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Abstract. The vectorization of discrete regular images has been widely
developed in many image processing and synthesis applications, where
images are considered as a regular static data. Regardless of final application,
we have proposed in [14] a reconstruction algorithm of planar graphical
elements on irregular isothetic grids. In this paper, we present a dynamic
version of this algorithm to control the reconstruction. Indeed, we handle
local refinements to update efficiently our complete shape representation.
We also illustrate an application of our contribution for interactive approximation
of implicit curves by lines, controlling the topology of the reconstruction.

1 Introduction

The representation by lines of graphical elements is an important task in many
image processing and synthesis applications [4, 5, 8, 12, 13]. In general, images are
digitized on regular grids: all the pixels have the same size, and their position can
be easily indexed. However, it is now common to successively divide an image
into subimages, as in quadtree decomposition [11], to represent a part of an image
in a more compact and adapted manner. An other example: to approximate an
implicit curve, the algorithms designed in interval arithmetic build an irregular
tiling of the plane [6, 9, 13]. We have presented in [14] a system to represent the
elements contained in an irregular isothetic grid (I-grid for short) [1]: the pixels
are defined by variable sizes and positions, and may be determined by subdivision
rules. We describe the topology of the elements in a two-dimensional (2-D) image
by their associated Reeb graph [10], then we geometrically represent them by
a simple polygonal structure. By using an irregular image representation, we
naturally produce less line segments than in the regular discrete applications.

In this article, we propose to efficiently modify this representation to handle
the dynamic construction of an I−grid. Moreover, we control the topology of
the recognized irregular objects. Indeed, we may build an irregular grid by
successively applying local refinements by inclusion that respects a grid model. If
we consider an irregular grid I and a cell P ∈ I, such a refinement performed on
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P is a set of subcells S(P ) ⊆ P (inclusion rule), obtained by the process S. For
example, in the quadtree decomposition, a cell P ∈ I is divided into four subcells
if the region of the 2-D image bounded by P is not homogeneous. In this case,
S represents the operation of division in four subcells, and we consider the 2-D
image data to check the homogeneity criterion. To completely define such a grid
model, the choice of the refined cell P can be guided by two main approaches: (1)
an irregular grid can be successively refined by inclusion to respect a subdivision
model, as in the quadtree decomposition where all the heterogeneous cells are
subdivided; (2) we can manually choose the cells to refine. This interactive
way of construction is interesting for implicit curve approximation by interval
arithmetic, where an user may locally refine the approximation. In this kind of
implicit curve approximation, the digitization algorithms consist in tiling the
plane with isothetic rectangles so that the real function f : R

2 → R belongs
to each rectangle. For now, we focus on the interactive refinement of those data
driven grids [1]. From a coarse description of f , we choose one or more rectangles
in I, where a finer description of f is performed. We proove that we can handle
local refinements by inclusion in our reconstruction of an irregular object. By an
efficient and simple algorithm, we update its topological representation by the
Reeb graph, then we deduce a new polygonal approximation of its shape.

We first introduce the concepts of k−arcs by recalling some definitions,
then we present the extended supercover model on an I−grid. We also recall
the invertible reconstruction of k−arcs described in [2]. In the third part, we
give details about our contribution: we shortly describe the topological and
geometrical reconstruction of a complex object based on the Reeb graph [10] that
we have proposed in [14]. Then, we present our algorithm designed to update
this structure considering one or several local refinements. We also present an
application of our system to the interactive approximation of an implicit curve
by lines. We finally discuss about possible extensions of our method.

2 Preliminaries

We first define an irregular isothetic grid, denoted I, as a tiling of the plane
with isothetic rectangles. Each rectangle P (also called cell) of I is defined by
its center (xP , yP ) ∈ R

2 and a size (lxP , l
y
P ) ∈ R

2. In our framework, adjacency
relation is an important feature that we depict through the following definitions.

Definition 1 (ve−adjacency and e−adjacency). Let P and Q be two cells.
P and Q are ve−adjacent (vertex and edge adjacent) if :

or







|xP − xQ| =
lxP +lxQ

2
and |yP − yQ| ≤

l
y

P
+l

y

Q

2

|yP − yQ| =
l
y

P
+l

y

Q

2
and |xP − xQ| ≤

lxP +lxQ
2

P and Q are e−adjacent (edge adjacent) if we consider an exclusive “or” and
strict inequalities in the above ve−adjacency definition. k will now represent
either e or a ve adjacency in the following definitions.
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Definition 2 (k−arc). Let E be a set of cells, E is a k−arc if and only if for
each element of E = {Pi, i ∈ {1, ..., n}}), Pi has exactly two k−adjacent cells,
except P1 and Pn which are called extremities of the k−arc.

We now consider the extension of the supercover model from [3] on irregular
isothetic grids [1] to digitize Euclidean objects on I.

Definition 3 (Supercover on irregular isothetic grids). Let F be an Euclidean
object in R

2. The supercover S(F ) is defined on an irregular isothetic grid I by :

S(F ) =
{

P ∈ I | B
∞(P ) ∩ F 6= ∅

}

=
{

P ∈ I | ∃(x, y) ∈ F, |xP − x| ≤
lxP
2

and |yP − y| ≤
l
y
P

2

}

where B
∞(P ) is the rectangle centered in (xP , yP ) of size (lxP , l

y
P ) (if lxP = l

y
P ,

B
∞(P ) is the ball centered in (xP , yP ) of size lxP for the L∞ norm).

We now present the k−arc reconstruction algorithm we use in our complex
object geometrical representation phase (Section 3.1). Moreover, this approach
respects the supercover model we have just presented. The algorithm proposed
in [2] to decompose a curve into segments is first based on the following definition
of an irregular digital line.

Definition 4 (Irregular isothetic digital straight line). Let S be a set of
cells in I, S is called a piece of irregular digital straight line (IDSL for short) iff
there exists an Euclidean straight line l such that :

S ⊆ S(l)

In other words, S is a piece of IDSL iff there exists l such that for all P ∈ S,
B
∞(P ) ∩ l 6= ∅.

The Figure 1 illustrates the progressive construction of cones in a k−arc, and
the resulting segmentation into lines.

Fig. 1. An example of the progressive construction of cones in a k−arc (left), and the
reconstruction into segments we obtain (right)



4 Antoine Vacavant et al.

3 Dynamic Representation of Complex 2-D Objects on

Irregular Isothetic Grids

3.1 Topological and Geometrical Reconstruction of a Complex 2-D
Object

To represent the shape of a k−object E , we have chosen in [14] an incremental
directional approach to build its associated Reeb graph G, as in continuous space.
It is an interesting structure introduced by G. Reeb [10] based on the Morse
theory [7]. The Reeb graph G = (V,E) is associated to a height function f defined
on E , and nodes of G represent the critical points of f . These critical nodes
represent the important elements of the topology of E . More exactly, we denote
them begin (b), merge (m), split (s) and end (e) nodes (see Algorithm 1). To
handle the orientation of f , we choose a direction to treat the cells of E . Without
loss of generality, we can suppose that we choose the left-to-right orientation
along X axis, i.e. the height function f is defined along X axis. Moreover, we
want to represent an edge between two nodes by a k−arc, to have a minimal
information in the topological representation of E . To respect this feature, we
use a simple procedure to update and recode a k−arc with one or more adjacent
cells (see [14] for more details). In Algorithm 1, we present the main stages
of our reconstruction algorithm of complex irregular objects. As a k−arc A is
associated to an edge n1−n2 ∈ E,n1, n2 ∈ {b, e,m, s}, we note in this algorithm
inf(A) = n1 and sup(A) = n2. We also abusively say that a k−arc A and a cell
P are k−adjacent if there exists a cell Q in A such that P and Q are k−adjacent.
We finally note E = {Pi}i=0,...,n a given 2-D set of cells.

f

(a)

f

(b)

Fig. 2. (a) : an example of the Reeb graph G of a continuous object E . The node of G

represent the critical points of f (maxima, minima, inflection points), and an edge is a
connected component of E between two critical points. (b) : an example of an irregular
object E (left), the final recoded structure with k−arcs, the obtained polygonization
(right) and the Reeb graph associated to the height function f defined on E (bottom)
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Indeed, our method first builds a complete topological representation of E
with the Reeb graph G by recognizing and linking critical nodes. At the end of
our approach, we use the k−arc reconstruction algorithm (see section 2) to build
a polygonal description of E . We process the geometrical reconstruction of E from
merge and split nodes (internal nodes of our structure) to the others. Thus, all
the merge or split nodes in G are represented by a single point. Moreover, since
the recognition algorithm is greedy, the possible error induced by the visibility
cone approach is propagated to the extremities of E , instead of those intersections
that represent the shape of the object. The complexity in the worst case of this
algorithm is O(m × n): for all Pi, we test all the m k−arcs Aj to find which
cell Pi is adjacent with Aj . In Figure 2, we present the Reeb graph and the
polygonization obtained by our approach on a simple example.

Algorithm 1 Reconstruction of an object E ∈ I

Input : E = {Pi}i=1,...,n, a set of n 2-D cells in I.
Output : G = (V, E), the Reeb graph associated to E

L, the reconstruction by lines of E
A = {Ai}i=1,...,m, the set of m k−arcs recoding E

1: Add an edge b − e in G

2: Create the arc A1 with inf(A1) = b and sup(A1) = e {m = 1}
3: for all cells Pi, 2 ≤ i ≤ n do

4: for all arcs Aj , 1 ≤ j ≤ m do

5: if one cell Pi is adjacent with one arc Aj then

6: Update Aj with Pi

7: end if

8: if p cells Pi, Pi+1, ..., Pi+p are adjacent with Aj then

9: Update Aj with Pi, Pi+1, ..., Pi+p

10: Add a split node s in G {deg(s) = p + 1}
11: sup(Aj) = s

12: Link p new arcs Am+1 = Pi, ..., Am+p = Pi+p with Aj

13: inf(Am+1) = ... = inf(Am+p) = s

14: end if

15: if one cell Pi is adjacent with p k−arcs Aj , Aj+1, ..., Aj+p then

16: Update Aj , Aj+1, ..., Aj+p with Pi

17: Add a merge node m in G {deg(m) = p + 1}
18: sup(Aj) = ... = sup(Aj+p) = m

19: Link a new arc Am+1 = Pi with Aj , Aj+1, ..., Aj+p

20: inf(Am+1) = m

21: end if

22: if a cell Pi is adjacent with any arc Aj then

23: Add an edge b − e in G

24: Create an arc Am+1 with inf(Am+1) = b and sup(Am+1) = e

25: end if

26: end for

27: end for

28: Perform the polygonization over the set of arcs {Aj}j=1,...,m considering G
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3.2 Dynamic Reconstruction of Complex 2-D Objects

We now want to update our reconstruction of complex objects, considering one
or more local refinements by inclusion. More precisely, we have to insert the
reconstruction of the set of cells defined in the local refinement into the global
reconstruction. Here, we propose an efficient algorithm to locally change the
Reeb graph and the polygonal approximation we compute in Algorithm 1.

Let St(Ω) be a set of cells obtained by a process St at time t on the domain
Ω ⊂ R

2, e.g. a quadtree decomposition of level t in the image plane. Let P ∈
St(Ω) be a cell where we want to have a more precise decomposition, e.g. a
local quadtree refinement of level t + 1. We denote St+1(P ) the set of cells in
the domain bounded by P obtained by the process St+1. Gt, Lt and At are the
elements computed by Algorithm 1 (see Input of Algorithm 2). For each k−arc
Ai ∈ At, its associated edge in Gt is denoted in a lower case ai. In this section, we
propose a simple algorithm to update Gt, Lt and At considering St+1(P ). First,
we consider all the coarse k−arcs in St(Ω) that contain P . Then, we replace
P with the smaller pixels St+1(P ), and perform Algorithm 1 over those pixels
to have a local topological and geometrical representation of them. Then, we
branch the local recognized arcs represented in Gt+1(P ), Lt+1(P ) and At+1(P )
(associated to St+1(P )) in Gt, Lt and At respectively.

In Figure 3, we illustrate the behaviour of our algorithm for the two cases
p = 1, i.e. the cell P belongs to one k−arc (Algorithm 2, line 4) and p > 1,
where P belongs to several k−arcs (Algorithm 2, line 2).

Fig. 3. Examples of results for Algorithm 2. The first reconstruction (top-left) contains
one arc. Then, we choose the cell in dark and decompose it into two k−arcs (top-right).
This cell belongs to one arc, thus p = 1 and the edge b − e has to be divided into two
before adding the node s. The next update (bottom) considers three k−arcs, since we
choose a split cell (p > 1). This cell and its associated node (s) are removed before
inserting the new edges
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Algorithm 2 Update reconstruction of an object E ∈ I

Input : St(Ω), decomposition of Ω ⊂ R
2 by the process St

St+1(P ), the local decomposition of P ∈ St(Ω) by St+1

Gt, the Reeb graph associated to St(Ω)
Lt, the reconstruction by lines of St(Ω)
At, the set of k−arcs recoding St(Ω)

Output : Gt, Lt and At are updated
1: Find the p k−arcs At

k, ..., At
k+p ∈ At so that P ∈ At

k, ..., At
k+p

2: if p > 1 then {P represents a split or merge node in Gt}
3: Remove the node n ∈ Gt associated to P

4: else {P is in one arc}
5: Split at

k into two edges at
k, at

k+1

6: end if

7: Remove the polylines of Lt associated to the k−arcs At
k, ..., At

k+p

8: Remove P from At
k, ..., At

k+p

9: Use Algorithm 1 to compute Gt+1(P ), Lt+1(P ) and At+1(P ) associated to St+1(P )
10: for all edges at+1

i ∈ Gt+1(P ) do

11: for all edges at
j , j = k, ..., k + p do

12: if At
j and At+1

i are k−adjacent then

13: Branch at+1

i to at
j

14: Merge the k−arcs At
j and At+1

i

15: end if

16: end for

17: end for

18: Add all polylines from Lt+1(P ) to Lt

19: for all k−arcs At
j , j = k, ..., k + p do

20: Compute k−arc reconstruction on At
j

21: end for

To find the p k−arcs required by the first operation of Algorithm 2 (line 1),
we use a pointer between the cell P and a k−arc At

k such that P ∈ At
k. If P

is inside At
k, it is clear that p = 1, and so only one k−arc is considered. When

P stands on one of the extremities of At
k, we have to consider all the k−arcs

linked with At
k. Thanks to its associated edge at

k in G, and the direct access
to the edges linked of G with at

k, this search operation is computed in constant
time O(1). Then, the next instructions change the Reeb graph Gt in the set
of p edges {at

j}j=k,k+p and impact the p k−arcs {At
j}j=k,k+p found in the first

operation (lines 2-17). The topology of the irregular object E is locally updated.
The rest of the graph does not change. In the last phase of the algorithm, the
polygonal reconstruction is first computed in the k−arcs belonging to the local
refinement At+1(P ). Then, this reconstruction may be propagated to the p global
k−arcs At, as in Figure 3 (top). In the worst case, the update of the polygonal
reconstruction is locally performed on At+1(P ) and At, and does not modify
the rest of the reconstruction. Finally, we can notice that our algorithm locally
impact the topological and geometrical reconstruction we globally compute for E .

To perform our algorithm on several refined cells, we first update the Reeb
graph with the local graphs using the same approach (Algorithm 2, lines 1-17).
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Then, we perform only once the final polygonalization over the concerned k−arcs
(see next section for a complete example).

4 Application to Interactive Approximation of Implicit

Curves by Lines

In this part, we propose to apply our interactive system to approximate an
implicit curve by interval arithmetic analysis. The interval arithmetic is a widely
used range based model for numerical computation where each quantity x is
represented by an interval x̄ of floating point numbers. Arithmetic operations
are defined so that each resulting interval x̄ is guaranteed to contain the unknown
value corresponding to the real quantity x. Briefly, an interval x̄ is represented
by [x̄.inf, x̄.sup] and we have, for example, x̄+ ȳ = [x̄.inf + ȳ.inf, x̄.sup+ ȳ.sup]
or x̄ − ȳ = [x̄.inf − ȳ.inf, x̄.sup − ȳ.sup]. Thanks to this interval definition of
operations, we can build an approximation f(x̄, ȳ) of a function f : R

2 → R

by tiling the plane with an irregular isothetic grid, where each rectangle is
given by [x̄.inf, x̄.sup] × [ȳ.inf, ȳ.sup] (Figure 4-up for example). Then, the
polygonal representation of the computed irregular object permits to have a first
geometrical analysis of the unknown underlying Euclidean curve. For example,
we can approximate geometrical features (e.g. length) of f .

In this section, we first use an interval computing algorithm described in [13]
to discretize f = x2+y2+cos(2πx)+sin(2πy)+sin(2πx2) cos(2πy2) = 1 through
a set of cells S0(Ω), where Ω = [−1.1; 1.1]× [−1.1; 1.1] (Figure 4 (top-left)). The
width δ of the final computed ranges is fixed: δ = 0.1. There exists many rules to
build various irregular tilings of the plane. We have chosen this simple criterion
to generate a regular grid, but our algorithm handles any irregular isothetic grid.
Then, we successively update the elements computed by Algorithm 1 with local
refinements by inclusion. We select several cells at each time, and use Algorithm 2
as we have presented it in the previous section. The new cells contained in the
refinement are deduced from the same interval computation algorithm, with a
smaller range width (δ = 0.05). In the figure 4, we show four times of update.
The first update procedure, with the input presented in t = 0, does not modify
the Reeb graph (G0 = G1) while the geometrical reconstruction (A1 and L1)
is finer (t = 1, left). At time t = 1, we choose two cells that modify the Reeb
graph G1 by splitting the edges m − m and s − s (right). Finally, selecting the
four cells at time t = 2 permits to create two new edges in G3 (t = 3).

5 Conclusion and Future Work

In this article, we have proposed a global system for dynamic approximation
of irregular graphical elements by lines. When we consider a local refinement
by inclusion, we are able to update the topology of an irregular 2-D object by
locally modifying its associated Reeb graph. Then, the polygonal description of
this object is updated by changing the reconstruction by lines, in respect to its
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t At, Lt, {Pi}i=1,...n {St+1(Pi)}i=1,...,n Gt

t = 0

t = 1

t = 2

t = 3

Fig. 4. The function x2+y2+cos(2πx)+sin(2πy)+sin(2πx2) cos(2πy2) = 1 on [−1; 1]×
[−1; 1] (top-left) discretized in a set of cells by an algorithm described in [13]. We
also present the result of our method on the right (A3). For each update procedure,
we show the recoded set of cells and the polygonalization (left). The selected cells
P1, P2, ...Pn and their associated decomposition St+1(P1), St+1(P2), ..., St+1(Pn) for the
next iteration are presented (center). The Reeb graph is presented in a circular format
(right). The considered arcs in the Reeb Graph are illustrated in a different color.
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local geometry. We have also shown an application of our system for interactive
approximation of implicit curves by lines. In future work, we would like to
integrate our proposal into a complete software for 2-D interactive geometrical
modelling.
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