
Minimal Decomposition of a Digital Surface into

Digital Plane Segments is NP-Hard

Isabelle Sivignon and David Coeurjolly

Laboratoire LIRIS - Université Claude Bernard Lyon 1
Bâtiment Nautibus - 8, boulevard Niels Bohr

69622 Villeurbanne cedex, France
{isabelle.sivignon}{david.coeurjolly}@liris.cnrs.fr

Abstract. This paper deals with the complexity of the decomposition of
a digital surface into digital plane segments (DPS for short). We prove
that the decision problem (does there exist a decomposition with less
than k DPS ?) is NP-complete, and thus that the optimisation problem
(finding the minimal number of DPS) is NP-hard. The proof is based on
a polynomial reduction of any instance of the well-known 3-SAT problem
to an instance of the digital surface decomposition problem. A geometric
model for the 3-SAT problem is proposed.

1 Introduction

Digital objects are defined as sets of grid points in Zn. Those objects carry
redundant geometrical information due to their discrete structure: an object
is represented as a set of elementary cells (called pixels in 2D, voxels in 3D).
The definition of digital linear structures like digital lines [1] and digital planes
[2, 3] originated a lot of works dealing with the decomposition of the contour
of a digital object into digital linear primitives. Such a decomposition actually
apprehends global geometrical properties of those objects. Many decomposition
strategies may be designed and the number of parts computed by the algorithms
may be a first criterion to compare the results. In this work, we focus on the
complexity of the optimal (minimal number of parts) decomposition problem. In
the 2D case, it has been shown that the minimal decomposition of a digital curve
into digital line segments can be computed in linear time [4]. In the 3D case of
surfaces, many decomposition algorithms have been proposed [5–8], offering com-
parisons on the number of faces recognised by different algorithms. Nevertheless,
no optimality results exist, and no complexity study has been carried out. Re-
lated results have been recently proposed in [9] concerning the NP-completeness
of the construction of an integer lattice polyhedron P with minimal number of
convex facets such that P ∩ Z3 corresponds to the input 3D digital object.

In computational geometry, the decomposition of a shape (e.g. a polygon)
into a minimal number of elements (e.g. convex polygons) usually leads to NP-
complete problems [10]. A problem is in the NP class of algorithms if it can
only be solved in polynomial time by a non-deterministic machine [11]. As a

corollary, the problem is in NP if a solution to the decision problem can be
verified in polynomial time on a deterministic machine. A problem is said to be
NP-complete if it is at least as difficult as any NP problem. In other words, if
a problem is NP-complete, an old conjecture is that no time efficient solution
exists to solve it. The remaining option is to consider approximation algorithms
with or without heuristics.

Prior to a complexity study, the problem has to be formalised. In the sequel,
we consider 6-connected sets of voxels which surface S is defined as the set of
object voxels sharing a face with the background. The surface is a set of 18-
connected voxels, and maximal digital naive planes [12, 13, 2, 3] are used for the
decomposition. A digital plane segment (DPS for short) is maximal if no surface
voxel may be added to it. In the following, we consider a sequential decomposition
algorithm: given a voxel on the surface (called a seed), we construct the maximal
digital naive plane segment adding iteratively voxels that are 18-connected to
the DPS initialised with the seed. Then, a new seed is considered from the set
of remaining voxels in S. In this algorithm, both the propagation process during
the DPS growing and the initialisation of seeds must be taken into account.

The optimisation problem we consider is defined as follows:
Min-DSD (Digital Surface Decomposition): Given a digital object surface S,

find the minimal decomposition of S into maximal digital naive plane segments
using a sequential algorithm.

In order to study the complexity of an optimisation problem, the related
decision problem has to be considered:

k-DSD: Given a digital object surface S and a number k ∈ N
∗, does there

exist a decomposition of S into k maximal digital naive plane segments using a
sequential algorithm ?

In this article, we prove that k−DSD is NP-complete whatever the propaga-
tion heuristic. Furthermore, the only requirement on the digital plane segments
topology is connectivity.

To prove that a problem P is NP-complete, a classical scheme is to exhibit
a polynomial reduction of any instance of a classical NP-complete problem, de-
noted PNP into an instance of P . Then, we have to prove that a solution of P
also leads to a solution of PNP . Since PNP is known to be NP-complete, we
could conclude that P is also NP-complete [11]. In the literature, the Boolean
Satisfiability Problem (SAT) is a decision problem classically used in complexity
theory since it was the first known NP-complete problem. An instance of SAT is
a boolean expression written using only and, or, not, variables and parenthe-
ses. The decision problem is: given an expression, is there an assignment of the
variables such that the expression is true ? The problem remains NP-complete
even if the expression is written in conjunctive normal form with three variables
per clause, yielding the 3-SAT problem. An expression φ has the form:

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ x5) ∧ (¬x6¬ ∨ x3 ∨ ¬x5) ∧ . . . , (1)

where each xi is a binary variable (and ¬xi its negation) that can appear several
times in the expression.

In the following we define a polynomial reduction of any instance of the 3-SAT
problem to an instance of the k-DSD problem. The construction process, defining
geometrical objects for variables, variable instances and clauses, is presented in
Section 2, while the NP-completeness proof derived from this construction is
given in Section 3.

2 A Geometric Model for 3-SAT

Given a 3-SAT expression φ, we show how to construct a geometric discrete
object. This construction is a two steps process: after defining geometric ele-
ments for variables, instances of variables and clauses, we see how these basic
components are organised and linked together in the 3D space.

2.1 General Considerations

All the basic elements we define further are composed of two parts:

– idle part: the surface of this part will be made of planes parallel to axis
planes and only aims at defining a 6-connected object. The minimal number
of DPS needed to cover the idle part will be fixed for each basic element, and
any decomposition of this part into maximal DPS will exactly cover the same
voxels, with no possible extension. This part is not used in the encoding of
a 3-SAT expression;

– active part: this part consists of the remaining voxels after the decom-
position of the idle part. It takes advantage of digital planes properties to
geometrically encode the 3-SAT elements.

For each basic element, we provide an illustration1 of an example set of seeds
(black voxels) which may be used in a decomposition algorithm. Moreover, those
sets have the remarkable property that any two seeds cannot be covered by a
single DPS.

The underlying basic idea for this construction is the following: the optimal
decomposition chosen for a variable object generates a “signal” sent to clause
objects through “wires” representing instances of variables. This kind of geomet-
ric construction of 3-SAT is a classic way to prove NP-completeness of geometric
problems (see [14, 15] for instance). The construction of basic elements relies on
several properties of digital planes structure that we set forth here (Figure 1):

Property 1. For the four configurations (a), (b), (b’) and (c) represented in
Figure 1, one DPS cannot simultaneously cover the two light-coloured voxels
and all the other ones. In the configuration represented in Figure 1(d), the three
voxels cannot be covered by one DPS, but any two voxels can.

1 Most illustrations of this paper are originally colour artworks. To make the under-
standing of the paper easier from B&W printings, colour images are available on
http://liris.cnrs.fr/isabelle.sivignon/SatDSD.html

Proof. The proofs of these properties are straight forward using either digital
naive plane structural basic properties or their arithmetical definition [12, 6, 2].

In the following, we refer to these configurations as Property 1(a), (b), (b’),
(c) and (d).

(a)

k

k+2

(b) (b’) (c) (d)

Fig. 1. Five configurations used for the reduction process

2.2 Variable and Clause Objects

An illustration of a variable element is given in Figure 2. Optimal decompositions
are represented in Figure 2 (b) and (c): five DPS are used to cover the idle part
of the object, and two more DPS are required to cover the remaining active part
(upper part on the figure). Indeed, regardless of the idle part decomposition, the
only two optimal decompositions for the active part (composed of the “bump”
and the five voxels on each side of this bump) consists of two DPS, with two
possible configurations (Figure 2 (b) and (c)): the “bump” voxels are either
covered by the left or the right DPS (see Property 1(b)). Actually, any other
decomposition is either not optimal or not composed of maximal DPS. We set
that these two possibilities respectively encode true and false assignments of the
variable. From these decomposition schemes and Property 1(b), seven seeds can
be defined on each variable object.

Variable elements are linked to clauses thanks to wires that are connected on
the area circled in red on Figure 2(a). The first part of these wires, described in
details in Section 2.3, aims at generating a “signal” encoding the assignment of
the variable. This signal is then “sent” to clause objects (see Section 2.3 for the
transmission process). Figure 3 illustrates the signal generation: the number of
voxels covered by the two active DPS differ by one according to the truth value
of the variable - in the case of a true value, one more voxel is covered.

For a positive instance of variable, the wire is connected to the variable on the
right-hand side of the variable, as depicted on Figure 3: the signal corresponding
to the value of the variable is generated. For a negative instance of variable, the
wire is connected on the left-hand side of the variable: in this case, the signal
corresponding to the negated value of the variable is generated.

Finally, and to handle multiple instances of the same variable in a boolean
expression, the length (along y axis) of the variable v depends on the maximum
number of positive or negative instances of v in an expression, so that all the

yz

x

(a) (b) (c)

Fig. 2. Geometric discrete object encoding a variable: (a) general view with wire plug-
ging area, (b) truth assignment, (c) false assignment

(a) (b)

Fig. 3. Generation of a “signal” according to the variable assignment: when the variable
is set to true (a), the voxel circled in red is covered by a DPS of the variable, otherwise
(b), this voxel cannot be covered by one of the two DPS of the variable (Property 1
(a))

connections can be made. Note that the length of the variable does not change
the optimal number of DPS required for the decomposition.

A clause element is depicted in Figure 4. It is composed of a transversal rect-
angular parallelepiped on which three terminals are plugged. Since each clause
has three literals (recall that 3-SAT is considered), each clause element has three
incoming wires. The active part consists of the upper part of the object as de-
picted in Figure 4. Five idle DPS are required in order to decompose five out of
the six faces of the rectangular parallelepiped. Idle planes related to the three
terminals will be taken into account in the wire definition.

The active part of a clause can be entirely covered by a single DPS, except
one out of the three terminal extremities (see Figure 4(b)): indeed, following
Property 1(d), the three terminal extremities cannot be covered by a single DPS
whereas any couple of terminals can be entirely covered by a single DPS. To
sum up, if one terminal extremity can be covered by a DPS of the wires active
part, then only one DPS is required to cover the clause active part. Otherwise,
two DPS are necessary. The link between a boolean clause and the geometric
object we propose can be drawn up as follows: a boolean clause is true if and
only if at least one literal is true; one DPS is enough to cover the whole active
part of a clause if and only if one terminal extremity is covered by another DPS.
From the optimal decomposition, six seeds can be defined on the surface of each

clause object. The wires linking variable elements to a clause are plugged on the
areas circled in red on Figure 4(a), one on each terminal extremity.

(a) (b)

Fig. 4. Geometric discrete object encoding a clause: (a) general view, (b) optimal
decomposition

To end with the variable and clause geometric objects, Figure 5 illustrates
how these objects are put together in the 3D space when many objects are
involved in a boolean expression: variables and clauses are lined up on two axis
parallel to the y axis. The definition of wires connecting variables and clauses
relies on this spatial construction.

Fig. 5. Positions of (four) variables and (two) clauses objects in the 3D space

2.3 Linking Variables and Clauses

Variable elements are connected to clause elements through wires, that represent
variable instances: if a variable v appears in a clause c, a wire links the geometric
elements of v and c. Those wires aim at “transmitting” the truth value of a
variable to the clause it belongs to. Before defining the geometric construction
of wires, we describe the transmission process.

Figure 6 illustrates how the truth value of a variable is transmitted to a
clause through a wire. This Figure represents a vertical cut of the active part of

a variable, a wire and a clause terminal. Figure 6(a) illustrates the propagation
of a true value while Figure 6(b) shows how a false value is transmitted to a
clause. From the construction we propose, the vertical cut of a variable-wire-
clause connection can be thought of as a 2D digital curve that we decompose in
digital straight segments, using their properties.

We call “transmission voxels” the two voxels circled in red in Figure 6 (in-
termediate transmission voxels are circled in black). We consider an optimal
decomposition of the surface into DPS. The left transmission voxel actually cor-
responds to the generation of the signal encoding the truth value of the variable
(see Figure 3 for a 3D representation of a variable and a “plateau”). Using Prop-
erty 1(a) and (b’), if the left transmission voxel is covered by a variable DPS,
then the right transmission voxel (which is at the same time an extremity of a
clause terminal) is covered by a wire DPS. On the contrary, if the left transmis-
sion voxel is not covered by a variable DPS, then the right transmission voxel is
not covered by a wire DPS. Note that for the plateau, descent and ascent parts,
the relative length of the steps are the key point of this transmission process: for
instance, a single DPS cannot cover both the first and last voxel of the descent.

Since the left transmission voxel is covered by a variable DPS if and only
if the variable instance is set to the value “true” (Property 1(a)), the clause
terminal extremity is covered by a wire DPS if and only if the variable instance
is set to the value ”true”.

Plateau

D
es

ce
nt

Shift

C
lause

A
scent

Variable

(a)

Plateau

D
es

ce
nt

Shift

C
lause

A
scent

Variable

(b)

Fig. 6. Vertical cut illustration of the transmission of a truth assignment through a
wire: (a) the value “true” is transmitted; (b) the value “false” is transmitted

Following the spatial arrangement of variable and clause elements (see Figure
5), and the rules defined for the connections of negative and positive instances of
variables (Section 2.2), wires standing for positive instances are plugged on the
variable side closest to clauses, while wires corresponding to negative instances
are plugged on the opposite side. We see that in the case of a negative wire, a
U-turn towards clause objects is required. As depicted in 2D in Figure 6, wires

are basically composed of four parts, that are depicted in 3D in Figure 7(a) for
a positive wire:

– a plateau (blue) generates the “signal” corresponding to the truth value of
the variable;

– a descent (green) to a given level L: two distinct variable instances descend
on two different levels to ensure an intersection free construction;

– a shift movement (red) on the level L to reach the clause position;
– an ascent (yellow) from the level L to the clause terminal extremity.

(a) (b) (c)

(d) (e)

Fig. 7. Wire between a variable and a clause: (a) case of a positive variable instance,
with zooms on (b) the descent and (c) ascent parts; (d) case of a negative variable
instance

The optimal decomposition of the plateau is made of one DPS only, for the
idle part (bottom of the plateau). Indeed, the sides are covered with descent idle
DPS, and the upper part (active) is covered by a DPS coming from the variable
decomposition. Figure 7(e) illustrates how a wire is connected to a variable.

Concerning the descent and ascent parts, optimal decompositions are de-
picted in Figure 7(b) and (c). Seven idle and one active DPS are required for
both positive and negative wires. Moreover, the active part is a three steps sur-
face such that the first step is k voxels long (k ≥ 3), the second one is k − 2
voxels long and the third one is made of one voxel. In addition to the function
of this construction in the transmission process (see previous paragraph), the

parameter k is used to ensure that every wire descend on a different level so that
wires do not intersect.

The shift parts of positive and negative wires are different. In the case of a
positive wire, only one DPS covers the active part (upper part). Five more idle
planes are necessary for a negative wire, and two DPS are needed to cover the
active part (see Figure 7(d)). The transmission of the truth value through the
U-turn part of a negative wire is ensured thanks to the small “bump” on the
shift part and Property 1(c).

All in all, optimal decomposition of wires leads to the definition of 11 seeds
(eight for the idle part, three for the active part) for each positive wire and 17
(13 for the idle part, four for the active part) for each negative wire (see Figure
7(b), (c) and (d)).

To summarise the construction, we have proposed a polynomial reduction of
any instance of the 3-SAT problem into an instance of the k-DSD problem. This
reduction is based on the definition of variable and clause objects linked together
through wires which pass the truth value of a variable on to clauses. Section 3
is dedicated to the proof of the relation between the two problems.

3 NP-Completeness Proof

Let us consider a boolean 3-SAT expression φ and the corresponding discrete
object surface S. We denote c, v, vp and vn the number of clauses, variables,
positive instances and negatives instances of variables in φ respectively.

Proposition 1. k-DSD is in NP.

Proof. Given a digital surface S and solution D, verifying that |D| ≤ k and that
it actually covers all the voxels of S can easily be done in linear time in the
number of voxels S. �

Proposition 2. The size of S is linear in the size of φ.

Proof. The proof is straight forward considering the construction.

We shall now prove that the construction is a reduction of 3-SAT to k-DSD,
i.e. that the expression φ is satisfiable if and only if S admits a decomposition
with k maximal DPS. We prove the two implications one after the other.

Lemma 1. If the expression φ is satisfiable, then S admits a decomposition with

k maximal DPS.

Proof. Assume that φ is satisfiable under some truth assignment T . The follow-
ing algorithm builds a decomposition of the surface of S into k maximal DPS:

1. label all the voxels belonging to a construction DPS regardless of T : 5v +
5c + 8vp + 13vn DPS are used to cover the entire idle part of S;

2. decompose each variable according to its truth assignment in T : this decom-
positions requires 2v DPS;

3. use 3vp and 4vn DPS to decompose the wires active parts, which may leave
the tips of some wires (which are also the clause terminal extremities) un-
covered;

4. since T satisfies φ, every clause has at least one incoming wire with a cov-
ered tip. Thus, every clause has at least one covered terminal extremity.
Consequently, each clause active part can be covered with one single DPS.

All in all, (5v +5c+8vp +13vn)+2v+3vp +4vn + c = 7v+6c+11vp +17vn = k

DPS are used in this decomposition. �

In order to prove the reverse implication, we need to show that there is only
one way of decomposing S into k DPS. Next, we show that this unique solution
leads to a satisfactory assignment of φ’s variables.

Lemma 2. Consider a decomposition of S with k DPS. Then the decompositions

of variable, positive wire, negative wire and clause objects are respectively covered

by 7, 11, 17, 6 DPS.

Proof. Consider a decomposition D of S with |D| = k. Suppose that there exist
a variable object with a decomposition Dv such that |Dv| > 7. Extra DPS
are either idle or active. Using more than five idle DPS has no effect on the
number of DPS required to cover other variables, wires and clauses. Thus, |D| =
7(v − 1) + |Dv| + 6c + 11vp + 17vn > k, which is a contradiction.

Now suppose that extra DPS are used for the active part. With these DPS,
one can at best ensure that the “true” value is transmitted to every clause objects
linked to this variable. Nevertheless, the number of DPS required to cover wires
and clauses does not change, and we still have |D| = 7(v−1)+ |Dv|+6c+11vp+
17vn > k, which is a contradiction.

On the contrary, if less than seven DPS are used to cover a variable object,
it is easy to check that some voxels will remain uncovered even if more DPS are
used for wires or clause objects. Similar arguments can be used to show that
positive and negative wires, and clause decompositions have to be composed of
11, 17 and 6 DPS. �

Lemma 3. If S admits a decomposition into k maximal DPS, then φ is satisfi-

able.

Proof. Suppose that S admits a decomposition D with k DPS. Since |D| = k,
from Lemma 2 the decomposition of every variable object is made of seven DPS.
Variable objects can only be decomposed two ways into seven DPS, each of
which encodes a truth assignment. This decomposition is made of 5 DPS for
the idle part and 2 DPS for the active part (regardless of the algorithm used).
Thus, covering all variables requires 7v DPS. In the same way, using Lemma
2 covering wires uses 11vp + 17vn DPS. All in all, k − 7v − 11vp − 17vn = 6c

DPS remain for covering clause objects. The idle part of clause objects requires
5 DPS regardless of the rest of the decomposition. Thus c DPS remain to cover

the clauses active parts. Since there are c clause objects, and c DPS remain, we
know that the clause active parts are covered by one DPS only in D. This is
possible if and only if every clause is satisfied, and thus φ is satisfied too. �

Theorem 1. k-DSD is a NP-complete problem.

Proof. The result is derived from Lemma 1 and 3.

This theorem proves that the decision problem associated to Min-DSD is
NP-complete. Thus, according to the theory of complexity, Min-DSD is said to
be NP-hard.

4 Example

A software that generates a 3D object from a 3-SAT boolean expression is avail-
able on http://liris.cnrs.fr/isabelle.sivignon/code.html. This program also gen-
erates the seeds of the object, and a simple surface decomposition algorithm into
maximal DPS is also provided to compute the decomposition derived from those
seeds.

Figure 8 is an illustration of the digital surface encoding the expression φ =
(a ∨ ¬b ∨ c). The optimal decomposition into maximal DPS is composed of 49
idle DPS and 17 active DPS. In Figure 8(a), the variable objects encode the
assignment (a = true, b = true, c = false), and the optimal decomposition
is represented. In Figure 8(b), the variable objects encode the assignment (a =
false, b = true, c = false): in this case, since φ is not satisfied, the optimal
decomposition cannot be achieved, and an extra DPS (in red) is added.

(a) (b)

Fig. 8. Discrete object encoding the expression φ = (a∨¬b∨ c): (a) optimal decompo-
sition corresponding to the satisfaction of φ; (b) φ is not satisfied and one more DPS
is required to achieve a complete decomposition

5 Conclusion and Future Works

In this article, we have proved that the decomposition of a digital object surface
into a minimal number of maximal DPS using a sequential algorithm is NP-
complete. This theoretical result concludes an important open problem in the
discrete geometry community: no efficient algorithms exist to solve the Min-DSD
problem. A logical consequence of this answer is that only heuristics can be used.

Among possible heuristics, important theoretical future works exist: does
there exist a polynomial-time approximation scheme for the Min-DSD problem
? More precisely, is there a polynomial in time approximation of Min-DSD that
produces a solution that is within ǫ factor of the optimal solution ?

By construction of variables, clauses and links, the genus of the obtained
binary object depends on the number of cycle in the 3-SAT instance. Is k−DSD
still NP-complete, and thus Min-DSD still NP-hard for hole-free objects ?

References

1. Rosenfeld, A., Klette, R.: Digital straightness. In: Int. Workshop on Combinatorial
Image Analysis. Volume 46 of Electronic Notes in Theoretical Computer Science.,
Elsevier Science Publishers (2001)

2. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Series in Comp. Graph. and Geom. Modeling. Morgan Kaufmann (2004)

3. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity - a review. Technical
Report CITR-TR-142, CITR - Univerity of Auckland (2004)

4. Feschet, F., Tougne, L.: On the min dss problem of closed discrete curves. Discrete
Applied Mathematics 151(1-3) (2005) 138–153

5. Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In: 8th
DGCI. Volume 1568 of LNCS., Springer-Verlag (1999) 425–434

6. Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. PhD
thesis, Université Louis Pasteur (1995)

7. Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a three-dimensional
discrete object surface into discrete plane pieces. Algorithmica 38(1) (2003) 25–43

8. Sivignon, I., Dupont, F., Chassery, J.M.: Reversible polygonalization of a 3D planar
discrete curve: Application on discrete surfaces. In: 12th DGCI. (2005) 347–358

9. Brimkov, V.: Discrete volume polyhedrization is srongly NP-hard. Technical re-
port, CITR-RR 179 (2006)

10. Goodman, J.E., O’Rourke, J., eds.: Handbook of Discrete and Computational
Geometry. CRC Press (1997)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. MIT Press, Cambridge, MA (2001)

12. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique.
PhD thesis, Université Louis Pasteur - Strasbourg (1991)

13. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical
Models and Image Processing 59(5) (1997) 302–309

14. Worman, C.: Decomposing polygons into diameter bounded components. In:
Canadian Conference on Computational Geometry (CCCG’03). (2003) 103–106

15. Chazelle, B., Dobkin, D.P., Shouraboura, N., Tal, A.: Strategies for polyhedral
surface decomposition: An experimental study. In: Symp. on Compututational
Geometry. (1995) 297–305

