tung | Indexation 3D de bases de données d'objets 3D par graphes de Reeb améliorés[END_REF][START_REF] Xiao | A discrete Reeb graph approach for the segmentation of human body scans[END_REF]. The Reeb graph G is associated to a height function f defined on E, and nodes of G represent the critical points of f . Moreover, to have a minimal representation of the topological information of E, each edge of the Reeb graph corresponds to a k-arc. Those k-arcs will be segmented in the stage of polygonal description of E (Section 3.2). We denote the left, right, top and bottom borders of a cell P respectively P L , P R , P T and P B . We have, for example, the abscissa of P L equal to x P -(l X P /2) (that we denote P L = x P -(l X P /2)). We also abusively say that a k-arc A and a cell P are k-adjacent if there exists a cell Q in A such that P and Q are k-adjacent. Let E = {P i } i=1,...,n be a given 2-D set of cells. We first choose a direction to treat the cells of E. Without loss of generality, we can suppose that we choose the left-to-right orientation above X axis, i.e. the height function f is defined along X axis. At time t = 0, we merge together all the k-adjacent cells P of E with the smallest left border x t=0 = x 0 , e.g. P L = x 0 = 0. This merging task is processed by the update procedure described below. Those m collections of cells define the begin cells of the initial recognized k-arcs A 1 , A 2 , ..., A m . Update Procedure. Let A be a k-arc, and P 1 and P 2 two adjacent cells of E such that P 1 ∈ A, P L 1 < P L 2 , and P 2 should be added to A. If P L 2 = P R 1 , we just add P 2 to A, else the procedure updates the k-arc A with P 2 , and may recode A. For that, we first build the greatest common rectangle F 2 of P 1 and P 2 . Definition 6 (Greatest common rectangle). Let P 1 and P 2 be two adjacent rectangles. F 2 is the greatest common rectangle (or GCR) of P 1 and P 2 iff i)

F 2 ⊆ P 1 ∪ P 2 , ii) F 2 ∩ P 1 = ∅ , iii) F 2 ∩ P 2 = ∅ , iv
) there is no rectangle greater than F 2 by inclusion respecting i), ii) and iii). Then, we consider the rectangles P 1 -F 2 and P 2 -F 2 . If P R 1 < P R 2 , we denote P 1 -F 2 = F 1 and P 2 -F 2 = F 3 , else we prefer P 1 -F 2 = {F 1 , F 3 }. We can notice that those rectangles may be empty, e.g. 3 presents the five general configurations of update procedure (there are also five other configurations, obtained by symetry when P T 2 > P T 1 ), and the k-arc recoding that we have to consider. Besides, we propose to reduce the number of cells in A by joining the two rectangles F 1 and

F 3 = ∅ if P R 1 = P R 2 , since in that case F L 3 = F R 3 . Figure
F 3 if F T 1 = F T 3 , F B 1 = F B 3 and F 2 = ∅.
This junction is processed by replacing F 1 and F 3 by the rectangle F 1 ∪ F 3 . Finally, the procedure ends by removing P 1 from A, and by adding the cells corresponding to the rectangles F 1 and F 2 to A. F 3 is also pushed in E, and will be treated later; more exactely at time t such that x t = F L 3 . At time t + 1, our algorithm consists first in merging the adjacent cells with the same left border x t+1 in k cells C 1 , C 2 , ..., C k (see update procedure for details). Those candidate cells may be added to one or more k-arcs among A i , i ∈ {1, ..., m} if they are adjacent to A i . It is clear that only a cell Q built at time t and having its right border Q R equal to x t+1 may be adjacent with a cell C j , j ∈ {1, ..., k}. A cell C j can be treated by several manners: -C j is not adjacent with any k-arc A i . We initialize a new k-arc A m+1 with the cell C j . C j represents the begin cell of A m+1 . -If C j is adjacent with one k-arc A i , then we just update A i with C j .

-When C j is k-adjacent with p k-arcs A i , A i+1 , ..., Ai + p, it is a merge phase. First, we update each k-arc with C j . The cell C j is marked as a merge cell and indicates that each k-arc A i , ..., A i+p has a k-arc A m+1 = {C j } linked as a next arc. -The case where p cells C j , C j+1 , ..., C j+p are k-adjacent with an k-arc A i is called a split phase. We first update A i with C j by the update procedure.

Then we denote Q the cell in A i such that Q R = x t+1 . We also define p new next k-arcs A m+1 , ..., A m+p of A i such that A m+1 = {Q, C j }, ..., A m+p = {Q, C j+p }. In those p k-arcs and in A i , Q is marked as a split cell.

When the algorithm ends, at time t such that x t is the greatest left border in E, we define the last added cell in every k-arc A i as an end cell. In this stage of our algorithm, there may also appear a split phase and a merge phase for a cell C j . We do not detail this specific case but it can be easily handled. We depict in Figure 4 the progressive construction of the graph and the recoding of the k-object presented in Figure 2 (b) in five stages of the algorithm. 

(deg(n)) - n∈V,(n=s)∨(n=m) (deg(n) -2)
where deg(n) is the degree of the node n in G, so deg(n) = 1 if n is a begin or end node. The Euler number permits to describe the topology of an object by an unique value. For example, for a torus, χ = 0, for a disc, χ = 2, and the object described in Figure 2 (b) has a Euler number χ = -4; we can also say that this shape is homeomorpheous to a torus with 3 holes where χ = 2 -2 × #(holes) = -4. Beside the topological invariants obtained by critical points, the structure of the graph clearly depends on the direction we choose for the height function f . A part of the nodes and the edges may change, but the information on the topology of E, i.e. internal nodes of G, is not modified. The Euler number is an example of the use of the Reeb graph for shape description. Let us consider now E ′ as the object drawn in the fourth image of Figure 4. The three cells added during the last iteration could be noise modifying the contour of E ′ . The Reeb graph is modified by a split phase, three nodes are created, whereas these cells are maybe noise. Actually, the problem of the perturbation of the contour of E ′ could be certainly reduced if the object was first filtered or smoothed. This kind of pre-treatment processings is often adopted, whatever the approach we may choose for shape representation, e.g. skeletonization. Finally, with the update procedure, we recode the cells in E so that a k-arc is always represented between two nodes of G. This geometrical rearrangement clearly depends on the direction of f , but does not change neither the topology nor the contour of the recognized k-arcs. The topological structure so described is simple, and prepares the next phase of our complex objects reconstruction system.

Polygonal Reconstruction of Thick Objects

Since the reconstruction into polylines always affects the first point p 0 as the center of the first treated cell, we propose to start the reconstruction of every k-arcs computed in the previous stage by the merge and split nodes detected in the Reeb graph G. This insures that each of those particular nodes of G will be represented by an unique point in the final polygonalization. The segments are recognized from intersections between several parts of the object E to its extremities, i.e. we consider the edges me, se, mb and sb of G. Moreover, since the recognition algorithm is greedy, the possible error induced by the visibility cone approach is propagated to the extremities of E, instead of those intersections that represent the shape of the object. For the ms, mm, ss and sm configurations of edges in G we propose to process a bidirectional reconstruction that begins from each node of the edge, and ends in its center. Thus, the error may be concentrated in the midpoint of those edges. This approach confirms that the nodes m and s of G represent the places of an object where the description of its geometry must be precise. Finally, we choose to treat edges b-e by the same bidirectional reconstruction, that seems to be the more efficient way to insure a robust reconstruction. We do not deal about the problem of linking the two reconstructions on the k-arc (reconstruction with patch), because an efficient and general joint technique between two discrete lines implies that our algorithm would not be linear anymore [START_REF] Breton | Reconstruction inversible d'objets discrets 2D[END_REF]. Hence we just add a segment between the two polylines. This phase of our system can not be handled without patch, since we use the internal points of the shape of E to guide the geometrical reconstruction.

In Figure 5 b, we illustrate the behaviour of our algorithm in the case of the object E presented in the previous section. We also show the interest of our approach for a symetrical complex object. This structure respects the supercover model, and the symetrical shape of this object. We also show the result of our algorithm on the k-object presented in the previous section (b)

Contrary to conventional vectorization methods, we propose a technique that respects the supercover model on an I-grid. We do not address the quality of the global polygonal structure deduced from this second phase of our system. To introduce the concept of quality in the framework of document analysis, we may refer to [START_REF] Wenyin | A protocol for performance evaluation of line detection algorithms[END_REF].

Experimentation and Results

In Figure 6, we present the polygonal structure obtained on an image first rearranged by a quadtree-based approach. The reconstruction of k-arcs stands inside the object, and the split and merge nodes are represented with one point in the reconstruction. The polygonal representation also permits to measure geometrical features (e.g. length) of a complex function f : R 2 → R (Figure 7). f is first discretized by an interval computing algorithm through a set of cells E, then we use our system to minimally describe the curves of E. Finally, to show the robustness of our system, we present in Figure 8 the polygonal and topological reconstructions of a large image of technical drawing. The representation by lines of an object described on a binary image is a classical problem often considered in the framework of document analysis. We have proposed to enlarge the scope of vectorization methodologies to irregular isothetic representation of binary data. Depending on the final application of our system, we can treat the initial image with pre-treatment processings, reorganize the Reeb graph (edge contraction, etc.), or rearrange the segments finally processed in the second phase. The geometrical reconstruction stands inside the object, i.e. it respects the irregular digitization supercover model. Moreover, this reconstruction preserves the topology described by the Reeb graph. Thus, our system is robust, and topologically and geometrically correct. The Reeb graph can be extended to three-dimensional (3-D) object description, with a similar incremental approach. However, visibity cone reconstruction is hardly adaptable to such irregular objects. Our system should be modified to provide a 3-D polygonalization based on the Reeb graph. Such technique would be convenient especially for medical imaging, e.g. organ representation in an irregular 3-D CT-scan image.

Fig. 1 .

 1 Fig. 1. An example of the progressive construction of cones in a k-arc (left), and the reconstruction into segments we obtain (right)

Fig. 2 .

 2 Fig. 2. (a): an example of the Reeb graph G of a continuous object E. The nodes of G represent the critical points of f (maxima, minima, inflection points), and an edge is a connected component of E between two critical points. (b): an example of an irregular object E (left), the final recoded structure with k-arcs (right) and the Reeb graph associated to the height function f defined on E (bottom). The notations b, e, m and s are given at the end of this section

Fig. 3 .

 3 Fig. 3. Description of rectangles F1, F2 and F3 in the update procedure (top), and the associated cells as result (bottom). When P R 1 < P R 2 (a and b), P1 -F2 = F1 and P2 -F2 = F3, else P1 -F2 = {F1, F3} (d and e). If P R 1 = P L 2 , F2 = ∅, when P R 1 = P R 2 , F3 = ∅ and finally F1 = ∅ in the case P L 1 = P L 2

Fig. 4 .

 4 Fig.4. The recognized k-arcs and the associated Reeb graph for some iterations of our algorithm on the object presented in Figure2 (b). First, we initialize a k-arc with the cell with the smallest left border. Then, we progressively update and recode k-arcs. The third and fourth images present merge and split phases. We can notice that in one hand the recoding stage is not detailed in this figure, and in the other hand the edges ms represent a k-arc with one cell in this example
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 5 Fig.5. If we consider the original orientation of the k-arcs, the shape of the k-object presented in the next section (a left) is not well defined since the symetry is not preserved. So, we propose to start the reconstruction by the nodes s and m (a right). This structure respects the supercover model, and the symetrical shape of this object. We also show the result of our algorithm on the k-object presented in the previous section (b)
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 678 Fig.6. An image of a chinese character (left), compressed by a quadtree-based approach (center). We show the final k-arcs recoding and the polygonalization (right)