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This paper concerns the digital circle recognition problem, especially in the form of the
circular separation problem. General fundamentals, based on classical tools, as well as
algorithmic details are given (the latter by providing pseudo-code for major steps of the
algorithm). After recalling the geometrical meaning of the separating circle problem, we
present an incremental algorithm to segment a discrete curve into digital arcs.

1. Introduction

Euclidean shape recognition is an important topic of Discrete Geometry. Many studies
have been done for straight lines [8,23], planes [6,26] and algorithms become more and
more efficient. Even if some solutions are proposed for higher order objects such as conics
[24] or general polynoms [11], further developments remain to be done.

This paper concerns the digital circle recognition problem and more precisely the circular
separating algorithm. This paper reports on implementation details, giving pseudo-code
algorithms for the main points, and avoids using the sophisticated machinery coming
either from Computational Geometry or from Linear Programming found in previous
papers on this subject.

In the literature, first results on digital circle recognition have been proposed in the same
time as digital circle or disk definitions. Hence Nakamura et al. [22] propose an recursive
algorithm to detect the center of an digital circle. However, the computational cost of
such an algorithm is exponential in a general case. In [17], Kim proposes an algorithm to
detect if a set of grid points in a N × N image is a digital disk. The complexity bound
is O(N3). In [18], Kim et al. propose an optimization of this in order to reduce the
complexity to O(N 2).

Based on links between digital circle and the classical separating arc problem in compu-
tation geometry, Fisk presents an digital disk recognition algorithm O(N 2) using simplier
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geometric structure than Kim [10]. This algorithm also constructs the complete solution
domain, so called arc center domain in the following. Based on a similar approach, Ko-
valevsky [19], presents a digital circle recognition algorithm of a digital curve. However,
complexity bounds of this algorithm are not provided and one can estimate computational
cost in O(n2 · log(n)) where n is the number of points of the digital curve.

More recently, Damaschke [3] presents a linear in time digital circle detection algorithm
based on linear programming tools. More precisely, Damaschke proves that the recognition
problem is equivalent to solve a set of n inequalities in dimension 3 (where n is the number
of pixels of the digital curve). Hence, the Megiddo’s algorithm [21] is used to decide if a
solution exists in O(n).

Finally, Worring et al. [29] present a digital circle estimation algorithm based on a
fixed size window process. More precisely, they compute complete solution domains for
digital curves whose lengths are less than a fix number r and they present a statistical
process to generalize the local circle recognition to estimate the circularity of a general
digital curve.

In this paper, we present both a digital circle recognition algorithm that describes all
the solution domain and a segmentation process of a digital curves into pieces of digital
circles.

After recalling the geometrical meaning of the separating circle problem, we present
an elementary algorithm based on duality, the formal approach to Hough transform, for
the digital circle recognition problem. This algorithm is then applied in order to find a
partition of any 8-connected curve in digital circular arcs. Such an algorithm allows us to
define and compute the local curvature to a digital curve.

In the following, all time complexity bounds are given considering the model of com-
putation in which number of comparisons are considered.

2. The Separating Arc Problem

Let S and T be two finite sets of points of Z
2. S is called circularly separable from T if

there exists an Euclidean circle C(ω, R) centered at ω and with radius R, such that:

∀s ∈ S, ∀t ∈ T , s ∈ C(ω, R) and t 6∈ C(ω, R)

If such a circle exists for given S and T , its center ω necessarily satisfies the following
inequality:

∀s ∈ S, ∀t ∈ T, dist(ω, s) < dist(ω, t)

where dist(a, b) denotes usual Euclidean distance between two points a and b.
This means that the set acd(S, T ) (i.e. arc center domain) of circle centers separating

sets S and T is equal to the intersection of half planes defined by perpendicular bisectors
of points s and t containing points of S. If for all s in S and for all t in T , H(s, t) denotes
the half-plane bounded by bisector of s and t and containing s, this convex set is thus
defined by

acd(S, T ) =
⋂

s∈S,t∈T

H(s, t)
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Such a convex set is also called generalized Voronoi cell. The Figure 1 shows an example
of such a set acd(S, T ) where the points of S are hollow circles and the points of T are
filled circles.

Figure 1. Set acd(S, T ) (upper left corner polygon) of centers of separating circles.

Various algorithms exist for the construction of set acd(S, T ) [10] [19] [3] [5], we present
in this article a very elementary algorithm using duality, (the theoretical content of the
Hough transform), which could be useful for the Imagery applications that require the
lightest possible implementations.

2.1. Points-lines duality
In order to simplify our use of duality, let us suppose that the rightmost point R and

the leftmost point L of convex set acd(S, T ) is unique. Consequently, this set contains
no vertical edge; such a restriction can be simply disposed of by intersecting convex set
acd(S, T ) with the eventual vertical lines as a last step of the algorithm.

The lower part of the positively oriented boundary of acd(S, T ) is a polygonal curve
L−, between points R and L, and, similarly its upper part is the line L+ starting at L
and ending at R.

Let us denote by {v−

i }i=0,...,m the vertices of L−, where v−

0 = R and v−

m = L and similarly
by {v+

i }i=0,...,n, the vertices of L+ where, this time, v+
0 = L and v+

m = R. In the same way
edges of L− are denoted by {e−i }i=1,...,m and those of L+ are denoted by {e+

i }i=1,...,n.
Our uniqueness hypothesis about west and east vertices of acd(S, T ) implies that all

equations of the lines defined by edges of this set can be written as

y = aix + bi.
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Due to the symmetry between upper and lower parts of acd(S, T ), we shall restrict our
study to lines of the upper part L+ and leave the treatment of L− to the reader.

We now observe that polygonal curve L+ is contained in the lower envelope of lines
associated to edges e+

i . If, moreover, equation of the line bounding half-plane H(s, t), s ∈
S, t ∈ T is written ax+ by + c = 0, giving its normal vector (a, b) the orientation of vector
−→
st, implies that the half-plane

H(s, t) = {M |
−→
st.

−−→
µM ≤ 0}

where µ is the midpoint of segment st, may also be defined by inequality

H(s, t) = {(x, y)|ax + by + c ≤ 0}.

Thus introducing the set Ineqs of all inequalities ax + by + c ≤ 0 associated with all
chords

−→
st, s belonging to S and t to T , we see that upper part L+ of acd(S, T ) is also

defined by the subset of Ineqs where b > 0 (once again b = 0 is not allowed because vertical
lines are omitted); this subset is denoted Ineqs+. Lines of Ineqs+ having equations
ax + by + c = 0 where b > 0, may be termed as upward oriented. Of course set Ineqs+

contains the set of lines which support edges of L+, both of them having the same lower
envelope. Even if lines of the larger family Ineqs+ are easily selected among bisectors of
chords

−→
st, the main problem to determine L+ is to find those which appear in their lower

envelope.

D’
D’’

M

D

D*

D’*
D’’*

M*

Figure 2. Illustration of Proposition 1.

Equations of lines of Ineqs+ may be written y = ax+ b, with convenient a and b, which
allows writing inequalities of Ineqs+ as y ≤ ax + b.

Let us recall that duality is the geometrical process which maps a line whose equation
is y = ax + b to the point (a,−b). It is convenient to denote by D∗ the dual of line D
and by P ∗ the line dual of point P . The Figure 2 shows an example of dual elements. It
is easily proven that

Proposition 1 Point M = (u, v) of primal space belongs to half-plane ax + by + c ≤ 0,
where b > 0, if and only if point (−a/b, c/b) lies beneath line M ∗ of dual space whose
equation is y = ux − v.

Both conditions are in fact equivalent to inequality au + bv + c ≤ 0.
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We can immediately deduced from this proposition that if D, D′, D” represent three
lines such that intersection point M = D′∩D” has coordinates M = (a, b), then the lower
envelope of D, D′, D” takes the value b with x = a if and only if point D∗ is located below
the line dual M∗ of point M , (see Fig. 2).

Primal space Dual space

Figure 3. The lower envelope of a family of lines corresponds to the vertices of the upper
part of the convex hull of their dual transform.

The following result is an immediate consequence of this observation.

Proposition 2 Let F be a set of lines (none is parallel to the Oy axis) and F ∗ the set
of points which are the line dual transform of F . Then duality maps lines of the lower
envelope of F one-to-one into the vertices of the upper part of the convex hull of F ∗.

Using duality, the lower envelope of a line family can be obtained by constructing the
convex hull of their transforms. Moreover duality transform of the edges of this hull are
the intersection points of the envelope lines.

Corollary 1 The set acd(S, T ) can be obtained in O(card(S) · card(T ) · log(card(S) ·
card(T )) time using only elementary primitives like points-lines duality and 2D convex
hull.

From Proposition 2, it follows that construction of the upper boundary L+ of acd(S, T )
is clearly obtained in O(card(S) · card(T ) · log(card(S) · card(T )) time; the same can
be said for its lower boundary L−. Intersection of these polygonal curves takes at most
O(card(S) · card(T )) time; the result follows.

For the sake of clarity, we denote (a, b, c) the inequality ax + by + c ≤ 0. We present
the basic algorithm:

Algorithm 1: An elementary separating arc algorithm

Input: Two non-empty sets S and T
Output: acd(S, T )



6

Let Ineqs be the set of half planes H(s, t) with ∀s ∈ S and ∀t ∈ T
Ineqs+ = {(a, b, c) ∈ Ineqs / b < 0}
Ineqs− = {(a, b, c) ∈ Ineqs / b > 0}
C+ = convexhull(dual(Ineqs+))
C− = convexhull(dual(Ineqs−))
Extract L+ as the lower part of C+

Extract L− as the upper part of C−

Compute the intersection between L+ and L−

Return the obtained polygon acd(S, T )

2.2. Improvements of the separating circle algorithms
Several observations are valuable if the former algorithm has to be effectively imple-

mented.

2.2.1. Reducing S
If a circle separating sets S and T exists, this circle being convex contains convex hull

of S. Thus replacing set S by the set of vertices of its convex hull does not change the
solution of the circular separation problem. As the cost of this processing is O(card(S) ·
log(card(S))), this solution does not increase the complexity of the overall algorithm.

2.2.2. Reducing T
In the same way let us consider two points t and t′ of set T and let us suppose that the

convex hull of S ∪ {t} contains t′. Then if there exists a circle containing S which does
not contain t′, this circle does not contain t.

Proposition 3 If a point t in T is such that the convex hull of points S ∪ {t} contains
another point t′ ∈ T , then t can be removed out of T for the separating arc problem.

This leads to process T points as followed: adjoint a point t ∈ T to the convex hull
of S and remove t out of T if convex hull(S, t) contains another point of T . A simple
O(card(T ) · log(card(T )) algorithm can be devised to make this reduction. An even more
elaborate process, presented in 3.1, will associate a set T satisfying this property to the
given set S.

2.2.3. Relation with Voronöı diagrams
This point shows a very simple relation with the previous more sophisticated approach

of the separating circle problem [10]. Let us suppose that set T is given and let us
introduce points of S one by one; let s be such a point. In this case set acd({s}, T )
is obviously the Voronöı cell of site s in the Voronöı diagram of {s} ∪ T ; let us denote
by vor(s, T ) this convex polygon. We deduce from this remark that in the general case
acd(S, T ) is the intersection of all vor(s, T ) when s takes all values of S:

acd(S, T ) =
⋂

s∈S

vor(s, T )

This previous remark leads to another interesting geometric observation. Of course
S and T are disjoint sets and a point s of S cannot lie on a line defined by two dis-
tinct points of T ; thus points of S belong to the open interior of the convex hull of T
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or are strictly exterior to that polygon. This shows, obviously, that the convex polygon
vor(s, T ), s ∈ S, is bounded if and only if s is an interior point of the convex hull of T .
This partition of points of S into two families,i.e those having a bounded Voronöı cell
vor(s, T ) and the others, leads again to interesting coding simplification and improvement.

Let us now apply the previous results on discrete curves. The following section describes
an arithmetical approach to compute the minimum number of necessary elements of S
and T in order to separate the points that belong to the discrete curve (corresponding to
S) from the other ones (corresponding to T ).

3. An Arithmetical Approach

3.1. Quasi-Circular polyline in Z
2

We first consider two points in Z
2 denoted by m and n. For the sake of clarity, we

consider that a segment [mn] is in the first octant (see figure 4). The problem is to
separate all pixels above [mn] from m and n.

a) b)

m

n

Figure 4. a) Bezout points associated to a segment [mn], b) Bezout points associated to
a convex polyline.

We consider an arithmetical description of the segment [mn], i.e if we have the direc-
tional vector of [mn] denoted by −→u = (a, b)T with a, b ∈ Z and gcd(a, b) = 1.

Definition 1 (Bezout point) A point B is a Bezout point of a discrete segment defined
by an arithmetical directional vector −→u if and only if:

−→
mB = −→v + k−→u with k ∈ Z and det(−→u ,−→v ) = ±1

and B is the closest point to the middle of [mn].

Such grid point is called Bezout point because −→v is given by the classical Bezout’s
theorem in number theory. According to the sign of the determinant, two Bezout points
can be associated to a segment, one point is above [mn] and the other one is beneath
[mn]. Figure 5 illustrates construction of one of these points.
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v
u

n

m

B

Figure 5. The point B is a Bezout point associated to [mn].

Theorem 1 Let us consider [mn] in the first octant, T the set of grid points above [mn]
and t ∈ T . Then, all triangles (m, n, t) contain another point t′ ∈ T except for Bezout
points.

Proof: without loss of generality, we consider [mn] such that −→mn = −→u = (a, b)T . First of

all, we consider a Bezout point t. Hence, according to previous definition, det(−→mn,
−→
mt) =

±1. Thus no grid point belong to the parallelogram defines by −→mn and
−→
mt. Finally, no

grid points are contained inside the triangle (m, n, t).
If t is not a Bezout point, and since det(−→u ,−→u ) = ±1, we have:

−→
mt = k−→u + k′−→v

with k, k′ ∈ Z and k′ > 1.
To complete the proof, we use the Pick’s formula (see [12]):

I = A −
B

2
+ 1

where I is the number of grid points inside a polygon which vertices are grid points,
A denotes the area of such polygon and B the number of grid points in the polygon
boundary.

In our case, we have:

A =
|det(

−→
mt,−→mn)|

2

Since |det(−→u ,−→u )| = 1 and k′ ≥ 2, we obtain:

2I ≥ 2|k| − B + 2

If a grid point t′ belongs to the triangle boundary, the proof is done. Otherwise, we
have B = 3 and thus:

2I ≥ 2|k| − 1

If k = 0 then there exists at least one grid point t′ in the edge [mt]. So suppose k 6= 0.
Hence k′ > 2 leads to a triangle (m, n, t) with a point inside. So we just have to consider
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the case where k′ = 2. In such a case, if k = 1 there is exactly one grid point belonging
to [nt]. Similarly, if k = −1 there is exactly one grid point on [nt]. Hence we have |k| > 1
and finally:

2I ≥ 3

which concludes the proof.�
Hence, according to Proposition 4, if we want to separate all pixels above [mn] from m

and n, we just have to consider points m, n and the Bezout point above [mn] (see figure
4).

If we consider a convex polyline that is a sequence of points in Z
2 such that the polygonal

arc is convex, we can define the quasi-circularity property on such a curve:

Definition 2 A convex polyline Γ in Z
2 is quasi-circular if we can separate by a circle

all the grid points inside the convex hull of Γ from all the exterior points to the hull.

Based on both previous definitions, we have the important property:

Proposition 4 A convex polyline Γ = {vi}i=1..n is quasi-circular if and only if:

acd({vi}i=1..n, {B(vi, vi+1)}i=1..n−1) 6= ∅

where B(vi, vi+1) denotes the Bezout point of the edge [vi, vi+1] exterior to Γ.

3.2. Quasi-circular digital curve
Based on the previous definitions, we can define the quasi-circularity property on digital

convex curves. In the following, we call a digital curve a finite simple 8-path [23]. We also
use the classical convexity definition [15,16]: a set S of connected grid points is convex if
there exits a convex region R in R

2 such that:

S = Z
2 ∩ R

Moreover, a digital curve is convex if it is a piece of a convex digital set boundary.
First of all, we remind an important property that describes links between digital curves

and Euclidean arcs (see [14] for a survey on digitization schemes and formal definition of
the Object Boundary Quantization):

Proposition 5 A digital convex curve is the digitization of an Euclidean arc, using the
Object Boundary Quantization (OBQ) digitization scheme, if and only if we can separate
curve’s pixels from exterior pixels by a circle.

According to the proposition 4, we have the property:

Proposition 6 The following properties are equivalent:

• a digital convex curve is the digitization of an Euclidean circle

• the polyline Γ = {vi}i=1..n defined by the convex hull of the digital curve is quasi-
circular

• acd({vi}i=1..n, {B(vi, vi+1)}i=1..n−1) 6= ∅

The proof of this proposition is straightforward according to definitions and the quasi-
circularity property.
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3.2.1. General process
We can detail in a few words the general process of both algorithms we present in

order to decide if a digital curve is quasi-circular or to segment the curve into maximum
quasi-circular parts.

So, the first step of the process is to compute the global polyline associated to a general
digital curve. If this curve is convex, we compute the convex hull of the curve and we
remove the edge between the first and the last points of the polyline (see figure 6). If the
digital curve is not convex, we use a classical digital straight line segmentation algorithm
in order to extract Strictly Convex or Concave parts (SCoC for short). Many linear in time
algorithms exist for this segmentation process, see [8] or [20] for example. According to
this SCoC segmentation, we can compute convex hulls on each part and thus construct the
global polyline. SCoC parts can be treated independently because it is a pre-segmentation
of the curve into digital circle.

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 6. A SCoC segmentation of a S curve and the global associated polyline.

3.2.2. Arithmetical convex hull
In classical computational geometry, the convex hull computation of N points requires

an O(N · log(N)) time. In the digital case, some algorithms exist to compute such a hull
in a linear time [27]. Hence, the global polyline construction is linear in the number of
pixels.

For the acd problem, in order to be able to compute the Bezout points associated
to an edge in a constant time, we need an arithmetical description of each edge of the
convex hull, i.e. we must have the slope of each edge in an irreducible form. A naive
approach would consist in appling the Euclide’s algorithm at each edge to reduce the
fractions but the cost is really expensive: the arithmetical convex hull would be in O(N ·
log(sizemax(slope)) where sizemax(slope) denotes the maximum arithmetical size of the
slopes. However, arithmetical properties in Z

2 can be used to construct efficiently such
an algorithm.

For the sake of clarity, we just consider convex hull on digital straight segment (DSS
for short) but this algorithm can be generalized to convex curves [7]. If we consider a DSS
whose slope is (a, b) ∈ Z

2 with gcd(a, b) = 1, we use the Klein’s diagram based on the
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continuous fraction analysis of a DSS slope [4,12]. This algorithm constructs, from the
classical Euclide’s algorithm of b/a, the set of convex hull points. Hence, in log(min(a, b))
time, we can construct the arithmetical description of all the convex hull edges of the
DSS.

Since the complexity of the DSS segmentation algorithm is linear in the number of pixels
and bounds the cost of the Klein’s diagram, the global complexity of the arithmetical
convex hull is linear in the number of pixels.

In the following parts, we first present an elementary algorithm to construct the arc
center domain associated to a SCoC part and then we present an incremental algorithm
to construct the maximum domains of a general digital curve.

3.2.3. Digital circle recognition algorithm
Let us first consider a sequence of edges of a SCoC Ci. We consider all the edges at

the same time. The following algorithm decides if a SCoC digital curve is the digitization
of an Euclidean arc. If the curve is quasi-cicular, the complete description of the acd is
returned.

Algorithm 2: A global separating arc algorithm on a SCoC curve

Input: a sequence of edges of Γ.
Output: the convex set acd(S, T ) (maybe empty)

S := ∅
T := ∅
For each edge of the exterior part of the convex hull of Γ

Let (a, b, vi, vi+1) denotes the parameters of such an edge
Let compute B the weakly exterior point
S := S + {vi, vi+1}
T := T + {B}

end for

Compute acd(S, T ) using the algorithm 1
Return acd(S, T )

If we denote by N the number of edges of the convex hull, we have to consider:

• (N + 1) extremity points,

• N weakly exterior points.

Consequently, we are leaded to consider the respective sets of points S and T such that
card(S) = N + 1 and card(T ) = N . We finally obtain O(N 2) constraints.

3.2.4. Digital arc segmentation algorithm
In this case, we consider a general digital curve and its associated polyline. The max-

imum acd is an incremental implementation of the global algorithm. We add edges of
the polyline one by one and we test if the acd is empty or not. If the acd is empty, we
initialize a new domain.
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Algorithm 3: Maximum digital arc segmentation

Input: A digital curve C
Output: An array of all the convex polygons

i := 0
For each Ci part given by the polygonalisation algorithm on C

S := ∅
T := ∅
Γi:=convexhull(Ci)
For each exterior edges vjvj+1 of Γi

Let (a, b, vj , vj+1) denotes the parameters of such an edge
Let compute B the weakly exterior point
S := S + {vj , vj+1}
T := T + {B}
Compute newacd := acd(S, T ) using algorithm 1
If newacd = ∅ then we define a new domain

S := ∅; T := ∅
acd[i] := prevacd

i := i + 1
else

prevacd := newacd

end for

acd[i] := prevacd

i := i + 1;
end for

Return acd

Just remark that in this case, a priori, for each generated new segment we have to
consider all the intersections between the half planes of the current segment and all the
previous ones. As we have O(N 2) constraints at each of the N steps, we obtain O(N 3)
constraints.

Using the part 2, let us do a complexity analysis of the previous algorithms.

3.3. Complexity analysis
If we remind the previous notations, n denotes the number of pixels of the digital curve

and N the number of edges of the polyline Γ. First, we use the theorem:

Theorem 2 (Acketa and Žunić [1]) The maximal possible number of edges e(m) of a
convex digital polygon included into an m × m-grid is bounded by:

e(m) =
12

(4π2)1/3
m2/3 + O(m1/3 · log(m))

Similar results with slightly different theorem statements may be found in [13] and [28].
Hence if n is the number of points of a digital convex curve, the number of edges N of

the polyline Γ is bounded by O(n2/3). Using this bound, we can give the complexity of
proposed algorithms. Note that for both algorithms, the polyline Γ is computed in O(n):

• Digital circle recognition algorithm: since we have shown that the number of con-
straints is in O(N 2), we can apply the Algorithm 1 to compute the vertices of the
convex set, maybe empty, in O(n4/3 · log(n)).
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• Digital arc segmentation algorithm: since we only use classical computational ge-
ometry tools (points-lines duality, convex hulls), we can transform Algorithm 1 into
a on-line algorithm without changing the complexity. Hence, the digital arc seg-
mentation algorithm is also computed in O(n4/3 · log(n)).

In Kovalevsky’s approach [19], no complexity bound is provided but if the optimal
Algorithm 1 is used to test the arc separability, we can bound the computational cost by
O(n2 · log(n)). As a matter of fact, in the worst case, all exterior grid points have to be
taken into account (see Figure 7).

(a) (b)

Figure 7. Comparison between the Kovalevsky’s approach and our proposal

3.4. Reversibility
Let us consider a piece of the digital curve C, denoted by P , such that the corresponding

convex set is not empty. This convex set characterizes all the arcs that separate P from
the other points of the plane. These arcs have the following property:

Proposition 7 Let acd(S, T ) be the arc center domain defined by a digital curve C
and let p be a point in acd(S, T ). For each Euclidean arc A of center p and radius
r ∈ [minX∈P dist(c, X), minY /∈P dist(c, Y )[, the OBQ (Object Boundary Digitization) dig-
itization [14] of A is contains all points of C.

This property is proved by the construction of the domain.
We can use the previous algorithms to compute the curvature at each point of a digital

curve.

3.5. Application to curvature estimation
Let us suppose our goal to be the curvature estimation at each point of the digital curve

C. A classical way to define the curvature at a point of a curve is to consider the inverse
of the osculating circle radius [2]; this computation can be done by considering the best
fitting circle locally at each point of the curve. In the previous sections, we have shown an
algorithm to recognize digital arc pieces from a digital curve based on convex hull vertices
and edges. Based on this segmentation, we can compute a curvature estimation at each
pixel of an arc by the mean value of the acd computed during the segmentation. This
approach leads to a global calculus of the curvature and some errors are introduced near
extremities. Most of all this approach is up to the digital arc segmentation initialization.
Hence, we propose a local characterization of the curvature based on the same tools but
with appropriate characteristics points:
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Definition 3 Let M be a point of C, we define k(M) the curvature at M by:

k(M) = sign

(

1

min({dist(c, M)) | c ∈ acd({M, L, R}, {Lext, Rext})

)

Where L, R, Lext, Rext and sign are defined by:

• [ML] and [MR] are digital straight lines

• Lext the weakly exterior point associated to the segment [ML] exterior to the polyline
(LMR)

• Rext the weakly exterior point associated to the segment [MR] exterior to the polyline
(LMR)

• L and R are maximal for the acd problem, which means that L (resp. R) is
the farthest point on C from M such that the arc center domain acd({M, L, R},
{Lext, Rext}) is not empty.

• sign is +1 or -1 according to the convexity or concavity of the polyline (LMR)

This curvature is the inverse radius associated with the closest vertex of acd({M, L, R},
{Lext, Rext}) to M , that defines the minimum curvature radius and thus the maximum
curvature at M . Since M, L and R may not be convex hull points, some points of [MR]
or [ML] might be outside the computed separating arcs. This makes the process not
reversible but this is not important in the case of local curvature computation.

We have an elementary algorithm to estimate the curvature at a point of a curve.

Algorithm 4: Curvature estimation at a point of a digital curve

Input: A digital curve C and a point M ∈ C
Output: the estimated curvature of M

Note : the digital curve is stored as a double-link list

L:=M→prev
R:=M→next
Compute Lext and Rext

While (acd({M, L, R}, {Lext, Rext}) 6= ∅) AND ([ML] is a digital straight segment) AND ([MR] is a digital
straight segment) do

L:=L→prev
R:=R→next
Compute Lext and Rext

end while

If acd = ∅ then we come back to a non empty acd

L:=L→next
R:=R→prev
Compute Lext and Rext

Let A be the arc defined by the closest center of the acd({M, L, R}, {Lext, Rext}) to M
Return the inverse radius of A
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Since the acd computation is only based on five points the first test of the while loop
can be done in a constant time but the straight line recognition can be in O(n) in a basic
complexity analysis. In order to estimate the curvature at each point of the curve, we
must apply the above algorithm to each point of the curve:

Algorithm 5: Curvature estimation at each point of a digital curve

Input: A digital curve C
Output: the estimated curvature graph K

For each point M of the curve
Let store in K[M ] the curvature estimation using Alg. 4 at M

end for

Return K

A basic complexity analysis of Alg. 5 will lead to an O(n2) complexity. However, we
can use digital tangents defined by [25] in order to bound the digital segment growth.
As a matter of fact these digital tangents are defined by the longest digital segment at a
point of C and thus half-tangent at M define the longest possible segment for [ML] and
[MR]. Since these digital tangents can be computed in O(n) at each point of the curve C
[9] we can bound the [ML] and [MR] in the same complexity.

If the extreme L and R lead to an empty acd, we have to backtrack on the segments
using a dichotomy process in order to find appropriated L and R. Each tested points in
the recursive process will take O(log(n)) to check if the acd is empty or not (i.e O(log(n))
to compute the new equation of the segment and O(1) to test the acd). We finally obtain
a global complexity in O(n · log(n)2).

In figure 8, we display the curvature graph on a digital circle of radius 40. If we com-
pare these results to previous algorithms (see [2] for example), the curvature estimation
based on a 5-point acd is not enough accurate to be relevant and further work is needed.
However, this approach is theoretically consistent with the Euclidean osculating circle
approach.

4. Some experiments

The first experiment concerns digital circle center recovering; a digital circle C being
given, we try to find a point M of R

2 (and a real number R) such that the discretization
of the circle of center M and radius R gives C back. To obtain this, we compute its
convex hull and our goal is to test the number of edges that are necessary to find a good
approximation of the radius of the circle. In figures 9, 12 and in table 1, we show the
results obtained for a circle of radius 100 grid units. We extract from the shape of the
convex set the mid point and the standard deviation of its vertices. We can remark that
the mid point fastly converges to the real center and the standard deviation also decreases
very quickly.

In figures 10 and 11, we present examples of the digital arc segmentation algorithm.
Since both the SCoC segmentation and the maximum acd process are greedy, they do not
guarantee a minimal number of digital arcs.
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Figure 8. Curvature graph on a digital circle of radius 40.
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Figure 9. Euclidean distance between the center of a digital circle of radius 100 grid units
and the mid point of acd(S, T ).

# of edges x̄ ȳ σx σy

5 0.338444 .328996 2.772722 17.091599
20 0.005424 0.001096 0.000383 6.653609e-05
30 0.004237 0.000741 1.511038e-05 7.513850e-06
40 0.005606 -0.000490 1.710540e-05 1.949764e-06

Table 1
Some numerical results on the mid point localization and the standard deviation of the
acd verticies on a digital circle of radius 100.
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Figure 10. Examples of the digital arc segmentation: segmentation of a S shape and a
parabola.
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Figure 11. Details of the S shape segmentation: the first three figures represent the
inequation systems attached to the digital arcs, the last two figures detail the first and
the last acd (note that the true centers are respectively (12, 12) and (12, 36)).
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Figure 12. Some examples of the convex set evolution when we increase the number of
edges on the circle of radius 100.

5. Conclusion and future works

Our purposed approach uses elementary geometrical notions only : finding circles sep-
arating two sets of points and one obvious property of Z

2 geometry with Bezout points.
This allows conceiving of various simple algorithms leading to efficient programs. If query
for a single separating circle is needed, first part of our work is enough; if segmentation
of a digital curve into circular arcs is wanted, the knowledge of all arc centers domains is
necessary to recognize points where it becomes empty, then our incremental version of the
second part can be the tool. Let us insist, at this point, on the quite reasonable complex-
ity increase beyond linearity of this incremental algorithm; linearity is already reached by
the query of only one separating circle when, here, all these circles are computed.

Many trails seem interesting to follow after this work such as the study of the local
digital curvature variations on algebraic curve discretizations, comparison of our approach
with those using higher order derivatives in the definition of digital curvature, or the
recognition of higher differential invariants. On the digital arc segmentation, the proposed
algorithm opens an important problem: how to segment a digital curve into minimal
number of digital arcs ?

Beside these most urgent tasks we are interested as much by theoretical developments
like higher dimensional generalizations as by the practical sides like optimizing algorithms
and resulting codes.
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