Tristan Roussillon
email: tristan.roussillon@liris.cnrs.fr

Laure Tougne
email: laure.tougne@liris.cnrs.fr

Isabelle Sivignon
email: isabelle.sivignon@liris.cnrs.fr

Computation of Binary Objects Sides Number using Discrete Geometry, Application to Automatic Pebbles Shape Analysis

Keywords: Tristan Roussillon, Laure Tougne, Isabelle

Introduction

We are working in collaboration with geographers. Their objective is to establish a set of quantitative characteristics of pebbles sedimented in a river bed. The basic assumption in these studies is that pebbles size and shape are determined by lithology, distance of transport, abrasion, river * Supported by a grant from the french DGA (Jacques Blanc-Talon).

behavior, etc. The automatic computation of this set of quantitative characteristics by digital image analysis allows a minimization of the time spent on the field and a minimization of the inter-and intra-operator variability. Among the characteristics expected, there is pebble sides number. For geographers, pebble sides number is intuitively defined as shown in Fig 1 . We can see that this number results from a thick polygonalisation of pebbles contour.

Decomposition of digital curves into piecewise straight segments, splines, quadratic arcs or elliptical arcs is one of the contour-based techniques used in shape analysis, especially for a structural approach. See [START_REF] Loncaric | A survey of shape analysis techniques[END_REF] or [START_REF] Zhang | Review of shape representation and description techniques[END_REF] for a review of shape representation and description techniques.

Digital straight segments (or discrete segments) are now well known and understood objects. See [START_REF] Klette | Digital straitghness -a review[END_REF] for a review of the concept of digital straightness. A linear time algorithm for decomposition of digital curves into digital straight segments has been proposed more than ten years ago [START_REF] Debled-Rennesson | A linear algorithm for segmentation of digital curves[END_REF]. Discrete geometry provides effective algorithms, which deal with integers, and permits perfect representations or reconstructions of discrete curves. However, the number of digital straight segments obtained is too large for irregular curves. To cope with this problem, Debled-Rennesson et al. [START_REF] Debled-Rennesson | Optimal blurred segments decomposition in linear time[END_REF][START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF][START_REF] Debled-Rennesson | Linear segmentation of discrete curves into blurred segments[END_REF] have introduced the concept of blurred segment as an extension of the arithmetical approach of Reveilles [START_REF] Reveillès | Géométrie Discrète, calculs en nombres entiers et algorithmique[END_REF] and derived a polygonalisation algorithm linear in time. Another concept, called α-thick digital line arc, and the polygonalisation algorithm which results from this concept [START_REF] Buzer | An elementary algorithm for digital line recognition in the general case[END_REF], are very similar to Debled et al.'s ones. Their algorithms seem to be well adapted, because they produce an edge-based polygonalisation (the goal is to find a sequence of sets of 8-connected points that may stand for the edges), contrary to most of the classical methods which are vertex-based ones (the goal is to find a subset of dominant points as stated in [START_REF] Rosin | Techniques for assessing polygonal approximation of curves[END_REF]). Moreover classical methods that are available in libraries like Teh and Chin detection of dominant points or Hough Transform were used and gave too many sides than expected. However the algorithms presented in [START_REF] Buzer | An elementary algorithm for digital line recognition in the general case[END_REF] and [START_REF] Debled-Rennesson | Optimal blurred segments decomposition in linear time[END_REF] assume that the points are added with increasing x-coordinate or y-coordinate. This hypothesis is restrictive if one wants to deal with very noisy curves or if one wants to capture geometry at a coarse scale. In the present paper, we show that we can remove this hypothesis, while keeping the linearity of the algorithm, and as a consequence, deal with any noisy digital curves, with any maximal acceptable width.

The paper is organised as follows. In section 2, we recall some definitions and describe the algorithm presented in [START_REF] Debled-Rennesson | Optimal blurred segments decomposition in linear time[END_REF]. In section 3, we describe and prove our algorithm. Assessments and experiments are given in section 4 with synthetical and real images. The paper ends with some conclusions and future works in section 5.

Blurred Segments

Definitions

The notions of blurred segments and strictly bounding line rely on the arithmetical definition of discrete lines [START_REF] Reveillès | Géométrie Discrète, calculs en nombres entiers et algorithmique[END_REF].

A set Σ of integer points belongs to the digital straight line D(a, b, µ, ω) with slope a b , lower bound µ and thickness ω (with a, b, µ and ω being integer such that gcd(a, b) = 1) if and only if all integer points (x, y) of Σ verify the Diophantine inequalities : µ ≤ axby < µ + ω. The real lines axby = µ + ω -1 and axby = µ are, respectively, called the upper and lower leaning lines of D(a, b, µ, ω) [START_REF] Debled-Rennesson | A linear algorithm for segmentation of digital curves[END_REF]. The integer points of the leaning lines are called leaning points [START_REF] Debled-Rennesson | A linear algorithm for segmentation of digital curves[END_REF]. If ω < max(|a|, |b|), the digital straight line is disconnected. If ω = max(|a|, |b|), the digital straight line is 8-connected (it is named naive line). Increasing ω makes the digital straigth line thicker [START_REF] Reveillès | Géométrie Discrète, calculs en nombres entiers et algorithmique[END_REF]. See Fig. 2 for an example. The digital straight line is depicted with black disks. It is a set of integer points located between two leaning lines (straight lines) passing through some leaning points (circles). In the following, as a simplification, we assume that 0 ≤ y ≤ x. This hypothesis can be done without loss of generality due to symmetries with respect to Ox, Oy and the real line x = y.

Definition 1 [START_REF] Debled-Rennesson | Linear segmentation of discrete curves into blurred segments[END_REF] Let us consider a set of 8-connected points S. A discrete line D(a, b, µ, ω) is said bounding, if all points of S belong to D.

Definition 2 [4] A bounding line of S is said optimal if its vertical distance is minimal, i.e. if the vertical distance of S equals the vertical distance of its convex hull denoted by conv(S).

Definition 3 [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF] A set S is a blurred segment of width ν if and only if its optimal bounding line has a vertical distance less than or equal to ν. See Fig. 3 for an example. The blurred segment S is depicted with black disks. The convex hull conv(S) of S is depicted with dotted lines. The vertical width of conv(S) (double arrow) is computed from the leaning points (circles) and leaning lines (straight lines). The optimal bounding line (which is a thick digital straight line) is drawn with squares on the right. d @ T c The recognition of blurred segments with width ν is thus equivalent to the computation of the vertical (or horizontal) width of the convex hull conv(S) [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF]. Because of the incremental property of the algorithm, the polygonalisation is very simple: add points until the vertical (or horizontal) width computed is strictly higher than the threshold value ν. The current blurred segment ends and a new blurred segment begins.

It should be noticed that due to symmetry, we only have to know how to compute the vertical width of the convex hull for maintaining both vertical and horizontal width simultaneously and always choose the minimal value as the width of the convex hull [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF]. Thus, in the following, as a simplification, we focus on the computation of the vertical width.

It should be noticed that this definition of width is different from the one usually used in Computational Geometry, which is generally not computed with respect to Ox or Oy [START_REF] Buzer | An elementary algorithm for digital line recognition in the general case[END_REF] (see Fig. 4). However, basic ideas used to compute this width are really close to the ones used in Computational Geometry for the rotating calipers algorithm [START_REF] Preparata | Computational geometry : an introduction[END_REF]. The vertical width of a convex polygon P is the maximal length of the intersection of P with a vertical line. The width function width(i) is the length of the intersection of P with a vertical line given by x = i. It is clear that the width function is concave (see Fig. 5).

E T x y O d $ $ $ $ d d g g g g y g g g g $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ U L U R L c c c E T x y O d $ $ $ $ d d T c $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ U L U R L c c c
E T x y O d $ $ $ $ d d T c $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ E T x width(x) O T c ¡ ¡ 7 7 2 2 e e v v v

Restriction

A linear time incremental algorithm of segmentation into blurred segments with width ν is given in [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF]. For each added point, there are two steps.

The first step consists in maintaining the convex hull conv(S) of S with Melkman's algorithm [START_REF] Melkman | On-line construction of the convex hull of simple polygon[END_REF]. This is an incremental and linear algorithm which assumes that added points form a simple polyline (which does not intersect itself). For us, this hypothesis is not restrictive since we deal with binary objects boundaries.

The second step consists in computing the vertical width of the convex hull conv(S). As written in [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF], we can consider three cases (edge, vertex), (vertex, edge) and (vertex, vertex) where the first element is located on the lower part of the convex hull and the second element is located on the upper part (see Fig. 4). We call U L and U R the left and right extremities of the edge and L the vertex because the two first cases are symmetrics. The third case is comparable with a case (edge-vertex) or (vertex-edge) where the edge is reduced to a single vertex. The edge and its parallel passing through the vertex (called supporting lines in Computational Geometry [START_REF] Preparata | Computational geometry : an introduction[END_REF]) define exactly the lower and upper leaning lines of an optimal bounding line for S [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF]. Thus, from U L , U R and L, we can compute the vertical width of S. Comparing this value to ν, we can then decide if S is a blurred segment of width ν or not.

The key point consists in updating the position of the leaning points. The algorithm described in [START_REF] Debled-Rennesson | Optimal blurred segments decomposition in linear time[END_REF] is incremental and linear, but it is unusable for a computation of the pebbles sides number because it assumes that the points are added with increasing x-coordinate or y-coordinate. The more the digital curve is noisy and the more ν (the maximal acceptable width) is high, the less this hypothesis is fulfilled. Hence, we obtain too much sides by running this algorithm. In Fig. 6 (which is drawn from figure 7 in [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF]), the points are neither added with increasing x-coordinate, nor with increasing y-coordinate. As a consequence, the blurred segment of width ν = 3.9 (the extremities of which are the grey squares) is shorter than expected.

Our algorithm

Description

Let us consider that we add a new point M to S, S = S ∪ M .

At a first level, there are three cases (see Fig. 7). If M belongs to D, the position of U L , U R and L do not change after the application of Melkman's algorithm. So S remains a blurred segment with the same vertical width and with the same optimal bounding line D. In the other cases, M is above or below D, the position of U L , U R and L change and the vertical width has to be recomputed. At a second level, for both cases where M does not belong to D, there are several cases again.

E T x y O d $ $ $ $ d d T c $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ U L U R L c
Let us called U L , U R and L , the new leaning points after the update. Given a point P of the convex hull conv(S), we denote next(P) (resp. prev(P)) the functions which return the point after (resp. before) P in a trigonometric orientation.

• First, suppose that M is above D.

Let us suppose that M is after L (i.e. the x-coordinate of M is strictly higher than the x-coordinate of L). See case a) in Fig. 8.

We start by setting U L and U R to the two convex hull points that are neighbors of M . In Fig. 8, case a), U L and U R are, respectively set to U L and U R .

As M is above D, the slope of (U L M) is greater than the slope of (U L U R). As a consequence, the width function increases from U L to L.

E T x y O T c U L U R L q q q M b p p p p p p p p p p p p E T x y O T c d U L L = L q q q q M = U R q p p p p p p p p p p p p a) b) E T x y O T c d ÜL L q q q q q q M = U R q p p p p p p p p p p p p E T x y O T c $ $ $ $ d U R U L q q q q q M = L q p p p p p p p p p c) d)
Figure 8. What may happen if M is above (U L U R) and after L.

If the slope of the edge [L next(L)] is greater than the slope of (U L M), the width function decreases from L to M (see case b) in Fig. 8). U R is set to M and L is set to L. We can compute the vertical width from U L , U R and L .

If the slope of the edge [L next(L)] is lower than the slope of (U L M) and if next(L) is before M , the width function increases from L to next(L). In this case, L moves along the lower part of the convex hull.

As a matter of fact, L is moving until next (L) such that slope(next(L), next (L)) > slope(U L , M).

-If next (L) is before M , then U R = M and L = next (L) (see case c) in Fig. 8).

-If next (L) is after M , then U L = next(L), U R = next (L) and L = M (see case d) in Fig. 8). The configuration is reversed because the vertical width is given by an edge from the lower part of the convex hull and by a vertex from the upper part of the convex hull.

The case where M is before L is symmetric to the previous case.

The particular case where M and L have a same xcoordinate is straightforward. Both U L and U R move to M . The vertical width is the length of

[U L L] or [U R L].
The slope of D is equal to zero.

• Next, suppose that M is below D.

The case where M is after U R is identical to the case where M is above D and after L, but the configuration is reversed. It is enough to exchange the leaning points to have M above D and after L.

The case where M is before U L is symmetric to the previous case, i.e. comparable with the case where M is above D and after L.

The particular case where M is between U L and U R is straightforward. As the width function increases until M and decreases from M , we set

L to M , U L to U L and U R to U R .
Given a digital curve which does not intersect itself, there is an incremental algorithm which maintains the convex hull of the digital curve thanks to the Melkman's algorithm and which computes the vertical width of the convex hull thanks to the algorithm above.

Complexity

To study the algorithm complexity, the idea is to study leaning points displacements. It is enough to focus on the lower leaning point because the upper leaning points are the extremities of the edge in which L project vertically. The algorithm described in the previous section has two interesting properties about the lower leaning point straightforwardly deduced from the different cases studied in section 3.1.

Property 1 For each added point M , the lower leaning point does not move or moves towards M .

Property 2 For each added point M , the lower leaning point never goes beyond M .

M moves along the digital curve and L always moves towards M without going beyond it. Thus, in case of connected points as input (what is not a restrictive hypothesis for us), L moves are bounded by M moves, i.e. the update of L for the insertion of n connected points do not require more than the test of n points. We can conclude that the overall complexity of the algorithm is O(n) in that case.

Experiments

We implemented our algorithm. It takes as input, chain code, extracted from objects boundary by contour tracking. The starting point is first an extremal point (i.e. with minimal x-coordinate and y-coordinate). We shift then the starting point to the last point of the first blurred segment recognized in order to avoid over-segmentation. In addition to the chain code, our algorithm takes as input, ν, the maximal acceptable width. We studied the behavior of our algorithm both with synthetical images and real images.

Synthetical images

We drew 48 binary objects with a raster graphics editor. We first drew 27 objects with the polygon function. These objects were (convex or concave) polygons (see a) in Fig. 9). Then, we sketched 21 objects with the pencil function while trying to imitate the previously drawn polygons. As a result, these objects look like noisy polygons (see b) in Fig. 9). The points number of the set of objects is ranging from 371 to 2870 and the sides number of the set of objects is ranging from 3 to 26. For each object, we performed polygonalisations with width ν ranging from 0.5 to 15, with a step of 0.1. Objects sides number was deduced from the polygonalisations by counting the blurred segments obtained. We focused on the minimal width denoted by ν * from which we found the true sides number (see Fig. 9). Binary objects drawn with the polygon function, called standard objects, are used as ground truth.

For standard objects, the minimal width average is 1.87 (ν * ranging from 1 to 2.7), while for noisy objects, the minimal width average is 7.77 (ν * ranging from 4.7 to 13.7). See Tab. As object sides number is rather stable with respect to the increase of ν beyond ν * , we reach a perfect prediction rate (i.e. 100%) with ν = 3 for standard objects and with ν = 14 for noisy objects. However, there is no value, which allows to reach a perfect prediction rate for both standard and noisy objects. With ν = 14, we found one side less than expected for 4 standard objects (the predection rate is 44/48). Indeed, even if object sides number is rather stable with respect to the increase of ν, it decreases and tends to 1 for sufficiently large ν (one optimal bounding line D contains S).

Real images

We used our algorithm in order to study pebbles digital images. Twenty samples of pebbles taken in the bed of an Indonesian river at various distances from the sea were photographed. We have approximately 1500 pebbles contours of about 350 pixels to analyze. In a first step we detected pebbles with clustering methods, transforming the original color image into a binary image as shown in Fig. 10). In a second step, we extracted chain codes from pebbles boundaries. In a third step we computed the number of sides. The input parameter ν was set up at 13 by trial and error.

Pebbles size variation is very small in both real world and images. Acquisition process and digitization are identical for all images. According to previous study with synthetical images, it seems that ν * depends on size and noise. It was thus relevant to set up the value of ν, once for all. Statistical and geographical analysis are under progress. An exemple of polygonalisation is shown in Fig. 11 and some pebbles with their sides number are gathered in Fig. 12.

Conclusion and perspectives

The objective was to compute the number of sides that pebbles have. We opted for an edge-based polygonalisation which is exactly the geographers' intuitive definition (see Fig. 1 and Fig. 11). We proposed an incremental and linear algorithm, free of restrictive hypothesis, contrary to what we can read in the litterature [START_REF] Buzer | An elementary algorithm for digital line recognition in the general case[END_REF][START_REF] Debled-Rennesson | Optimal blurred segments decomposition in linear time[END_REF][START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear time[END_REF][START_REF] Debled-Rennesson | Linear segmentation of discrete curves into blurred segments[END_REF]. We assessed our algorithm with synthetical images. It turns out that the input parameter ν controls the polygonalisation according to noise, the objects size and the study scale. We experimented our algorithm with real pebbles images too. Pebble sides number seems to be an interesting feature.

For the future, we think about fixing the input parameter in an automatic way (once for all) or in a dynamic way (tuning it during the process). We need a framework for assessing thick polygonalisations which are different of thoroughly studied polygonal approximations [START_REF] Rosin | Techniques for assessing polygonal approximation of curves[END_REF]. To end the paper, an interesting way of investigation is the extension to the concept of blurred tangent in order to compute robust curvature estimators (see [START_REF] Debled-Rennesson | Estimation of tangents to a noisy discrete curve[END_REF] for a first attempt) or to determine the minimal number of necessary blurred segments for a thick polygonalisation (like the min-DSS problem [START_REF] Feschet | On the min dss problem of closed discrete curves[END_REF]).

Figure 1 .

 1 Figure 1. Pebble sides number.

Figure 2 .

 2 Figure 2. The naive line D(2, 5, 0, 5) (left) and the thick line D(2, 5, 0, 10) (right) with their leaning points and leaning lines.

Figure 3 .

 3 Figure 3. The optimal bounding line D(1, 6, 0, 11) (squares) of a blurred segment S (black disks) of width ν = 2.

Figure 4 .

 4 Figure 4. The common (left) and vertical (right) width computed from U L , U R and L.

Figure 5 .

 5 Figure 5. Vertical width and width function.

Figure 6 .

 6 Figure 6. The problem of the algorithm in [4].

Figure 7 .

 7 Figure 7. The three cases while adding M .

Figure 9 .

 9 Figure 9. Results for two triangles.

Figure 10 .

 10 Figure 10. Pebbles images. The 3-sides pebble located in the center of the images was processed in Fig 11.

Figure 11 .

 11 Figure 11. Pebble polygonalisation with ν = 13. The number of sides found is 3.

Figure 12 .

 12 Figure 12. Some pebbles sides number.

Table 1 . The minimal width ν * from which we found the true sides number for each object.

 1

	1.			
	objects	min max average
	standard objects	1	2.7	1.87
	noisy objects	4.7 13.7	7.77